用户名: 密码: 验证码:
西部弱还原性煤热解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部地区分布着众多的侏罗纪煤田,这些煤田对我国的能源供应起着重要的作用。由于成煤过程中受到的氧化性作用强,还原性作用弱,因此从成煤环境的还原性命名,称这些侏罗纪煤为弱还原性煤。独特的成煤环境导致弱还原性煤与普通煤物理化学性质存在明显的差异,但由于开采时间较短,对它们的热转化特性了解还比较少。煤热解是气化、液化、燃烧和炭化等煤热转化的基础阶段,因此为了合理和有效地利用我国西部弱还原性煤,有必要对它们的热解特性进行深入的研究。本文选择三种典型西部弱还原性煤(陕西神东煤、宁夏灵武煤和新疆哈密煤)及其显微组分为研究对象,并选择一种还原性煤(山西平朔煤)及其显微组分做对比研究,用热重质谱(TG-MS)和固定床反应器研究了还原性对煤热解特性的影响。论文取得的主要研究结果包括:
     1.西部弱还原性煤具有低灰、低硫、低H/C、低灰熔点和高水分、高氧含量、高惰质组和高碱土金属含量的煤质特点。与平朔煤相比,西部弱还原性煤有较低的热解反应性和焦油产率,较低的C1~C4和C7-C8烃类逸出强度,较高的CO2逸出强度。1H NMR和FT-IR分析表明西部弱还原性煤焦油中脂肪族氢较多地与氧或其它脂肪族官能团相连,而平朔煤焦油中脂肪族氢较多地与芳香官能团相连;西部弱还原性煤焦油含有较丰富的含氧官能团。
     2.在热重分析仪和固定床反应器上考察了内在矿物质、外加矿物质(CaO、Fe2O3和Al2O3)和钙镁离子交换对不同还原程度煤热解特性的影响。内在矿物质对煤热解反应性影响较小,但可以改变挥发分在热解产物中的分配,西部弱还原性煤内在矿物质有利于焦油的生成。Fe2O3和Al2O3对煤热解反应性影响较小,但都促进了挥发分向气体的转化,而CaO对煤的热解反应性和产物分布影响较大,并且对西部弱还原性煤和平朔煤的影响有所不同。钙和镁离子的存在对西部弱还原性煤高温阶段热解有催化作用,离子交换煤焦油产率较低,气体产率较高。
     3.TG-MS分析表明同种煤样惰质组的热解反应性低于镜质组,西部弱还原性煤的镜质组和惰质组热解反应性分别低于平朔煤镜质组和惰质组;显微组分的热解过程可以用三段连续的一级反应模型来描述,计算的活化能为38~224kJ/mol;与平朔煤镜质组和惰质组相比,西部弱还原性煤镜质组和惰质组的Cl-C4逸出强度较低,而CO2逸出强度较高。固定床热解研究表明,西部弱还原性煤镜质组和惰质组挥发分易转化为气体,而平朔煤镜质组和惰质组挥发分易转化为焦油。不同比例镜质组和惰质组混合煤样的TG/DTG分析表明,镜质组和惰质组热解过程中协同作用不明显。
     4.研究了平朔煤镜质组和惰质组热解过程中含硫气体的逸出规律。除黄铁矿分解产生的逸出峰外,惰质组的含硫气体逸出强度低于镜质组,H2S主要来源于两类基元反应,而其余含硫气体源于五类基元反应;镜质组和惰质组的总脱硫率均随热解温度的升高而增加,在650℃均达到60%左右,但惰质组有机硫较为稳定。
     5.在热重分析仪上考察了不同还原程度煤镜质组和惰质组半焦的燃烧反应性。在相同的热解温度条件下,还原性煤镜质组半焦的燃烧反应性高于惰质组半焦,而西部弱还原性煤镜质组半焦的燃烧反应性低于或近似于惰质组半焦;西部弱还原性煤镜质组和惰质组半焦燃烧反应性高于还原性煤镜质组和惰质组半焦。内在矿物质存在降低了镜质组半焦的燃点温度,但对惰质组半焦燃烧反应有明显的抑制作用;三种外加矿物质对还原性煤镜质组和惰质组半焦燃烧均有明显的抑制作用,抑制顺序为Al2O3>CaO>Fe2O3,而CaO对西部弱还原性煤镜质组和惰质组半焦燃烧有一定促进作用,Al2O3和Fe2O3对西部弱还原性煤镜质组和惰质组半焦燃烧反应的抑制作用较低。
Abudant Jurassic coalfields exist in the Northwest China and play an important role in China's energy supply. Most Jurrassic coals were subjected to strong oxidative but weakly reductive effects during accumulation process; therefore, these Jurassic coals were named as weakly reductive coals from the reducibility of colification environment. The weakly reductive coals exhibit different physicochemical properties from common coals for their particular coalification process, but the information about their thermal behavior was rarely reported for they were only exploited recently. Coal pyrolysis is an initial process of all major coal conversion process, such as gasification, liquefaction, combustion and carbonization; therefore, to rationally and effectively utilize these weakly reductive coals, it is essential to understand their pyrolysis behavior. In this paper, three typical weakly reductive coals, Shengdong (SD) coal from Shaanxi province, Lingwu (LW) coal from Ningxia province and Hami (HM) coal from Xinjiang province, and their macerals were selected to study the effect of reducibility on the pyrolysis behavior by TG-MS and in a fixed bed reactor, and one reductive Pingshuo(PS) coal from Shanxi province and its maceals, were also studied for comparison. The main results in this work are as follows:
     1. The weakly reductive coals are characterized with low ash content, low sulfur content, low H/C and ash fusion, but high moisture, oxygen, inertinite and alkaline earth metal contents. Compared with PS coal, the weakly reductive coals exhibit lower pyrolysis reactivity, lower tar yield, lower C1-C4 light hydrocarbons and C7-C8 aromatic hydrocarbons evolution intensity; but higher CO2 evolution inteinsity. On the basis of the FT-IR and 1H NMR analyses, the tars of the weakly reductive coals C contain more oxygen-containing groups and aliphatic hydrogen at carbon atoms bonded to other aliphatic carbon atoms but lower aliphatic hydrogen adjacent to aromatic alkene groups than that of PS coal.
     2. The effect of inherent mineral matter, three added mineral matter (CaO, Fe2O3 and Al2O3) and ion-exchange on the pyrolyis behavior of three weakly reductive coals and PS coal were investigated by a thermogravimetric analyzer and in a fixed bed reactor. The results showed that the inherent mineral matter has no evident effect on the reactivity except for the decompostion of itself, but can change gas and liquid product distribution, and the inherent mineral matter of the west weakly reductive coals is benefit for the production of tar. Fe2O3 and Al2O3 have also little effect on the reactivity of coal pyrolysis, but can facilitate volatile matter into gas. CaO has obvious effect on the reactivity and product distribution, but the effect on the weakly reductive coals and PS coal is different. The presence of Ca2+ and Mg2+ restricts the escape of tar molecules but have catalytic effect on LW coal pyrolysis at high temperature region.
     3. TG-MS analysis showed that the inertinite has higher thermal stability than the vitrinite from same parent coal, and the pyrolysis reactivity of the vitrinite and the inertinite from PS coal is better than those from the weakly reductive coals. The pyrolysis process of the macerals studied can be described by three independent first order reaction kinetics models, and the activated energy obtained is between 87 and 225 kJ/mol. The vitrinite and inertinite from the weakly reductive coals have lower C1-C4 light hydrocarbon evolution intensity but higher CO2 evolution intensity than those from PS coal, respectively. In the fixed bed reactor, the volatile matter of PS macerals is inclined to evolve as tar, but that of the macerals from the weakly reductive coals is inclined to release as gas during pyrolysis. TG/DTG analysis of model coals prepared by mixing different maceral components implied the synergistic effect between the vitrinite and the inertinite is not obvious.
     4. The sulfur-containing gases emission results of the vitrinite and the inertinite from PS coal indicated that, except for the evolution peak originating from decomposition or reaction of pyrite, the evolution intensity of sulfur-containing gases from the inertinite is lower than that from vitrinite, and H2S is mainly caused by two kinds elementary reactions, while other sulfur-containing gases due to five kinds elementary reactions. The total sulfur removal of both the vitrinite and the inertinite increases with temperature, and is about 60% at 650℃, while the organic sulfur in the inertinite is more stabe than that in the vitrinite.
     5. The combustion reactivities of the maceral chars obtained from west weakly reductive coal and reductive coal were performed on a thermogravimetric analyzer. At the same pyrolysis temperature, the vitrinite char of reductive coal shows better combustion reactivity than its inertinite char, while the vitrinite char of west weakly reductive coal has lower or similar combustion reactivity compared with its inertinite char. The inherent mineral matter of vitrinites reduces the ignition temperature of the vitrinte chars, while the inherent mineral matter of the inertinites shows obvious inhibition effct on the combustion reaction of their chars. The presence of three added mineral matter obviously inhibit the combustion reaction of the maceral chars from reductive coal, and the ralative inhibition sequence could be described as follows:Al2O3>CaO>Fe2O3; CaO has a little catalytic effct on the ignition of the maceral chars from west weakly reductive coal, and the inhibition effect of Al2O3 and Fe2O3 on the combustion reaction of maceral chars from the west weakly reductive coal is lower than them on that of the maceral chars from reductive coal.
引文
[1]BP. Statistical Review of World Energy 2009. http://www.bp.com/statisticalreview.
    [2]熊飞,连向东,申宝宏,等.西部煤炭资源开发利用与生态环境保护[J].煤炭科学技术,2001,29(2):1-3.
    [3]周伟国.能源工程管理[M].上海:同济大学出版社[M],2007.
    [4]刘志逊,陈河替,黄文辉.我国煤炭资源现状及勘查战略[J].煤炭技术,2005,24(10):1-2.
    [5]白向飞,李文华,陈文敏,等.我国西部弱还原性程度煤分布及煤质特征研究[J].煤炭学报,2005,30(4):502-506.
    [6]赵师庆.实用煤岩学[M].北京:地质出版社,1991.
    [7]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001.
    [8]李濂清.煤的还原程度研究[J].煤田地质与勘探,1987(5):15-18.
    [9]赵师庆.我国腐殖煤的还原性质及其与沉积环境的关系[J].沉积环境,1984,2(2):55-65.
    [10]毛节华,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999.
    [11]韩德馨.中国煤岩学[M].中国矿业大学出版社,1996.
    [12]白向飞,李文华,张寿禄,等.神东矿区2-2#煤煤质特征研究[J].煤炭转化,2002,25(3):85-88.
    [13]白向飞,李文华,罗陨飞,等.中国西部弱还原性煤的结构特征初步研究[J].煤炭转化,2006,29(4):5-8.
    [14]郭崇涛.煤化学[M].北京:化学出版社,1994.
    [15]埃利奥M A,徐晓,吴奇虎,等.煤利用化学(上册)[M].北京:化学工业出版社,1991.
    [16]SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis [J].Fuel,1993,72(5):587-597.
    [17]SUUBEGR E M, PETESR W A, HOW ADR J B. Porduct compositions in rapid hydropyrolysis of coal [J]. Fuel,1980,59(6):405-412.
    [18]TROMP P J J. Coal Pyrolysis [D]. Amsterdam:Amsterdam University,1987.
    [19]MIURA K. Mild conversion of coal for producing valuable chemicals [J]. Fuel Process. Techno., 2000,62(2-3):119-135.
    [20]LIU Q R, HU H Q, ZHOU Q, et al. Effect of inorganic mineral on reactivity and kinetics of coal pyrolysis [J]. Fuel,2004,83(6):713-718.
    [21]HASHIMOTO K, MIURA K, Watanabe T. Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment [J]. AIChE Journal,1982,28(5):737-746.
    [22]MIURA K. A new and simple method to estimate f(E) and ko(E) in the distributed activation energy model from three sets of experimental data [J]. Energy & Fuels,1995,9(2):302-307.
    [23]MIURA K, MAKI T. A simple method for estimating f(E) and ko(E) in the distributed activation energy model [J]. Energy & Fuels,1998,12(5):864-869.
    [24]刘旭光,李保庆.煤热解模型的研究方向[J].煤炭转化,1998,21(3):42-46.
    [25]COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data [J]. Nature,1964,201:68-69.
    [26]KOBAYASHI H, HOWARD J B, SAOFIRM A F. Coal devolatilization at high temperature [C]. 16th symposium of on Combustion,1977:411-415.
    [27]傅维标,张燕屏等.煤粒热解通用模型(Fu-Zhang模型)[J].中国科学(A辑),1988,12(4):1283-1290.
    [28]王国金,李术元,王剑秋,等.煤颗粒脱挥发分的数学模拟研究[J].燃料化学报,1996,24(2):181-185.
    [29]廖洪强,李文,孙成功,等.煤热解机理研究新进展[J].煤炭转化,1996,19(3):1-8.
    [30]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].太原:太原理工大学博士论文,2004.
    [31]SOLOMON P R, HAMBLEN D G, SERIO M A. Characterization method and model for predicting coal conversion behavior [J]. Fuel,1993,72(4):469-488.
    [32]SOLOMON P R, HAMBLEN D G, GARANGELO R M. General model of coal devolatilization [J]. Energy & fuels,1988,2(4):405-422.
    [33]SOLOMON P R, HAMBLEN D G, YU Z Z, et al. Network models of coal thermal decomposition [J]. Fuel,1990,69(6):754.
    [34]NIKSA S. Flashchain theory for rapid coal devolatilization kinetics.4. predicting ultimate yield from ultimate analyses alone [J]. Energy & fuels,1994,8(3):659-670.
    [35]NIKSA S, KERSTEIN A R. Flashchain theory for rapid coal devolatilization kinetics.1. Formulation [J], Energy & Fuels,1991,5(5):647-665.
    [36]NIKSA S, KERSTEIN A R. Flashchain theory for rapid coal devolatilization kinetics.2. Impact of operation condition [J]. Energy & Fuels,1991,5(5):665-673.
    [37]NIKSA S, KERSTEIN A R. Flashchain theory for rapid coal devolatilization kinetics.3. Modeling the behavior of various coals [J]. Energy & Fuels,1991,5(5):676-683.
    [38]GRANT D M, PUGMIRE R J. Chemical model of coal devolatilization using percolation lattice statistics [J]. Energy & Fuels,1989,3(2):175-186.
    [39]FLETCHER T H, KERSTEIN A R. Chemical percolation model for devolatilization.2. Temperature and heating rate effects on product yields [J]. Energy & Fuels,1990,4(1):54-60.
    [40]ARENILLAS A, RUBIERA F, PIS J J, et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals [J]. Journal of Analytical and Applied Pyrolysis,2003,69(8):371-385.
    [41]ZHUO Y, LEMAIGNEN L,CHATZAKIS I N,et al. Attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals [J]. Energy & Fuels,2000,4(5):1049-1058.
    [42]ALVAREZ R, PIS J J, DIEZ M A, et al. Studies on generation of excessive coking pressure.1. Semicoke contraction versus thermoplastic properties of coals [J]. Energy & Fuels,1997,11(5):978-981.
    [43]ZHAO Y P, HU H Q, JIN L J, et al. Pyrolysis behavior of weakly reductive coals from Northwest China [J]. Energy & Fuels,2009,23(2),870-875.
    [44]CAI H Y, KANDIYOTI R. Effect of Changing Inertinite Concentration on Pyrolysis Yields and Char Reactivities of Two South African Coals [J]. Energy & Fuels,1995,9(6):956-961.
    [45]ALONSO G, LVAREZ D, BORREGO A G, et al. Systematic effects of coal rank and type on the kinetics of coal pyrolysis [J]. Energy & Fuels,2001,15(2):413-428.
    [46]WU Z H, SUGIMOTO Y, KAWAHIMA H. The Influence of Mineral Matter and Catalyst on Nitrogen Release during Slow Pyrolysis of Coal and Related Material:A Comparative Study [J]. Energy & Fuels,2001,16(2):451-456.
    [47]MONDRAGON F, JARAMILLO A, SALDARRIAGA F, et al. Effects of morphological changes and mineral matter on H2S evolution during coal pyrolysis [J]. Fuel,1999,78(15):1841-1846.
    [48]ANTHONY D B, HOWARD J B, HOTTEL H C, et al. Rapid devolatilization and hydrogasification of bituminous coal [J]. Fuel,1976,55(2):121-128.
    [49]GAVALAS G R, WILKS K A. Intraparticle mass transfer in coal pyrolysis [J]. AICHE Journal,1980,26(2):201-212.
    [50]KOK M V, OZBAS K E O, KARACAN O, et al. Effect of particle size on coal pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1998,5(2):103-110.
    [51]XU W C, TOMITA A. The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis[J]. Fuel Processing Technology,1989,21(1):25-37.
    [52]TAKARADA T, ONOYAMA Y, TAKAYAMA K, et al. Hydropyrolysis of coal in a pressurized powder-particle fluidized bed using several catalysts [J]. Catalysis Today,1997,39(1-2):127-136.
    [53]韩永霞,姚昭章.升温速度对煤热解动力学的影响 [J].华东冶金学院报,1999,16(4):318-323.
    [54]LI B Q, MITCHELL S C, SNAPE C E. Effect of heating rate on normal and catalytic fixed-bed hydropyrolysis of coals [J]. Fuel,1996,75(12):1393-1396.
    [55]KO G H, PETERS W A, HOWARD J B. Correlation of tar yields from rapid pyrolysis with coal type and pressure [J]. Fuel,1987,66(8):1118-1122.
    [56]熊源泉,刘前鑫,章名耀.加压条件下煤热解反应动力学的试验研究[J].动力工程,1999,19(3):77-84.
    [57]FINN M J, FYNES G, LADNER W R, et al. Light aromatics from the hydropyrolysis of coal [J]. Fuel,1980,59(6):397-404.
    [58]GRAFF R A, DOBNER S, SQUIRESM A M. Flash hydrogenation of coal:1. Experiment methods and preliminary results [J]. Fuel,1976,55(2):109-112.
    [59]GRAFF R A, DOBNER S, SQUIRESM A M. Flash hydrogenation of coal 2.Yield structure for Illinois 6# at 100 atm[J].Fuel,1976,55(2):113-115.
    [60]朱子彬,王欣荣,马智华,等.快速加氢热解有效利用烟煤的研究[J].自然科学进展,1997,6(4):495-498.
    [61]廖洪强,李保庆,张碧江.煤-焦炉气共热解特性的研究—温度的影响[J],燃料化学学报,1998,26(3):270-274.
    [62]刘全润.煤的热解转化和脱硫研究[D].大连:大连理工大学,2005.
    [63]LIU J H, HU H Q, JIN L J, et al. Effect of the catalyst and reaction conditions on the integrated process of coal pyrolysis with CO2 reforming of methane [J]. Energy & Fuels,2009,23(10):4782-4786.
    [64]周强.煤的热解行为及硫的脱除[D].大连:大连理工大学,2004.
    [65]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [66]BRYERS R W. Investigation of the reactivity of macerals using thermal analysis [J]. Fuel Processing Technology,1995,44(1-3):25-54.
    [67]E.斯塔赫,杨起.斯塔赫煤岩学教程[M].北京:北京煤炭工业出版社,1990.
    [68]VAN KREVELEN D W. Coal [M]. Amsterdam:Elserier.l981.
    [69]DYRKACZ G R, HORWITZ E P. Separation of coal macerals [J].Fuel,1982,61(1):3-12.
    [70]SHU X Q, WANG Z, XU J Q. Separation and preparation of macerals in Shenfu coals by flotation [J]. Fuel,2002,81(4):495-501.
    [71]CRELLING J C, THOMAS K M, HINDMARSH C J. The release of nitrogen and sulphur during the combustion of chars derived from lithotypes and maceral concentrates [J]. Fuel,1993,72(3):349-357.
    [72]孙旭光,李荣西,杜美利.煤显微组分分离富集[J].中国煤田地质,1997,9(3):26-27.
    [73]CHEN P, MA J S. Petrographic characteristics of Chinese coals and their application in coal utilization processes [J]. Fuel,2002,81(11-12):1389-1395.
    [74]常海洲,蔡雪梅,李改仙,等.不同还原程度煤显微组分堆垛结构表征[J].山西大学学报(自然科学版),2008,21(2):223-227.
    [75]常海洲,王传格,曾凡桂,等.不同还原程度煤显微组分表面结构XPS对比分析[J].燃料化学学报,2006,34(4):389-394.
    [76]段旭琴,曲剑午,王祖讷.低变质烟煤有机显微煤岩组分的孔结构分析[J].中国矿业大学学报,2009,38(2):224-228.
    [77]WARD C R, LI Z S, GURBA L W. Comparison of elemental composition of macerals determined by electron microprobe to whole-coal ultimate analysis data [J]. International Journal of Coal Geology,2008,75(3):157-165.
    [78]WALKER R, MASTALERZ M. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana:controls on coking [J]. International Journal of Coal Geology,2004,58(3):181-191.
    [79]NIEKERK D V, PUGMIRE R J, SOLUM M S, et al. Structural characterization of vitrinite-rich and inertinite-rich Permian-aged south African bituminous coals [J]. International Journal of Coal Geology,2008,76(4):290-300.
    [80]STRUGNELL B, PATRIVK J W. Rapid hydropyrolysis studies on coal maceral concentrates [J]. Fuel,1996,75(3):300-306.
    [81]LI C Z, BARTLE K D, KANDIYOTI R. Characterization of tars from variable heating rate pyrolysis of maceral concentrates [J]. Fuel,1993,72(1):3-11.
    [82]LI C Z, BARTLE K D, KANDIYOTI R. Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor [J]. Fuel,1993,72(11):1459-1468.
    [83]CAI H Y, MEGARITIS A, MESSEMBOCK R, et al. Pyrolysis of coal maceral concentrates under pf-combustion conditions(Ⅰ):changes in volatile release and char combustility as function of rank[J].Fuel,1998,77(12):1273-1282.
    [84]MEGARITIS A, MESSEMBOCK R, CHATZAKIS I N, et al. High-pressure pyrolysis and CO2-gasification of coal maceral concentrates:conversions and char combustion reactivities [J]. Fuel,1999,78(8):871-882.
    [85]DAS T K. Thermogravimetric characterisation of maceral concentrates of Russian coking coals [J]. Fuel,2001,80(1):97-106.
    [86]DAS T K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals [J]. Fuel,2001,80(4):489-500.
    [87]SUN Q L, LI W, CHEN H K, et al. The variation of structural characteristics of macerals during pyrolysis [J]. Fuel,2003,82(6):669-676.
    [88]孙庆雷,李文,陈皓侃,等.神木煤显微组分加氢热解特性的研究[J].燃料化学学报,2002,30(1):11-15.
    [89]孙庆雷,李文,陈皓侃,等.神木煤显微组分热解和加氢热解的焦油组成[J].燃料化学学报,2005,33(4):412-415.
    [90]孙庆雷,李文,李保庆.神木煤显微组分热解特性和热解动力学[J].化工学报,2002,53(11):1122-1127.
    [91]SUN Q L, LI W, LI B Q. The synergistic effect between coal macerals during pyrolysis [J]. Fuel,2002,81(7):973-974.
    [92]MACPHEE J A, GIROUX L, GRANSDEN J F, et al. The synergistic effect between macerals of different coals during coking [J]. Fuel,2005,84(14-15):1998-1999.
    [93]MESSENBOCK R C, PATERSON N P, DUGWELL D R,et al. Factors governing reactivity in low temperature coal gasification. Part 1. An attempt to correlate results from a suit of coals with experiments on maceral concentrates [J]. Fuel,2000,79(2):109-121.
    [94]VAN KREVELEN D W, VAN HUNTJENS F J, et al. Chemical structure and properties of coal XV I-Plastic behavior on heating [J]. Fuel,1956,36(4):462-475.
    [95]VAN KREVELEN D W, VAN HEERDEN C, HUNTJENS F J. Physicochemical aspects of the pyrolysis of coal and related organic compounds [J]. Fuel,1951,30(11):253-259.
    [96]郭树才,袁庆春,朱盛维.褐煤热重法热解动力学研究[J].燃料化学学报,1989,17(1):55-61.
    [97]BODOEV N V, KOROBEYNITCHEV O P, DENISOV S V, et al. Investigation of fast-heating pyrolysis of sapropelitic coals by mass-spectrometric thermal analysis [J]. Journal of Thermal Analysis,1990,36(2):481-488.
    [98]ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric stduy on the pyrolysis behavior of different rank coals [J]. Journal of Analytical and Applied Pyrolysis,1999,50(1):31-46.
    [99]ARENILLAS A, RUBIERA F, PIS J J. Thermogravimetric-mass spectrometric stduy on the evolution of nitrogen compounds during coal devolatilisation [J].Journal of Analytical and Applied Pyrolysis,2002,65(1):57-70.
    [100]孙庆雷,李文,陈皓侃,等.神木煤显微组分热解的TG-MS研究[J].中国矿业大学学报,2003,32(6):664-669.
    [101]孙庆雷,李文,陈皓侃,等.神木煤显微组分加氢热解的TG-MS研究[J].燃料化学化学报,2004,32(6):647-651.
    [102]闫金定,崔洪,杨建丽,等.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报,2003,(3):311-315.
    [103]郑庆荣,曾凡桂.炼焦过程中温室气体的析出规律研究[J].中北大学学报,2008,29(1):53-56.
    [104]于宇,刘先建,许建军.淮南煤热解反应的热重质谱联用研究[J].煤质技术,2008,9(5):9-15.
    [105]SONOBE T, WORASUWANNARAK N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model [J].Fuel,2008,87(3):414-421.
    [106]FONT R, CONESA J A, MOLTO J, et al. Kinetics of pyrolysis and combustion of pine needles and cones [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):276-286.
    [107]WORASUWANNARAK N, SONOBE T, TANTHAPANICHAKOON W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique [J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):265-271.
    [108]WANG Z Q, GUO Q J, LIU X M, et al. Low temperature pyrolysis characteristics of oil sludge under various heating conditions [J]. Energy & Fuels,2007,21(2):957-962.
    [109]KARAYILDIRIM T, YANIK J, YUKSEL M, et al. Characterisation of products from pyrolysis of waste sludges [J].Fuel,2006,85(10-11):1498-1508.
    [110]CONESA J A, MARCILLAA, MORAL R, et al. Evolution of gases in the primary pyrolysis of different sewage sludges [J]. Thermochimica Acta,1998,313(1):63-73.
    [111]CHIEN Y C, LU M M, CHAI M, et al. Characterization of biodiesel and biodiesel particulate matter by TG,.TG-MS, and FTIR [J]. Energy & Fuels,2009,23:202-206.
    [112]SEIDELT S, HAGEDORN M M, BOCKHORN H. Description of tire pyrolysis by thermal degradation behavior of main components [J]. Journal of Analytical and Applied Pyrolysis,2006,75(1):11-18.
    [113]闫金定,崔洪,杨建丽,等.热重质谱联用(TG-MS)技术应用进展[J].分析测试学报,2003,22(4):104-107.
    [114]黄瀛华,王曾辉,杭月珍.煤化学及工艺学实验[M].上海:华东工学院出版社,1988.
    [115]李文华.东胜-神府煤的煤质特征与转化特性[D].北京:煤炭科学研究总院.
    [116]罗陨飞.煤的大分子结构研究—煤中惰质组结构及煤中氧的赋存形态[D].北京:煤炭科学研究总院.
    [117]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.
    [118]PAINTER P, SCARONI A. Ionomer and the structure of coal [J]. Energy & Fuels,2000,14(5):1115-1118.
    [119]COOKE N E, FULLER O M, GAIKWAD R P. FT-i.r. spectroscopic analysis of coals and coal extracts [J]. Fuel,1986,65(9):1254-1260.
    [120]ZHAO X Y, ZONG Z M, CAO J P, et al. Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals [J]. Fuel,2008,87(4-5):565-575.
    [121]FENG B, BHATIA S K. Variation of the pore structure of coal chars during gasification [J]. Carbon,2003,41(3):507-523.
    [122]VAN HEEK K H, HODEK W. Structure and pyrolysis behavior of different coals and relevant model substances [J]. Fuel,1994,73(6):886-896.
    [123]JAKAB E, TILL F, VARHEGYI G. Thermogravimetric-mass spectrometric stdudy on the low temperature oxidation[J]. Fuel Processing Technology,1991,28(3):221-238.
    [124]PORADA S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel,2004,83(9):1191-1196.
    [125]KARCZ A, GAINES A F. Formation of C1-C3 hydrocarbons during pressure pyrolysis and hydropyrolysis in relation to structural changes in coal [J]. Fuel,1995,74(6):806-809.
    [126]CHEN H K, LI B Q, ZHANG B J. Effects of mineral matter on products and sulfur distributions in hydropyrolysis [J]. Fuel,1999,78(6):713-719.
    [127]ONAY O, BAYRAM E, KOCKAR O. Copyrolysis of seyitomer-lignite and safflower seed: Influence of the blending ratio and pyrolysis temperature on product yield and oil characterization[J]. Energy & Fuels,2007,21(5):3049-3056.
    [128]SUDIPA M K, MULLINS O C, VAN ELP J, et al. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy [J]. Fuel,1993,72(1):133-135.
    [129]ZHU X L, SHENG C D. Evolution of the char structure of lignite under heat treatment and its influences on combustion reactivity [J]. Energy & Fuels,2010,24(1),152-159
    [130]MA B G, LI X G, XU L, et al. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis [J]. Thermochimica Acta,2006,445(1):19-22.
    [131]LI X G, MA B G, XU L, et al. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres [J]. Thermochimica Acta,2006,441(1):79-83.
    [132]OZBAS K Z, HICYIMAZ C, KOK M V, et al. Effect of cleaning process on combustion characteristics of lignite [J]. Fuel Processing Technology,2000,64(1-3):211-220.
    [133]SUELVES I, LAZARO M J, DIEZ M A, et al. Characterization of chars obtained from co-pyrolysis of coal and petroleum residues [J]. Energy & Fuels,2002,16(4):878-886.
    [134]MOCHIDA I, MIYAZAK T. Reactivities of several carbonaceous materials for their combustion catalyzed by Potassium Salts on perovskite type oxide [J]. Energy & Fuels,1998,12(5):939-944.
    [135]BISWAS S, CHOUHURY N, SARKAR P, et al. Studies on the combustion behavior of blends of Indian coals by TGA and Drop Tube Furnace [J]. Fuel Processing Technology,2006,87(3):191-199.
    [136]RUBIERA F, ARENILLAS A, GARCIA R, et al. Coal structure and reactivity changes induced by chemical demineralization [J]. Fuel Processing Technology,2002,79(3):273-279.
    [137]李军,冯杰,李文英,等.强弱还原煤聚集态对可溶性影响的分子力学和分子动力学分析[J].物理化学学报,2008,24(12):2297-2303.
    [138]LIU Q R, HU H Q, ZHOU Q, et al. Desulfurization of coal by pyrolysis and hydropyrolysis with addition of KOH/NaOH [J]. Energy & Fuels,2005,19(4):1673-1678.
    [139]FRANKLIN H D, PETERS W A, HOWARD J B. Effect of mineral matter on the rapid pyrolysis and hydropyrolysis of a bituminous coal,1 Effects on yields of char, tar and light gaseous volatiles [J]. Fuel,1982,61(2):155-159.
    [140]FRANKLIN H D, PETERS W A, HOWARD J B. Mineral matter effects on the rapid pyrolysis and hydropyrolysis of a bituminous coal:2. Effects of yields of C3-C8 hydrocarbons [J]. Fuel,1982,61(12):1213-1217.
    [141]OZTAS N A, YURUM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter [J]. Fuel,2000,79(10):1221-1227.
    [142]YEBOAH Y D, LONG WELL J P, HOWARD J B, et al. Pyrolytic desulfurization of coal in fluidized beds of calcined dolomite[J]. Energy & Fules,1982,21(2):324-330.
    [143]AHMAD T, AWAN I A, NISAR J, et al. Influence of inherent minerals and pyrolysis temperature on the yield of pyrolysates of some Pakistani coal [J]. Energy Conversion and Management,2009,50(5):1163-1171.
    [144]SCHAFER H N S. Pyrolysis of brown coals.1. Decomposition of acid groups in coals containing carboxyl groups in the acid and cation forms [J]. Fuel,1979,58(9):667-672.
    [145]SCHAFER H N S. Pyrolysis of brown coals.2. Decomposition of acid groups on heating in the range 100-900℃ [J]. Fuel,1979,58(9):673-679.
    [146]SCHAFER H N S. Pyrolysis of brown coals.3. Effect of cation content on the gaseous products containing oxygen from Yallourn coal[J]. Fuel,1980,59(5):295-301.
    [147]SCHAFER H N S. Pyrolysis of brown coals.4. Relation between acidic groups and evolved carbon oxides[J]. Fuel,1980,59(5):302-304.
    [148]MURAKAMI K, SHIRATO H, OZAKI J I, et al. Effects of metal ions on the thermal decomposition of brown coal [J]. Fuel Processing Technology,1996,46(3):183-194.
    [149]OTAKE Y, WALKER JR P L.Pyrolysis of demineralized and metal cation loaded lignites [J]. FueL,1993,72(2):139-149.
    [150]陈茺,高晋生,颜涌捷.煤有机质在化学脱灰过程中的变化[J].华东理工大学学报,1997,23(3):281-285.
    [151]LI B M, ZONG Z M, ZHOU Y Y, et al. GC/MS analysis of organic compounds in hot water-extractable fraction from Shenfu coal [C]. In:Proceedings of 9th Japan-China Symposium on Coal and C1 Chemistry,October 22-28,Chengdu,Sichuan,China:45-46.
    [152]WANG T X, ZONG Z M, ZHANG J W, et al. Microwave-assisted hydroconversions of demineralized coal liquefaction residues from Shenfu and Shengli coals [J].Fuel,2008,87(4-5):498-507.
    [153]HUANG H, WANG K Y, KLEIN M T, et al. Determination of coal rank by themogravimetric analysis [J]. Am Chem Soc,Div Fuel Chem,1995,40(3):465-469.
    [154]GARY D. Inherent mineral matter in coal and its effect upon hydrogenation [J]. Fuel,1978,57(4):213-216
    [155]MUSTAFA V K. Coal Pyrolysis:Thermogravimetric study and kinetic analysis [J]. Energy Sources,2003,25(10):1007-1014.
    [156]HU H Q, ZHOU Q, ZHU S W, et al. Product distribution and sulfur behavior in coal pyrolysis [J]. Fuel Processsing Technology,2004,85(8-10):849-861.
    [157]廖洪强,李保庆,张碧江.富氢气氛下煤热解脱硫脱氮的研究[J].燃料化学学报,1999,27(3):268-272.
    [158]QI Y Q, LI W, CHEN H K, et al. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere [J]. Fuel,2004,83(6):705-712.
    [159]GONG X H, GUO Z C, WANG Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity[J]. Energy & Fuels,2009,23(9):4547-4552.
    [160]ZHU T Y, ZHANG S Y, HUANG J J, et al. Effect of calcium oxide on pyrolysis of coal in a fluidized bed [J].Fuel Processing Technology,2000,64(1-3):271-284.
    [161]李凡,张永发,谢克昌.矿物质对煤显微组分热解的影响[J].燃料.化学学报,1992,20(3):300-306.
    [162]LIN S Y, HARADA M, SUZUKI Y, et al. Comparison of pyrolysis products between coal, Coal/CaO, and Coal/Ca(OH)2 materials[J]. Energy & Fuels,2003,17(3):602-607.
    [163]LI C Z, SATHE C, KERSHAW J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolyis of a Victorian brown coal [J]. Fuel,2000,79(3-4):427-438.
    [164]SATHE C, PANG Y Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a Victorian Brown coal [J]. Energy & Fuels,1999,13(3):748-755.
    [165]LU L, SAHAJWALLA V, KONG C, et al. Quantitative X-ray diffraction analysis and its application to.various coals[J]. Carbon,2001,39(12):3821-1833.
    [166]赵师庆,李贤庆.南华北区两类不同还原型镜质组化学结构特征研究[J].煤田地质与勘探,1995,23(3):14-21.
    [167]曹敏,公旭中,王永刚,等.神华煤有机显微组分富集物热重研究[J].中国矿业大学学报,2004,23(5):537-542.
    [168]PANTOLEONTOS G, BASINAS P, SKODRAS G, et al. A global optimization study on the devolatilisation kinetics of coal, biomass and easte fuels. Fuel Processing. Technology,2009,90(6):762-769.
    [169]HIRSCHFELDER J O. Semi-Empirical Calculations of activation energies [J].The Journal of Chemical Physics,1941,9(8):645-654.
    [170]李军,冯杰,李文英.神府东胜煤镜质组和惰质组的热化学反应差异[J].物理化学学报,2009,25(7):1311-1319.
    [171]BARUAH B P, KHARE P. Pyrolysis of high sulfur Indian coals [J]. Energy & Fuels,2007,21(6):3346-3352.
    [172]MIURA K, MAE K, SHIMADA M, et al. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J]. Energy & Fuels,2001,15(3):629-636.
    [173]YANI S, ZHANG D K. Transformation of organic and inorganic sulfur in a lignite during pyrolysis:influence of inherent and added inorganic matter [J]. Proceedings of the Combustion Institute,2009,32(2):2083-2089.
    [174]UZUN D, OZDOGAN S. Sulfur removal from original and acid treated lignites by pyrolysis[J]. Fuel,2006,85(3):315-322.
    [175]LIU Q R, HU H Q, ZHOU Q, et al. Effect of mineral on sulfur behavior during pressurized coal pyrolysis[J]. Fuel Processing Technology,2004,85(8-10):863-871.
    [176]CALKINS W H. Investigation of organic sulfur-containing structure in coals by flash pyrolysis experiment [J]. Energy & Fuels,1987,1(1):59-64.
    [177]ALVAREZ D, BORREGO A G, MENENDEZ R, et al. An unexpected trend in the combustion behavior of hvBb coals as shown by the study of their chars [J]. Energy & Fuels,1998,12(5):849-855.
    [178]BORREGO A G, ALVAREZ D, MENENDEZ R. Effects of inertinite content in coal on char structure and combustion [J]. Energy & Fuels,1997,11(3):702-708.
    [179]ALONSO M J G, BORREGO A G,ALVAREZ-D, et al. A reactivity study of chars obtained at different temperature in relation to their petrographic characteristics [J]. Fuel Processing Technology,2001,69(3):257-272.
    [180]谭志诚,王树东,李莉,等.热重法研究煤燃烧添加剂的催化助燃效果及作用机理[J].催化学报,1999,20(3):263-266.
    [181]李文,李保庆.用热重技术研究煤焦的燃烧特性[J].煤炭转化,1996,19(3):76-81.
    [182]孙庆雷,李文,李保庆.神木煤显微组分半焦燃烧特性[J].化工学报,2002,53(1):92-95.
    [183]SU S, POHL J H, HOLCOMBE D. A proposed maceral index to predict combustion behavior of coal [J]. Fuel,2001,80(5):699-706.
    [184]OKA N, MURAYAMA T, MATSUOKA H. The influence of rank and maceral composition on ignition and char burnout of pulverized coal [J]. Fuel Processing Technology,1987,15(1):213-224.
    [185]吕学珍,黄赢华,颜涌捷.煤的快速热解焦燃烧气化特性[J].华东理工大学学报,1996,22(2):136-141.
    [186]LAURENDEAU N M. Heterogeneous kinetics of coal char gasification and combustion [J]. Progress in Energy and Combustion Science,1978,4(4):221-270.
    [187]MENDEZ R, ALVAREZ D, FUERTES A B. Effect of clay minerals on char texture and combustion [J]. Energy & Fuels,1994,8(5):1007-1015.
    [188]MENEDEZ L B, BORREGO A G, MARTINEZ-TARAZONA M R, et al. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity [J]. Fuel,2003,82(15-17):1875-1882.
    [189]CRELLING J C, HIPPO E J, WOERNER B A, et al. Combustion characteristics of selected whole coals and macerals[J]. Fuel,1992,71(2):151-158.
    [190]YAN R, ZHENG C G, WANG Y M, et al. Evaluation of combustion characteristics of Chinese high-ash coals [J]. Energy & Fuels,2003,17(6):1522-1527.
    [191]ZHANG H, PU W X, HA S, et al. The influence of included minerals on the intrisic reactivity of chars prepared at 900 ℃ in a drop tube furnace and a muffle furnace [J]. Fuel,2009,88(11):2303-2310.
    [192]马保国,徐立,李相国,等.碱、碱土金属盐对高灰分煤粉燃烧的催化作用[J].煤炭科学技术,2007,35(9):69-72.
    [193]LI X G, MA B G, XU L, et al. Catalytic effect of metallic oxides on combustion behavior of high ash coal [J]. Energy & Fuels,2007,21(5):2669-2672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700