用户名: 密码: 验证码:
松辽盆地白垩系营城组火山岩有效储层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火山岩油气藏在全球范围内已逐渐成为勘探的重要新领域和油气储量的增长点。火山岩松辽盆地深层火山岩气藏具有巨大的资源潜力。徐家围子断陷白垩系营城组火山岩气藏目前已步入精细开发阶段,在井位优选、储量计算和射孔压裂层位筛选过程中,需要建立定量化的储层分类评价标准,为其提供可靠的地质依据。
     本论文从火山岩岩性、岩相、旋回和火山机构等方面,综合地质、测井和地震方法,对火山岩储层进行综合描述。以产能指标确定储层类别,对不同类别的储层进行了分类描述,总结了各类储层特征、控制因素和分布规律。在储层实例解剖和储层定量表征的基础上,总结分析了火山岩有效储层的成因机制、识别标志和分布规律。对储层物性、非均质性和孔隙结构特征进行了定量分析和评价。在以产能指标确定储层类别的基础上,对各类储层进行聚类分析,确定了有效储层物性下限,建立了不同类别储层分类评价参数的界限标准和分布范围。最终,对XD和AW两个重要储量区块进行有效储层实例解剖,通过地质—地震综合对有效储层进行了识别预测。
     通过开展本次研究,总结出一套针对低渗透性、非均质性强、岩性复杂的火山岩气藏有效储层定性描述、定量表征、分类评价和识别预测的理论与技术方法。
In Songliao basin, eighty-seven percent of the proved gas reserves are stored in the Lower Cretaceous (K1y) volcanic rocks mostly below 3000 meters. To present, there are more than two hundred boreholes revealing volcanic rocks with proved gas reserves up to 321.8 billion cubic meters and under proved gas reserves up to 500 billion cubic meters, also showing potential reserves more than 1000 billion cubic meters. In Xujiaweizi (XJWZ) depression, the volcanic gas reservoir now is undergoing precise exploration phases; quantitative characterization and evaluation are needed for offering credible geological basis for borehole and artificial fracturing location optimization and reserve calculation.
     This paper made integrated descriptions on volcanic lithology, lithofacies, volcanic cycles and volcanic edifices with geological, logging and seismic methods. Reservoir types were divided by gas and water productivities and different type of reservoirs was characterized respectively, and summarized their characteristics, controlling factors and spatial distributions. On the basis of reservoir analyses and quantitative characterization, analyzed the formation mechanism of effective reservoirs and seek for theirs distinguishing sighs and controlling factors. Quantitatively analyzed and evaluated reservoir porosity, permeability, heterogeneity and pore structures. Based on reservoir categorization by gas and water productivities and clustering analyses, determined the lower limit of effective reservoirs as well as the boundaries and ranges for classification and evaluation.
     On the basis of this research, summarized a series of theories and methods for the characterization, classification, evaluation, identification and forecasting of volcanic gas reservoirs with low permeability, intense heterogeneity among multiple lithologies.
     1. Characteristics of lithology, lithofacies, cycle and volcanic edifice of the Yingcheng formation, XJWZ fault depression
     Volcanic rocks of the Yingcheng formation include more than 20 types ranging from mafic to felsic and from lava to volcanoclastic rocks. the lithological composition, structure and texture are identified with core, cuttings by polar microscope, major elements analysis,and electron probe.
     Based on the lithological analysis, the logging data is demarcated and the correlation between lithology and logging are established with crossplots. According to the lithology-logging identification model, the lithology of core absent part is interpreted. According to different features of FMI image of volcanioclastic rocks, matrix/skeleton, fracture, pore, combined with core demarcation, the logging image identification mode for rhyolite structure, massive structure, stomata - almond structure, welded tuff structure,volcanic breccia structure and crystal tuff structure are established.
     There are three types of volcanic facies emplacement in the Yingcheng formation including filling,drape and mound-building. The 1st member and the 3rd member of Yingcheng formation are divided into four and three volcanic eruption cycles, respectively. In general, there are tendencies of mafic-intermediate-felsic (magma composition) for lithology and effusive facies-explosive facies- extrusive facies (volcanism ) for lithofacies.
     On the basis of quantitative analysis of outcrop and buried volcanic edifice, according to lithological composition, facies sequences and facies composition, There are six types of buried volcanic edifices facies modes established for acidic lava volcanic edifice, intermediate pyroclastic volcanic edifice, acid composite volcanic edifice, intermediate lava volcanic edifice, intermediate pyroclastic c volcanic edifice and intermediate-mafic composite volcanic edifice, respectively.
     2. Reservoir spaces and diagenesis
     Volcanic reservoir spaces are mainly composed of holes,caves and fractures. According to the diagenesis and reformation, the volcanic reservoirs can be classified as two genetic types including primary and secondary ones, and 11 types and 20 subtypes can be compartmentalized further according to the genetic mechanism, shape and distribution characteristics. Primary reservoir space means various open apertures which formed in closed system conditions before the complete cooling of volcanic rocks and in primary diagenesis condition. The primary reservoir spaces include five types as stomatas, framework holes, contraction cavity, shrinkage fracture and shattered fracture. While secondary reservoir spaces formed from the alteration of primary reservoir types or generating new reservoir types on the condition of opened system after the complete cooling of volcanic rocks and controlled by secondary diagenesis. The secondary reservoir spaces mainly composed of dissolution pores, hydrothermal fractures, weathering fractures, dissolution fractures, pressure solution fractures and structural seams.
     The stage of diagenesis of volcanic rocks can be divided into early diagenesis and late diagenesis. Early diagenesis mainly controls the formation and distribution of primary reservoir spaces and consists of volatile component overflow, solidification contraction, welding and autoclastic brecciation and so on. The late diagenesis mainly influences the alteration of primary space and the development of secondary space. The late diagenesis includes compaction, hydrothermal brecciation, filling, dissolution, weathering and leaching and tectonic process.
     3 Quantitative evaluations of porosity, permeability and heterogeneity
     Gas and water were reserved in and outputted from multiple lithologies ranging from mafic and felsic, lava and pyroclastic volcanic rocks in XJWZ depression. Among these diverse volcanic rocks, effective gas reservoirs are mainly developed in rhyolite, ignimbrite, trachyte and basalt.
     Effective porosity, gas permeability, density and pore throat were used to analyze and evaluate reservoir properties and heterogeneities of volcanic reservoirs. Proved that porosity from high to low are sequenced as rhyolite, ignimbrite, trachyte and basalt while the last had the highest permeability.
     Heterogeneity of volcanic reservoirs display intra and between layers and in plane. Intralayer heterogeneities behaves as porosity and permeability diversities vertically in separate cooling units, proved that permeability differ greater than porosity and vertical permeability differ greater than horizontal. Intralayer heterogeneity of different lithologies from high to low are sequenced as basalt, ignimbrite, rhyolite and trachyte which is opposite to the difference of reservoir effective thickness between them. Heterogeneity between layers is resulted to diversities of porosity and permeability between different volcanic cycles, periods and cooling units. Heterogeneity in plain is related to differences of porosity and permeability between separate volcanic bodies or among different facies.
     4 Quantitative characterizations of pore structures
     Quantitative analysis and evaluation of pore structure was made for the volcanic rocks on the basis of regular mercury testing. Pore throat diameter of volcanic rocks ranges between 0.016μm and 10.64μm which corresponds to the dimensions from tight sandstone to sandstone (0.03~20μm). Generally, the maximum pore throat diameter of effective volcanic reservoirs is close to sandstone reservoir (2~20μm), and the pore diameter of non-effective volcanic reservoir coincide with tight sandstones (0.03~2μm).
     Pore throat radius of effective reservoir and non-effective reservoir differ obviously for basalt and ignimbrite tuff with greater heterogeneity, the gap is not obvious for trachyte and rhyolite with no great heterogeneity.
     The pore throat radius could be divided into five grades, sequenced as macro, coarse, medium, small and micro with boundaries as 0.63μm, 0.16μm, 0.063μm and 0.04μm. Based on the size of pore throat radius and their distribution histogram, summarized seven types of pore distributions including single coarse-kurtosis, single-bias coarse-kurtosis, single-bias fine-kurtosis, single fine kurtosis, double-bias coarse-kurtosis, double-bias fine-kurtosis, single micro-kurtosis. Effective reservoirs mainly develop single coarse-kurtosis, single-bias coarse-kurtosis and double-bias coarse-kurtosis, single-bias fine-kurtosis, single fine kurtosis, double-bias, fine-kurtosis correspond to both effective and non-effective reservoirs. And single fine-kurtosis is mostly in empty layers proved by daily productivity.
     5 Lower limits of volcanic effective reservoirs and reservoir classification and evaluation
     Effective reservoirs are those with daily productivities above industrial levels under present artificial techniques and economic benefits.
     Porosity, permeability, heterogeneity and pore throat distributions are different among rhyolite, ignimbrite, trachyte and basalt so that their lower limits and boundaries need to be determined separately.
     The lower limit values of porosity and permeability and determined by the distribution function curve method, cross-plots and statistical method. Average value of the lower limits determined by the distribution function curve method and corss-plots are considered to be the lower limits of effective reservoirs. While the statistical value is considered to be the upper limit of empty layers. These results coincide well with the values of porosity and permeability in boreholes with daily production data.
     Five categories of volcanic reservoirs are determined by daily productivity of gas and water, classⅠare those reservoirs with productivity greater than forty thousand cubic meters per day without artificial fracturing, classⅡ,Ⅲ,Ⅳ,Ⅴare sequenced with the boundaries as 10×104m3/d, 4×104m3/d and 100m3/d. ClassⅠ,Ⅱ,Ⅲare effective reservoirs, classⅣandⅤare non-effective ones. ClassⅠa ndⅡare mainly developed in rhyolite and ignimbrite. Basaltic reservoirs mostly are classⅢ,ⅣandⅤ. Trachytic resvoirs mostly are classⅡandⅢ.
     6 Distribution, identification and forecasting of volcanic effective reservoirs
     Proved by lithologic, mineralogic and geochemical studies, albitization, hydrothermal brecciation and multiple component amygdules indicate effective reservoirs.
     Vesicular zone and middle welded zone are according to the location of effective reservoirs, which can be identified with high DT and low Density due to primary porosities. And the massive zone of lava and densely welded ignimbrite coincide with low DT and high Density due to little porosities.
     Separately establish pertinency between volcanic edifice and facies-belts, volcanic facies, seismic attributes and volcanic reservoirs. Superpose the evaluating and forecasting results determined by the three methods in order to reveal reservoir categories on the plane. Ten effective reservoir developing blocks are determined in the 3rd cycle of K1y1 volcanic rocks with an area of 360 km2, and non-effective reservoirs covers 460km2. Six effective reservoir developing blocks are determined in the strata of K1y3 intermediate and mafic rocks with an area of 229 km2, and non-effective reservoirs covers 53%.
引文
[1] Aubele J C, Crumpler L S, Elston W E. Vesicle zonation and vertical structure of basalt flows [J]. Journal of Volcanology and Geothermal Research, 1988, 35(4): 349-374.
    [2] Bathurst R G C. Bruial diagenesis of limestones under simple overburden: Stylotites, cementation and feedback [J]. Bulletin De La Societe Geologique De France, 1995, 166: 181-192.
    [3] Benyamin. Facies distribution approach from log and seismic to identification hydrocarbon distribution in volcanic fracture [C]. 9th SPWLA Japan formation evaluation SYMP, 2007, 9: 25-26.
    [4] Bergman S C, Talbot J P, Thompson P R. The Kora Miocene submarine andesite stratovolcano hydrocarbon reservoir, northern Taranaki Basin, New Zealand [J]. New Zealand Oil Exploration Conference, Proceedings, Ministry of Commerce, Wellington, New Zealand, 1992: 178-206.
    [5] Carroll R D. Velocity-porosity logging in volcanic rocks [J]. J. Petroleum Tech, 1968, 12: 1371-1374.
    [6] Cas R A F and Wright J V. Volcanic successions: Modern and ancient: A geological approach to processes, products and successions [M]. London: Allen & Unwin, 1987.
    [7] Chen Z Y, Yan H, Li J S, et al. Relationship Between Tertiary Volcanic Rocks and Hydrocarbons in the Liaohe Basin, People’s Republic of China [J]. AAPG Bull., 1999, 83(6): 1004-1014.
    [8] De Goyler E. Oil associated with igneous rocks in Mexico [J]. AAPG Bull., 1932, 16: 799-808.
    [9] Dyda M. 2005. Density limits of recrystallization inferred from rock glasses [J]. Acta Geodynamica et Geomaterialia, 2(4): 49-61
    [10] Einsele G. Sedimentary basins [M]. Berlin: Springer, 2000.
    [11] Feng Z Q. Volcanic rocks as prolific gas reservoir: A case study from the Qingshen gas field in the Songliao Basin, NE China [J]. Marine and Petroleum Geology, 2008, 25: 416-432.
    [12] Fisher R V and Schmincke H U. Pyroclastic rocks [M]. Berlin: Springer-Verlag, 1984: p. 89-123, 340-345.
    [13] Flanigan T. Borehole evaluation and completion: carbonate, volcanic, clastic reservoirs of Nevada [J]. Oil & Gas Journal, 1989, 87: 92-96.
    [14] French D E and Freeman K J. Tertiary volcanic stratigraphy and reservoir characteristics of Trap Spring Field, Nye County, Nevada. In: Newman GW, Goode HD (eds.) Basin and Range Symposium. Rocky Mountain Association of Geologists - Utah Geol. Ass., 1979: 487-502.
    [15] Gu L X, Ren Z W, Wu C Z, et al. Hydrocarbon reservoirs in a trachyte porphyry intrusion in the Eastern depression of the Liaohe basin, northeast China [J]. AAPG Bulletin, 2002, 86(10): 1821-1832.
    [16] Hansen D M, Cartwright J A, Thomas D. 3D seismic analysis of the geometry of igneous sills and sill junction relationships. 3D Seismic Technology: Application to the Explaration of Sedimentary Basins (Geol. Ass. Lond. Memoir), 2004, 29: 199-208.
    [17] Hassan M H, Korvin G, Abdulraheem A. Fractal and genetic aspects of Khuff reservoir styloties, Eastern Saudi Arabia[J]. The Arabian Journal for Science and Engineering, 2002, 27(1A): 29-56.
    [18] Jin Q, Xu L, Wan C L. Interactions between basalts and oil source rocks in rift basins: CO2 generation [J]. Chinese Journal of Geochemistry, 2007, 26:58-65.
    [19] Kawamoto T. Distribution and alteration of the volcanic reservoir in the Minami-Nagaoka gas field. J. Japan. Ass. [J]. Petroleum Tech., 2001, 66: 46-55.
    [20] Lake L W, Carroll H B Jr. Preface, in Lake L W and Carroll H B, Jr., eds., Reservoir Characterization [M]. Orlando, Florida: Academic Press, 1986, 659p.
    [21] Levin L E. Volcanogenic and volcan0clastic reservoir rocks in Mesozoic-Cenozoic island arcs: examples from the Caucasus and the NW Pacific [J]. J. Petroleum Geol., 1995, 18: 267-288.
    [22] Lofgren G. Experimental devitrification rates of rhyolitic glass [J]. Geol. Soc. Am. Bull. 1970, 81: 533-560.
    [23] Luo J L, Morad S, Liang Z G et al. Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill [J]. AAPG Bulletin, 2005, 89(10): 1319-1346.
    [24] Luo J L, Zhang C L, Qiu Z H. Volcanic reservoir rocks: A case study of the Cretaceous Fenghuadian suite, Huanghua basin, eastern China [J]. Journal of Petroleum Geology, 1999, 22(4): 397-415.
    [25] Maruyama S, Isozaki Y, Kimura G et al. Paleogeographic maps of the Japanese islands: Plate tectonic synthesis from 750Ma to the present [J]. Island Arc, 1997, 6(1): 121-142.
    [26] McPhie J, Doyle M, Allen R. Volcanic textures: a guide to the interpretation of textures in volcanic rocks. CODES Key Centre, Univ Tasmania Hobart, Australia, 1993.
    [27] Nelson C E, Jerram D A, Hobbs R W. Flood basalt facies from borehole data: implications for prospectivity and volcanology in volcanic rifted margins [J]. Petroleum Geoscience, 2009, 15(4): 313-324.
    [28] Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales [J]. AAPG Bulletin, 2009, 93(3): 329-340.
    [29] Nichols R L. Flow-units in basalt [J]. The Journal of Geology, 1936, 44(5): 617-630.
    [30] Powers S. Notes on minor occurrences of oil, gas, and bitumen with igneous and metamorphic rocks [J]. AAPG Bull., 1932, 16: 837-858.
    [31] Rogers K L, Neuhoff P S, Pedersen A K et al. CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland [J]. Lithos, 2006, 92:55-82.
    [32] Schatzinger R A and Jordan J F eds. Reservoir characterization: Recent advances [M]. AAPG Memoir, 1999.
    [33] Smith R L, Bailey R A. The bandolier tuff, a study of ash-flow eruption cycles from zoned magma chambers [J]. Bull. Volcanol. , 1966, 29: 83-104.
    [34] Sruoga P and Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina [J]. AAPG Bull., 2007, 91: 115-129.
    [35] Stewart S A, Allen P J. 3D seismic reflection mapping of the Silverpit multi-ringed crater, North Sea [J]. Bulletin of the Geological Society of America, 2005, 117: 354-368.
    [36] Thomaz F A, Mizusaki A M P, Antonioli L. Magmatism and petroleum exploration in the Brazilian Paleozoic basins [J]. Marine and petroleum geology, 2007: 1-9.
    [37] Thomson K. Volcanic features of the North Rockall Trough: application of visualisation techniques on 3D seismic reflection data [J]. Bull. Volcanol., 2005, 67:116-128.
    [38] Vernik L. A new type of reservoir rock in volcaniclastic sequences [J]. AAPG Bull., 1990, 74: 830-836.
    [39] Walker GPL. Compound and simple lava flows and flood basalts [J]. Bulletin of volcanology, 1971, 35:579-590.
    [40] Wang P J, Chen F K, Chen S M, et al. Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NE China [J].Geochemical Journal, 2006, 40: 149-159.
    [41] Wang P J, Liu W Z, Wang S X. 40Ar/39Ar and K/Ar dating on the volcanic rocks in Songliao Basin, NE China: constraints on stratigraphy and basin dynamnics [J]. International Journal of Earth Sciences, 2002a, 91: 331-340.
    [42] Wang P J, Ren Y G, Shan X L, et al. The Cretaceous volcanic succession around the Songliao Basin,NE China:relationship between volcanism and sedimentation[J]. Geological Journal, 2002b, 37(2): 97-115.
    [43]操应长,王艳忠,徐涛玉,等.东营凹陷西部沙四上亚段滩坝砂体有效储层的物性下限及控制因素[J].沉积学报, 2009, 27(2): 230-237.
    [44]常丽华,曹林,高福红.火成岩鉴定手册[M].北京:地质出版社, 2009.
    [45]陈建文,王德发,张晓东,李长山.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘, 2000, 7(4): 371-381.
    [46]陈丽华,赵澄林.碎屑岩天然气储集层次生孔隙的三种成因机理[J].石油勘探与开发, 1999, 26(5): 77-79.
    [47]谌继红.国外火山岩油气田开发典型实例调研.华北石油管理局勘探开发研究院内部资料, 1991: 1-18.
    [48]崔永斌.有效储层物性下限值的确定方法[J].国外测井技术, 2007, 22(3): 32-38.
    [49]单玄龙,刘青帝,任利军,等.松辽盆地三台地区下白垩统营城组珍珠岩地质特征与成因[J].吉林大学学报(地球科学板), 2007, 37(6): 1146-1151.
    [50]《地球科学大辞典》编委会.地球科学大辞典:基础科学卷[M].北京:地质出版社, 2006, p992.
    [51]丁日新,舒萍,曲延明,等.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J].吉林大学学报(地球科学版), 2007, 37(3): 525-530.
    [52]董冬,杨申镳,段智斌.滨南油田下第三系复合火山相与火山岩油藏[J].石油与天然气地质, 1988, 9(2): 346-355.
    [53]冯志强,王玉华,雷茂盛,等.松辽盆地深层火山岩气藏勘探技术与进展[J].天然气工业, 2007, 27: 9-12.
    [54]冯子辉,印长海,齐景顺,等.大型火山岩气田成藏控制因素研究——以松辽盆地庆深气田为例[J].岩石学报, 2010, 26(1): 21-32.
    [55]高有峰,刘万洙,纪学雁,等.松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响[J].吉林大学学报(地球科学版), 2007, 37(6): 1251-1258.
    [56]郭睿.储集层物性下限值确定方法及其补充[J].石油勘探与开发, 2004, 31(5): 140-144.
    [57]郭占谦.从全球油气田分布看我国东南沿海火山岩覆盖区的含油气前景[J].石油实验地质, 2001, 23(2): 122-131.
    [58]侯英姿.松辽盆地杏山-莺山地区火山岩储集空间类型特征及其控制因素[J].特种油气藏, 2003, 10(1): 99-102.
    [59]胡华光,胡世玲,王松山,等.根据同位素年龄讨论侏罗、白垩纪火山岩系地层的时代[J].地质学报, 1982, 56(4): 315-323.
    [60]黄清华,谭伟,杨会臣.松辽盆地白垩纪地层序列与年代地层[J].大庆石油地质与开发, 1999, 18(6): 15-18.
    [61]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发, 2007, 24: 257-272.
    [62]贾军涛,王璞珺,邵锐,等.松辽盆地东南缘营城组地层序列的划分与区域对比[J].吉林大学学报(地球科学版), 2007, 37(6): 1110-1122.
    [63]姜传金,陈树民,初丽兰,等.徐家围子断陷营城组火山岩分布特征及火山喷发机制的新认识[J].岩石学报, 2010, 26(1): 63-72.
    [64]焦翠华等,夏冬冬,王军,等.特低渗砂岩储层物性下限确定方法——以永进油田西山窑组储集层为例[J].石油与天然气地质, 2009, 30(3): 379-383.
    [65]科普切弗-德沃尔尼科夫,等.火山岩及其研究方法[M].周济群,黄光昭译.北京:地质出版社, 1978.
    [66]兰朝利,王金秀,杨明慧,等.低渗透火山岩气藏储层评价指标刍议[J].油气地质与采收率, 2008, 15(6): 32-34.
    [67]雷天柱,石新璞,孔玉华,等.溶蚀在形成碱性火山岩优质储集层中的作用-以准噶尔盆地陆西地区石炭系火山岩为例[J].新疆石油地质, 2008, 29(3): 306-308.
    [68]李国蓉.碳酸盐岩中缝合线的形成机制及其储集意义讨论[J].矿物岩石, 1997, 17(2): 49-54.
    [69]李宁,陶宏根,刘传平,等.酸性火山岩测井解释理论、方法与应用[M].北京:石油工业出版社, 2009.
    [70]李平鲁,梁慧娴,戴一丁.珠江口盆地基岩油气藏远景探讨[J].中国海上油气(地质), 1998, 12(6): 361-369.
    [71]李森明,陈凤来,漆万珍,等.马朗凹陷下二叠统风化壳特征与油气成藏关系[J].新疆石油地质, 2007, 28(5): 554-556
    [72]刘成川.应用产能模拟技术确定储层基质孔、渗下限[J].天然气工业, 2005, 25(10): 27-29.
    [73]刘嘉麒,孟凡超,崔岩,等.试论火山岩油气藏成藏机理[J].岩石学报, 2010, 26(1): 1-13.
    [74]刘万洙,黄玉龙,庞彦明,等.松辽盆地营城组中基性火山岩成岩作用:矿物晶出序列、杏仁体充填和储层效应[J].岩石学报, 2010, 26(1): 158-164.
    [75]刘万洙,庞彦明,吴河勇,等.松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J].吉林大学学报(地球科学版), 2007(7), 37: 698-702.
    [76]柳广弟,高岗,王晖.碳酸盐烃源岩有机质分布与排烃特征[J].沉积学报, 1999, 17(3): 482-485.
    [77]吕炳全,张彦军,王红罡,等.中国东部中、新生代火山岩油气藏的现状与展望[J].海洋石油, 2003, 23(4): 9-11.
    [78]罗静兰,曲志浩,孙卫,等.风化店火山岩岩相、储集性与油气的关系[J].石油学报, 1996, 17(1): 32-39.
    [79]罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述[J].石油学报, 2003, 24(1): 31-38.
    [80]罗明高.定量储层地质学[M].北京:地质出版社, 1998.
    [81]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社, 1986
    [82]潘保芝,薛林福,李舟波,等.裂缝性火成岩测井评价方法与应用[M].北京:石油工业出版社, 2003.
    [83]庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报, 2007, 28(6): 72-77.
    [84]庞彦明.酸性火山岩储层储集空间特征与评价研究——以松辽盆地北部营城组为例[D].浙江大学博士学位论文, 2006.
    [85]彭彩珍,李治平,贾闽惠.低渗透油藏毛管压力曲线特征分析及应用[J].西南石油学院学报, 2002, 24(2): 21-24.
    [86]彭头平,王岳军,范蔚茗,等.江汉盆地早第三纪玄武质岩石39Ar/40Ar年代学和地球化学特征及其成因意义[J].岩石学报, 2006, 22(6): 1617-1626.
    [87]戚厚发.天然气储层物性下限及深层气勘探问题的探讨[J].天然气工业, 1989, 9(5): 26-30.
    [88]邱家骧,陶奎元,赵俊垒,等.火山岩[M].北京:地质出版社, 1996.
    [89]邱颖,孟庆武,李悌,等.神经网络用于岩性及岩相预测的可行性分析[J].地球物理学进展, 2001, 16(3) : 76-84.
    [90]区域地质矿产地质司.火山岩地区区域地质调查方法指南[M].北京:地质出版社, 1987.
    [91]任延广,朱德丰,万传彪,等.松辽盆地徐家围子断陷天然气聚集规律与下步勘探方向[J].大庆石油地质与开发, 2004, 23(5): 26-30.
    [92]邵长新,王艳忠,操应长.确定有效储层物性下限的两种新方法及应用[J].石油天然气学报, 2008, 30(2): 414-416.
    [93]宋庆祥.日本的第三系及火山油气藏[J].天然气地球科学, 1991, (3): 137-141.
    [94]宋子齐,程国建,王静,等.特低渗透油层有效厚度确定方法研究[J].石油学报, 2006, 27(6): 103-106.
    [95]孙黎娟,吴凡,康一虎.压汞法评价岩石微观非均质性的改进[J].油气田地面工程, 2004, 23(3): 43-45.
    [96]孙先达,索丽敏,张民志,等.激光共聚焦扫描显微检测技术在大庆探区储层分析研究中的新进展[J].岩石学报, 2005, 21: 1479-1488.
    [97]唐华风,王璞珺,姜传金,等.波形分类方法在松辽盆地火山岩相识别中的应用[J].石油地球物理勘探, 2007, 42(4): 440-444.
    [98]唐华风,庞彦明,边伟华,等.松辽盆地白垩系营城组火山机构储层定量分析[J].石油学报, 2008, 29(6): 841-852.
    [99]陶奎元,杨祝良,王力波,等.苏北闵桥玄武岩储油的地质模型[J].地球科学, 1998, 23(3): 272-275.
    [100]陶奎元.火山岩相构造学[M].南京:江苏科学技术出版社, 1994.
    [101]万玲,孙岩,魏国齐.确定储集层物性参数下限的一种新方法及其应用[J].沉积学报, 1999, 17(3): 454-457.
    [102]王德滋和周新民.火山岩岩石学[M].北京:科学出版社, 1982.
    [103]王惠民,靳涛,杨红霞.银根盆地查干凹陷火成岩岩相特征及其识别标志[J].新疆石油地质, 2005, 26(3): 249-252.
    [104]王珺,杨长春,许大华,等.微电阻率扫描成像测井方法应用及发展前景[J].地球物理学进展, 2005, 20(2): 357-364.
    [105]王璞珺,陈树民,李伍志,等.松辽盆地白垩纪火山期后热液活动的岩石地球化学和年代学及其地质意义[J].岩石学报, 2010, 26(1): 33-46.
    [106]王璞珺,迟元林,刘万洙,等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版), 2003, 33(4): 449-456.
    [107]王璞珺,冯志强,等.盆地火山岩:岩性·岩相·储层·气藏·勘探[M].北京:科技出版社, 2008.
    [108]王璞珺,郑常青,舒萍,等.松辽盆地深层火山岩岩性分类方案[J].大庆石油地质与开发, 2007, 26(4): 17-22.
    [109]王艳忠,操应长,宋国奇,等.试油资料在渤南洼陷深部碎屑岩有效储层评价中的应用[J].石油学报, 2008, 29(5): 701-710
    [110]伍友佳.火山岩油藏注采动态特征研究[J].西南石油学院学报, 2001, 23(2): 14-18.
    [111]向丹,施泽进,黄大志.鄂尔多斯盆地北部上古生界气藏气井产能评价[J].成都理工大学学报, 2005, 32(l): 16-21.
    [112]谢家莹,蓝善先,张德宝,等.运用火山地质学理论研究竹田头火山机构[J].火山地质与矿产, 2000, 21(2): 87-95.
    [113]谢家莹.熔结火山碎屑岩熔结程度的鉴别[J].火山地质与矿产, 1995, 16(1): 51-52.
    [114]谢家莹.试论陆相火山岩区火山地层单位与划分[J].火山地质与矿产,1996,17(3-4):85-93.
    [115]谢文彦.辽河探区油气勘探新进展与下步勘探方向[J].中国石油勘探, 2005, 10: 19-33.
    [116]邢光福,孙敏,王步云,等.香港九龙复活破火山的鉴别及其地质意义[J].地质论评, 2007, 53(3): 363-370.
    [117]徐正顺,王渝明,庞彦明,等.大庆徐深气田火山岩气藏储集层识别与评价[J].石油勘探与开发, 2006, 33(5): 521-531.
    [118]徐正顺,王渝明,庞彦明,等.大庆徐深气田火山岩气藏的开发[J].天然气工业, 2008, (12) :74-77.
    [119]杨春志,沈德安.吉林省松辽盆地东缘中生代含煤地层层序划分与对比[J].吉林地质,1986, (3): 50-59.
    [120]杨辉,张研,邹才能,等.松辽盆地北部徐家围子断陷火山岩分布及天然气富集规律[J].地球物理学报, 2006, 49: 1136-1143.
    [121]杨通佑.石油及天然气储量计算方法[M].北京:石油工业出版社, 1990.
    [122]杨志平和赵铁城.国外火山岩油气藏的开发[C].全国第四次石油开发情报成果交流会议资料, 1989: 1-17.
    [123]于平.松辽盆地滨北地区构造特征与油气有利聚集条件的地震学研究[D].博士学位论文.长春:吉林大学, 1-15.
    [124]于兴河.碎屑岩系油气储层地质学[M].北京:石油工业出版社, 2002.
    [125]于兴河.油气储层表征与建模机制的发展历程及展望[J].地学前缘, 2008, 15(1): 237-244.
    [126]于兴河.油气储层地质学基础[M].北京:石油工业出版社, 2009.
    [127]张尔华,姜传金,张元高,等.徐家围子断陷深层结构形成与演化的探讨[J].岩石学报, 2010, 26(1):149-157.
    [128]张风坪.国外火山岩油气藏及其储集层研究[C].全国火成岩油气藏学术讨论会议文集, 1987.
    [129]张年富,曹耀华,况军,等.准噶尔盆地腹部石炭系火山岩风化壳模式[J].新疆石油地质, 1998, 19(6): 450-452
    [130]张人玲.国外火山岩油气藏开发调研.江苏石油论文选编, 1993, (2): 71-85.
    [131]张绍魁,等. 1993.保护储集层技术[M].北京石油工业出版社, 1993.
    [132]张树业,刘如曦,常丽华,等.火成岩结构构造图册[M].北京:地质出版社, 1982
    [133]张元高,陈树民,张尔华,等.徐家围子断陷构造地质特征研究新进展[J].岩石学报, 2010, 26(1): 142-148.
    [134]张子枢,吴邦辉.国内外火山岩油气藏研究现状及勘探技术调研[J].天然气勘探与开发, 1994, 16(1): 1-26.
    [135]章凤奇,陈汉林,董传万,等.松辽盆地北部深层火山岩中缝合线的特征与成因[J].高校地质学报, 2008, 14(1): 73-81.
    [136]章凤奇,庞彦明,杨树锋,等.松辽盆地北部断陷区营城组火山岩锆石SHRIMP年代学、地球化学及其意义[J].地质学报, 2007, 81(9): 1248-1258.
    [137]赵澄林.辽河盆地火山岩与油气[M].北京:石油工业出版社, 1999.
    [138]赵海玲,刘振文,李剑,等.火成岩油气储层的岩石学特征及研究方向[J].石油与天然气地质, 2004, 25(6): 609-613.
    [139]赵海玲,王成,刘振文,等.火山岩储层斜长石选择性溶蚀的岩石学特征和热力学条件[J].地质通报, 2009, 28(4): 412-419
    [140]赵柳生.珠江口盆地油气藏形成条件及油气富集规律[J].石油勘探与开发, 1988, (1): 1-9.
    [141]赵围.火山岩中找油气——访谈中国科学院院士刘嘉麒[J].中国石油石化, 2006, (14): 38-39.
    [142]中国石油天然气总公司油气田开发专业委员会.中华人民共和国石油天然气行业标准——火山岩储集层描述方法(SY/T 5830-93) [S].北京:石油工业出版社, 1994.
    [143]周文,张高信.川东石炭系有效储层下限标准的研究[J].石油与天然气地质, 1996, 17(4):343-346.
    [144]周文,庄阿龙,费怀义.四川盆地川东地区石炭系储产层下限标准的确定方法[J].矿物岩石, 1999.19(2):31-36.
    [145]朱筱敏,刘成林.苏里格地区上古生界有效储层的确定[J].天然气工业, 2007, 26(9): 1-3.
    [146]邹才能,赵文智,贾承造,等.中国沉积盆地火山岩油气藏形成与分布[J].石油勘探与开发, 2008, 35(3): 257-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700