用户名: 密码: 验证码:
道路固体结构集热蓄能过程分析及其传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道桥固体结构太阳能集热属固体平面太阳能集热的一种形式,其收集的能量可以通过跨季节地下储存直至冬季道路融雪化冰应用,形成夏集热蓄能冬融雪化冰的复合能源利用系统,将成为未来的新型道路交通和建筑领域应用的能源技术。
     道桥固体结构太阳能集热是夏集热蓄能冬融雪化冰系统的关键组成,因此本研究以新型道路冰雪热融技术为背景,通过理论分析、模拟计算与实验研究,探索其中所涉及的固体结构太阳能集热、地下蓄能和固体结构内管束循环流体流动等多阶段复杂时变过程的传热问题。在建立子模型分析基础上进行模型耦合,研究运行过程传热效能和能量利用,以及集热蓄能动态过程的控制和优化,为相关技术理论奠定基础,推动技术应用和科技进步。
     研究工作在国家自然科学基金项目(No.50776039)的支持下,针对道桥等固体结构构建夏季集热蓄能冬季融雪化冰复合系统,研究夏季太阳能集热单过程纯集热系统的传热特性和运行性能;分析夏季太阳能集热蓄能双过程中不同集热、蓄能控制方式的影响特点,探寻最佳控制方式;同时通过建立简化融雪化冰模型,耦合集热蓄能双过程模块,建立集热蓄能融雪化冰全过程仿真模型,系统分析不同气候条件下夏季集热过程收集能量和冬季融雪化冰过程支出能量的平衡性关系。
     其中,在针对夏季道桥路面太阳能集热过程研究中,建立了独立的数学模型和相应模块,以该模块应用为例分别研究道桥路面集热时循环流体流速、固体结构埋管管径、固体结构埋管管间距、固体结构集热表面状况、环境风速、环境温度以及浮云等因素的影响作用。结果表明,循环流体流速对集热量和流体温度作用明显,从集热蓄能综合角度考虑,其中低流速时蓄能效果更加显著应优先选择。埋管管径和埋管管间距增加对集热量和集热温度的影响具有相反效果,因此必须合理选择两者的关系,即在满足集热温度要求的情况下,合理选择布管参数以达到集热量获取最大化目的。吸收特性较好的集热表面有利于集热量和集热温度的增加,但集热表面温度也会因之大幅提升。环境风速和浮云的出现均会使集热量降低,对集热过程是一个不利因素。另外,同上述影响因素相比,环境温度变化对集热过程影响效果较小(环境温度上升1℃时单位面积集热量上升2W/m~2~3W/m~2),实际工程运行中可忽略其对集热系统的影响效果。
     通过开展道路应用模拟实验,进一步获知固体结构作为太阳能集热系统在夏季可以获得可观的热量,自然条件下集热能力为150W/m~2~250W/m~2,可以明显降低路面温度。同时道路等固体结构由于热容量较大,其集热温度和集热量变化时序均延迟于热源辐射强度的变化,表现出显著的集热滞后特性。实验还发现,固体结构内的埋管布置形式和流体流态参数对集热效果影响较大。随着循环流体流量的增大,集热效率增加,通常集热效率可达30%以上。随埋管管间距降低,集热效率明显提高,即表明集热面上的太阳辐射热量得到了充分吸收。实验研究范围内,管间距每降低10mm,集热效率平均升高5.5%。
     针对道路固体结构太阳能集热过程的主要影响因素开展实验研究,首次建立了固体结构热辐射集热室内实验系统,进一步研究单一影响因素对固体结构太阳能集热过程的影响效果,探索诸如辐射强度等众多客观因素的影响和作用。在定辐射强度和动态辐射强度实验中,重点研究了集热量、集热温差、集热效率和集热表面温度的影响特性。
     实验可知,随着热源辐射强度增加,集热系统的集热能力呈线性上升,但集热效率却呈下降趋势,而且道路等固体结构集热系统存在明显的热响应滞后性。另外增大环境风速可以降低路面集热温度,减小路面受热腐蚀,但循环流体集热温差和集热量却会随之下降,不利于集热和能量储存。同仿真计算结果相同,随循环流体流速增加,循环流体集热量和集热效率先增加而后降低,但集热温差逐渐降低。集热系统集热表面的吸热能力越强,集热效果越好,但表面温度也会上升,会降低路面强度,不利于路面的保护。在实验范围内,埋管管间距的增加使循环流体集热温差、集热量和集热效率降低。同蛇形直列盘管布置相比,椭圆盘管布置形式时循环流体集热温差和集热效率较高,利于集热蓄能,可见合理的埋管布置形式有利于太阳能吸收。
     为了探究夏季太阳能集热蓄能双过程的影响特性,基于Matlab/Simlink平台,又建立了太阳能瞬时辐射模块、固体结构集热器模块、蓄热水箱模块和地下换热器模块,以及利用模块组合构建出集热与地下蓄能复合系统,实现耦合分析。模拟计算集热蓄能双过程的传热特性,比较不同集热蓄能控制方法以寻找最优控制模式。通过组合系统研究发现,所提出的温差梯级流量蓄能控制模式在复合系统控制中更加有效,该方法通过控制开启、关闭蓄能运行和循环流体流量逐级变化,可避免路面平均温度过低地下热量回流散失的问题;同时避免地下换热器热源周边局部温升加大和路面集热能力下降的不良现象,保证路面集热蓄能系统综合用能效率,提高系统运行效能。而且控制温差不同集热蓄能双过程复合系统的运行性能也变化,本模拟计算中控制温差上升1℃地下温度下降约0.5℃。另外,太阳能集热控制方法中以温差开关控制为最优。研究中发现,虽然晴空辐射条件下太阳开关控制集热方法最优,但是实际气候条件瞬息万变,易造成系统运行状态变化,由于太阳开关控制没有产生与系统状态变化的联动性,因此对于太阳能固体结构集热器的控制应选择温差开关控制。
     通过建立简化的融雪化冰模块,研究工作对于夏季集热蓄能冬季融雪化冰全过程的传热效能和能量利用进行分析,研究发现集热能量不足或融雪化冰所需能量过大时,都会出现能量入不敷出现象,指出进一步探索集热蓄能和融雪化冰能量均衡,以及提升能源利用综合效率将是一项重要的进一步研究内容。
     综合研究表明,道路等固体结构太阳能集热是多阶段复杂时变传热过程。集热蓄能过程耦合、集热蓄能与融雪化冰过程耦合使研究面临更复杂的传热关联问题。本研究通过理论分析和模拟计算,结合实验研究,探索路面太阳能集热、地下蓄能,以及融雪化冰释热过程传热传质机理和特征规律,揭示集热蓄能融雪化冰各阶段的瞬态过程及其耦合控制策略,拓展和完善路面等固体结构集热蓄能融雪化冰过程的基础理论,可指导工程应用。
Solar energy collection on pavement and bridge is of solar energy collection of solid structure. The collecting energy can be stored into underground and used to melt snow and deice in winter. Composite system of collecting and storing solar energy in summer and melting snow and deicing in the winter is constructed, which will be applied in road traffic and construction of new energy technology in the future.
     Solar collecting on the solid structure is a key component of composite system of collecting and storing solar energy in summer and melting snow and deicing in the winter. According to new hot melt snow technology, theoretical analysis, simulation and experiment is combined to study some complex heat transfer problems in the solar energy collecting, underground energy storage and circulating fluid. By coupling of sub-model, heat transfer performance, energy usage and control methods and optimization methods in the solar energy collecting and storage dynamic process are studied. The research is the basis of the relevant technical theory to promote the technology and scientific progress.
     Supported by the National Natural Science Foundation of China (No.50776039), a composite system is designed on the solid structure in this paper, which can collect solar energy and store energy in the underground in the summer, and melt away snow and deice in the winter. Heat transfer characteristics and operation performance of solar energy collecting system in the summer are studied. Influencing characteristics of different controlling methods in the process of solar energy collecting and energy storing are analyzed to work out the optimal controlling method. Simplized snow melting and deicing models are established and combined with solar energy collecting and energy storing process. Progress of solar energy collecting and storing and snow melting and deicing is simulated. Balance between energy collecting in the summer and energy using in the winter is analyzed accordingly.
     In the research of composite system of collecting and storing solar energy in summer and melting snow and deicing in the winter, an independent mathematic model and the corresponding module are established. Using heat collecting model, heat collecting characteristics and instantaneous influence effect of different influence factors, such as hydrolic fluid velocity, diameter and spacing of pipes buried in the solid structure, surface status, ambient wind velocity, ambient temperature and effect of cloud, are analyzed. The results show that with increasing of fluid velocity, heat collecting quantity per unit area increase, however, increasing extent will decrease. In the simulating range the optimal velocity is between 1m/s and 1.5m/s. Influence of pipe diameter and pipe spacing on heat collecting quantity and heat collecting temperature difference is reverse, so the relation should have an optimal range. Under reasonable heat collecting temperature, parameters of pipes should be chosen to make heat collecting quantity be maximized. Surface which has larger absorptance is in favor of heat collecting, but surface temperature will be higher. Wind and cloud reducing heat collecting quantity and are disadvantage factors. In addition, comparing with the above factors, effect of environmental temperature on the collector is smaller (when the ambient temperature rises 1℃, heat collecting quantity per unit area increases 2~3 W/m~2), thus its effects can be ignored in the actual construction of its operation.
     From the outdoor experimental system, it can be seen that large heat collecting quantity can be obtained by using solid structure as heat collecting slab. In the outdoor experiment the heat collecting quantity is about 150W/m~2~250W/m~2 under natural conditions. At the same time the temperature of road can be reduced. Due to the larger heat capacity of solid structures, the change of surface temperature and heat collecting quantity is lagged behind that of radiation intensity. In addition, pipe layout and fluid flowing state has a great impact. With the increasing of circulating fluid flow, collection efficiency increases. Collecting efficiency is usually up to 30%. With pipe spacing reducing, heat collecting efficiency improves significantly. As shown in the results, pipe spacing reduces with 10mm, heat collecting efficiency increases by an average 5.5%, which indicates that surface solar radiation energy has been fully absorbed.
     Since some factors are difficult to be controlled, the outdoor experiments the impacting effect of some factors are also possible crossed, and it is difficult to determine the impacting effect of a particular factor. Therefore, in order to study influence of single factor on the heat collecting process in the solid structure, and indoor thermal radiation simulation experiment bench is built to explore heat collecting performance and laws in the solid structure such as bridge and road.
     The experiment results show that with the increasing of heat radiation intensity, the heat collecting capacity in the system increases linearly, while heat collecting efficiency reduces. Solid structures such as road and bridge have obvious thermal response lag. In addition, with increasing of wind speed, heat surface temperature and corrosion reduce, while temperature difference per pipe length and heat collecting quantity per unit area will reduce, which is not conducive to energy storage. When circulating hot fluid flow velocity increases, temperature difference per pipe length, heat collecting quantity per unit area and heat collecting efficiency will increase, while the temperature of road will rise accordingly to reduce the strength of pavement and be not conducive to road protection. In the experimental range, with the increasing of the circulating pipe spacing, the temperature difference per pipe length, heat collecting quantity per unit area and heat collecting efficiency will reduce. Comparing with the snake coil arrangement, the temperature difference per pipe length, heat collecting quantity per unit area and heat collecting efficiency is higher in the ellipse coil arrangement, which is helpful for energy storage. Reasonable pipe layout is conducive to solar energy collecting.
     In order to explore influencing characteristics of solar energy collecting and storage (SECS) in summer, instantaneous solar radiation module, solid structure collector module, storage water tank module and underground heat exchanger module are designed based on Matlab/Simlink platform, to established solar heat collecting and underground energy storage model. Heat transfer characteristics of SECS is simulated and studied accordingly. Different controlling methods of SECS are compared to work out the optimal one. From the research, it is found that temperature control method is optimal, which is controlled by opening and closing storage process and adjusting the fluid flowrate. This method can not only avoid the average temperature of road to be too low to make heat of underground loss, but also avoid the temperature around the underground heat exchanger to be higher and reduce heat collecting ability of solid structure to ensure that the solid structure heat collecting and storage system and the system performance. When the controlling temperature difference changes, operating performance also changes. In the simulation cases, if the underground temperature rises 1℃, the decrement of controlling temperature difference will be about 0.5℃. In addition, the temperature difference switch control method in the solar collectors is an optimal one. Study also find that although under the conditions of clear sky solar switch control method is the best, the actual climatic conditions always changing, which will lead to operating system changing. Because there is no relation between the solar switch control and system changing, temperature difference switch control method should be chosen in the solar energy collector of solid structure.
     Finally, in order to study the operating performance of process of solar energy collecting and storing in the summer and snow melting and deicing in the winter. Using simplized snow melting and deicing models, combining with model of solar energy collecting and storing in the summer, heat transfer efficiency and energy usage of operating progress is studied. As shown in the results, when the collecting energy is too less or energy used in the melting snow and deicing is too much, so that energy does not make ends meet, underground temperature will be too low, and the system efficient will be too low.
     Comprehensive studies have shown that solar energy collection on the solid structures such as roads is a complicated heat transfer process. Coupling energy collecting with storage and couple energy storage and collecting wiht the process of melting snow and deice are more complex problems associated with heat transfer. In this study, theoretical analysis and simulation, combined with experimental studies are used to explore the mechanism and characteristics of heat and mass transfer. Thermal progress and control strategy in the energy underground storage and melting snow and deicing is revealed. The basic theory of solar energy collecting and underground storage and snow melting is developed and improved, which can be used to guide engineering applications.
引文
[1]温从科,乔旭,张进平,汤吉海,崔咪芬.生物质高压液化技术研究进展[J].生物质化学工程,Vol.40,No.1,2006:32-40.
    [2]匡小平,罗晓华.世界各国节能减排税收政策的比较分析及对我国的启示[J].山东经济,Gen.145,No.2,2008:38-41.
    [3]岑幻霞编.太阳能热利用[M].北京:清华大学出版社.1997.
    [4] Gerardo W. Flintsch.Assessment of the Performance of Several Roadway Mixes under Rain, Snow, And Winter Maintenance Activities[R].Final Contract Report VTRC 04-CR18, Department of Civil and Environmental Engineering Virginia Polytechnic Institute & State University, Feb. 2004.
    [5] X. Xiao.Modeling Of Hydronic And Electric-Cable Snow-Melting Systems For Pavements And Bridge Decks[D].Oklahoma State University, 2002.
    [6] Benjamin T. Green1 and Kerop D. Janoyan.Use of electrically conductive concrete overlays for passive control of snow and ice on roads[C].International Conference on Energy, Environment and Disasters , Charlotte, NC, USA, July 24-30, 2005.
    [7] P.J. Tumidajski, P. Xie, M. Arnott, J.J. Beaudoin.Overlay current in a conductive concrete snow melting system[J].Cement and Concrete Research, Vol. 33, Issue 11, November 2003: 1807-1809.
    [8] Chiasson A.D., J.D. Spitler, S.J. Rees, and M.D. Smith.2000. A Model for Simulating the Performance of a Pavement Heating System as a Supplemental Heat Rejecter With Closed-Loop Ground-Source Heat Pump Systems[J].ASME Journal of Solar Energy Engineering, Vol.122, 2000:P183-191.
    [9] Koji Morita and Makoto Tago.Operational Characteristics of The Gaia Snow-Melting System in Ninohe Iwate Japan - Development of a Snow-Melting System Which Utilizes Thermal Functions of the Ground[C].Proceedings World Geothermal Congress 2000, Kyushu - Tohoku, Japan, May 28 - June 10, 2000:P3511-3516.
    [10] Kinya Iwamoto, Shigeyuki Nagasaka, Yasuhiro Hamada, Makoto Nakamura, Kiyoshi Ochifuji, and Katsunori Nagano.Prospects Of Snow Melting Systems (SMS) Using Underground Thermal Energy Storage (UTES) in JAPAN[C].The Second Stockton International Geothermal Conference,March 16 - 17, 1998.
    [11] Koji Morita and Masashi Ogawa . Geothermal and Solar Heat Used to Melt Snow on Roads[R].Technical Brochure,CADDET Centre for Renewable Energy,IEA, Organization for Economic Co-operation and Development (OECD), Harwell, United Kingdom, 1998.
    [12]黄立葵,贾璐,万剑平,万智.沥青路面温度状况的统计分析[J].中南公路工程,Vol.30,No.3, 2005:8-10.
    [13] Walter J. Eugster, Jürg Schatzmann.Harnessing Solar Energy for Winter Road Clearing On Heavily Loaded Expressways[C].Proceeding of XIth PIARC International Winter Road Congress, January 2002, Sapporo, Japan.
    [14] E. BILGEN, M.-A. RICHARD.Horizontal concrete slabs as passive solar collectors[J]. Solar Energy.2002 Vol. 72, No. 5:405-413.
    [15]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路.2007, 51(5):170-174.
    [16] Jeffrey D.Spitler.Bridge deck deicing using geothermal heat pumps[C].Proceedings of the 4th inetenation heat pumps in cold climates conference, Aylmer, Quebec Canada, August 17-18, 2000.
    [17]王丽勋.公路除雪及安全技术的研究[J].西部交通科技.2006,3:23-26.
    [18] Xiaobing Liu a, Simon J. Rees b, Jeffrey D. Spitler.Modeling snow melting on heated pavement surfaces[J].Applied Thermal Engineering, Vol.27, Issues 5-6, 2007:P1115-1131.
    [19] John W. Lund.Pavement Snow Melting[R].Bulletin of Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, 2000.
    [20] Yasuhiro Hamada, Makoto Nakamura, Hideki Kubota.Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy[J].Applied Energy, Vol. 84, No.2, 2007: P117-134.
    [21] Kazuhide Tsuji, Isamu Yoshitake, Senji Nagai and Sumio Hamada.Cost Performance of Pipe Heating System by Thermal Energy in Mountain Tunnel[C].12th International Road Weather Conference, Bingen, Germany 2004.
    [22]洲澤昭已.地中熱利用路面融雪システム[R].Technical handbook,ミサワ環境技術(株)株式会社(Misawa environmental technology Co., Ltd),2006.
    [23]田子,盛田,菅原,藤田.埋設管式融雪道路の路盤内伝熱挙動に及ぼす断熱ブロックの影響[J].日本地熱学会誌,Vol.23,No.2,2005:P95-106.
    [24]王军,袁俊生,孟兴智,张林栋.除雪技术的开发现状[J].海湖盐与化工,2005,2:27-28.
    [25]唐祖全,李卓球,候作富,徐东亮.导电混凝土电热层布置对路面除冰效果的影响[J].武汉理工大学学报,2002,第24卷第2期:45-48.
    [26]红乃丰.我国北方地区冬季撒盐的利害分析与对策[J].低温建筑技术,2003,3:12-13.
    [27]候作富,李卓球,唐祖全.导电混凝土除冰化雪系统输入功率的有限元计算[J].华中科技大学(城市科学版),Vol.19 No.1,2002.
    [28] Norwegian National Team, Asle I.Johnsen, AIWELL.Controlling ice build up and de-icing of roofs[J]. Energy management and control, No.4, 1997.
    [29] John W. Lund.Pavement Snow Melting[C].Bulletin of Geo-Heat Center Oregon Institute of Technology. Klamath Falls, OR, 2000.
    [30] D. Derwin, P. Booth, P. Zaleski, W. Marsey and W. Flood Jr.SNOWFREE?-Heated Pavement System to Eliminate Icy Runways[C].SAE Technical Paper Series 2003-01-2145, 2003.
    [31] Geir Eggen1 and Geir Vangsnes.Heat Pump For District Cooling And Heating At OSLO Airport Gardermoen[C].The IEA 8th Heat Pump Conference,Las Vegas,USA, May 2006.
    [32] Katarzyna Zwarycz.Snow Melting and Heating Systems Based On Geothermal Heat Pumps at Goleniow Airport Poland[R].Geothermal Training Programme Reports,The United Nations University, Iceland, 2002.
    [33] http://www.conductive-concrete.unomaha.edu/ccanalysis.htm.
    [34] Kilkis, I.B..Design of Embedded Snow-Melting Systems Part 2[M].ASHRAE Trans., 1994, Vol.100, part1:434-441.
    [35] William P. Chapman, P.E..A Review of Snow Melting System Design[M].ASHRAE Trans. 1999:1049-1054.
    [36] Simon J.Rees, Jeffrey D.Spitlter, Xia Xiao.Transient Analysis of Snow-Melting System Performance[M].ASHRAE, 2002:406-423.
    [37] Xiaobing Liu, Jeffrey D.Spitler.A simulation tool for the hydronic bridge snow melting system[C].Proceedings of the 12th international road weather conference, Bingen(on Thine), Germany, June 16-18, 2004.
    [38] Chiasson, A., J.D.Spitler. 2000.A Modeling Approach To Design of a ground-source heat pump bridge deck heating system[C].Proceeding of the 5th International Symposium on Snow Removaland Ice Control Technology. Roanoke, VA. September 5-8, 2000.
    [39] Kazuhide TSUJI, Isamu YOSHITAKE, Senji NAGAI, Sumio HAMADA.Cost Performance of Pipe Heating System by Thermal Energy in Mountain Tunnel[C].12th International Road Weather Conference, Bingen, Germany 2004.
    [40] Yoichi MIMURA, Isamu YOSHITAKE, Kazuhide TSUJI.Toshio TANIMOTO and Sumio HAMADA[C].Influence of Heating Pipe on Snow Melting and Mechanical Properties.12th International Road Weather Conference, Bingen, Germany 2004.
    [41] Koji Morita and Makoto Tago.Operational Characteristics of The Gaia Snow-Melting System in Ninohe Iwate Japan - Development of a Snow-Melting System Which Utilizes Thermal Functions of the Ground[C].Proceedings World Geothermal Congress 2000, Kyushu - Tohoku, Japan, May 28-June 10, 2000:3511-3516.
    [42]高一平.利用太阳能的路面融雪系统[J].国外公路,Vol.17,No.4:53-55,1997.
    [43]林密,高青,马纯强等.热流体路面融雪化冰过程基本传热分析[C].中国高校工程热物理学会第十三届学术会议论文集B-08048,中国厦门,2008.5
    [44]林密.地下蓄能和太阳能复合系统工程应用分析[D].吉林大学,2007.6.
    [45]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D].大连理工大学,2007.12.
    [46] Huajun Wang, Jun Zhao, Zhihao Chen.Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water[J].Energy Conversion and Management, 2008, 49(6):1538-1546
    [47]李炎锋,武海琴,王贯明,朱滨.石勃伟.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报.2006,31(3):217-222
    [48]李波.导热沥青混凝土及其性能研究[D].武汉理工大学硕士论文,2008.
    [49]管数园.电缆加热系统进行融雪的数值分析研究[D].上海交通大学,2008
    [50] Ion L. Wendel, St. Petersburg,Fla.Paving and Solar Energy System and Method[P].United States Patent, Jan.2, 1979.
    [51] Olive G.Un nouveau capteur solaire en beton[J]. Etudes 27-40.Thermiques et Aerauliques 8E(5):3-14, 1977.
    [52] Sedgwick R.H.D. and Patrick M.A.. The use of a ground solar collector for swimming pool heating[J].In Proceedings ISES Congress, Brighton, 1983, Vol. 1:632-636.
    [53] Turner R.H..Concrete slabs as winter solar collectors[C].In Proceedings ASME Solar Energy Conference, 1986:9-13.
    [54] Turner R.H.. Concrete slabs as summer solar collectors[C].In Proceedings International Heat Transfer Conference, 1987:683-689.
    [55] Nayak J. K., Sukhatme S. P., Limaye R. G. and Bopshetty S.V..Performance studies on solar concrete collectors[J].Solar Energy, 1989, 42(1):45-56.
    [56] Bopshetty S. V. and Nayak J. K..Performance analysis of a solar concrete collector[J].Energy Convers. Manage, 1992, 33(11):1007-1016.
    [57] Ashley Burnett Abbott.Analysis of Thermal Energy Collection from Precast Concrete Roof Assembilies[D].Virginia Polytechnic Institute and State University, 2004.
    [58] Marwa Hassan, Yvan Beliveau.Performance Testing of an Integrated Solar Collector System[C].Construction Research Congress, 2009.
    [59] Rajib B.Mallick, Bao-Liang Chen, Sankha Bhowmick, Michael S. Hulen.Capturing Solar Energy from Asphalt Pavements[J].ISAP, 2008.
    [60] HASEBEL M, KAMIKAWA Y, MEIARASHI S.Themoelectric Generators using Solar Thermal Energy in Heated Road Pavement[C].Proceedings of 25th International Conference on Thermoelectrics, New York: IEEE, 2006:697-700.
    [61] Sullivan, C.G., De Bondt, A., Rob Jansen, Henk Verweijmeren.Energy from asphalt pavements[C].International Conference on Sustainable Construction Materials and Technologies, Supplementary proceedings, 2007(7):102-109.
    [62] MARK H.Renewalbe Energy Technology to Offset Emissions and Improve Road Safety[J].Renewable Energy Focus, 2005,6(4):7.
    [63] REBECCA C, ERIC D, JOHN F, et al.Scotland’s Renewable Heat Strategy: Recommendations to Scottish Ministers: Renewable Heat Group (RHG) Report [R].Edinburgh: the Scottish Government, 2008.
    [64]赵佳怡.荷兰道路能源系统——从柏油路中获取能量[N].中国建材报,2006.12.26.
    [65]吴少鹏,陈明宇,韩君.沥青路面太阳能集热技术研究进展[J].公路交通科技,2010,第27卷第3期:17-22.
    [66] BIJSTERVELD W T V, DE-BONDT A H.Structural Aspects of Pavement Heating and CoolingSystems[C].Proceedings of 3rd International Symposium on Finite Elements.Amsterdam, Netherlands:ISFE, 2002:1-15.
    [67] Marusz OWCZAREK, Roman DOMANSKI.Application of dynamic solar collector model for evaluation of heat extraction from the road bridge.The 9th International Conference on Thermal Energy Storage[J], Warsaw I Poland, Vol.1, 2003.
    [68] Beata NIEZGODA-ZELASKO, Jerzy ZELASKO.Heat storage in the open swimming pool using a solar heating system[C].The 9th International Conference on Thermal Energy Storage, Warsaw I Poland, Vol.1, 2003.
    [69] J.K.Nayak, S.P.Sukhatme, R.G.Limaye, S.V.Bopshetty.Performance studies on solar concrete collectors[J].Solar Energy, 1989, Volume 42, Issue 1:45-56.
    [70] P.B.L. Chaurasia.Solar water heaters based on concrete collectors[J].Energy, 2000(25):703-716.
    [71] J.KhedarI, J.HIRUNLABH, T.BUNNAG.Experimental Study of a Roof Solar Collector Towards the Natural Ventilation of New Habitations[J].WREC, 1996.
    [72] Chaofeng Xiao, Huilong Luo, Runsheng Tang, Hao Zhong.Solar thermal utilization in China[J]. Renerable Energy, 2004(29):1549-1556.
    [73] Hen ZN, Nai ZY, Liu Y..A comprehensive solar system for air conditioning and heating supply[J].HV&AC, 2002, 31(1):1-4.
    [74]吴少鹏,陈明宇,韩君.沥青路面太阳能集热技术研究进展[J].公路交通科技,第27卷第3期:17-22,2010.
    [75]吴赣昌.半刚性基层沥青路面温度场的解析理论[J].应用数学和力学,第18卷第2期:169-172,1997.
    [76]吴赣昌,张淦生.有效辐射计算对沥青路面温度场的影响[J].佛山大学学报,1995,13(2):19-25.
    [77]景天然,严作人.水泥路面温度状况的研究[J].同济大学学报,1980(3):88-98.
    [78]严作人.层状路面体系的温度场分析[J].同济大学学报,1984(3):76-85.
    [79]贾璐.沥青路面高温温度场数值分析和实验研究[D].2004.5.
    [80]周亚素等.土壤源热泵的研究现状与发展前景[J].新能源,1999(12):37~42.
    [81] D.A.Ball.Design Method for GSHP[M].ASHRAE Trans, DC-83-03:416~440.
    [82]杨卫波,董华.土壤源热泵系统在国内外研究状况及其发展前景[C].建筑热能通风空调,2003.
    [83]赵军等.地源热泵系统[J].太阳能,2001(1).
    [84]周训,刘东林.欧洲地下蓄能的发展现状[C].地温资源与地源热泵技术应用论文集(第三集),2009:56~64.
    [85] Spitler, J.D., M.Bridge Deck Deicing using Geothermal Heat Pumps[C].Proceedings of the Fourth International Heat Pumps in Cold Climates Conference, Aylmer, Québec Canada, 2000.
    [86] Hiroshi TAKAHASHI1, Takeshi UEMOTO1.Update of Geothermal Heat Pump Use in JAPAN[C].Proceedings of the 6th Asian Geothermal Symposium, Oct. 26-29, 2004.
    [87]广州能源所地源热泵技术应用取得突破[J].实用节能技术.能源工程,2002.
    [88]天津市建筑应用可再生能源项目调查报告[R].天津市建委节能办,天津市太阳能学会,天津大学机械学院热能工程系.《地源热泵专题》,2007:16~22.
    [89] Gao Qing, Li Ming, Yu Ming, Qiao Guang.Restorative Characteristics of Ground Temperature in the intermittent process about the Behavior of Earth Energy in Ground Source Heat Pump[C]. Proceedings of the 3rd International Symposium on Heat Transfer and Energy Conservation, GuangZhou China, Vol.1, P547-552, 2004.1.
    [90] Gao Qing, Yu Ming, Li Ming, Qiao Guang, Fang Ying.Experiment Investigation about Enhanced Heat Transfer of Underground heat exchanger in Ground Source Heat Pump[C].Proceedings of the 3rd International Symposium on Heat Transfer and Energy Conservation, GuangZhou China, Vol.1, P553-558, 2004.1.
    [91] Gao Qing, Li Ming, Xuan Zhehao, Jeffrey D. Spitler.Practice And Task Developing Underground Thermal Energy Storage In China[C].Proceedings of the 10th international Conference on Thermal Energy Storage-Ecostock 2006, Paper No.035, Pomona,, New Jersey, USA, June 2006
    [92] Qing Gao, Ming Li, Ming Yu, Jeffrey D. Spitler, Y.Y. Yan.Review of development from GSHP to UTES in China and other countries[C].Renewable and Sustainable Energy Reviews, 13(6-7)2009:1383-1394.
    [93] Qing Gao, Ming Li, Yan Jiang , Ming Yu,Y.Y. Yan.Effect of Thermal Diffusion and Transport of Operation Modes on Underground Thermal Energy Storage.Proceedings of the 11th international Conference on Thermal Energy Storage-(Ecostock 2009), Paper No.148, CD ISBN 978-91-976271-3-9, Stockholm, Sweden, June 2009.
    [94]江彦,高青,李明,马纯强,刘研,黄勇.地下蓄能热扩散和传输的能流通量描述[J].吉林大学学报工学版,Vol.39,No5,2009.9,P1142-1145
    [95]高青,于鸣,白金玉等.提高地能利用的强化传热试验研究[J].太阳能学报,2003,24(3):307-310.
    [96]高青,李明,江彦等.地下换热器回填传热模拟分析[C].全国暖通空调制冷2006年学术会议文集,2006:229.
    [97]高青,于鸣,乔广,李明,白金玉.地热利用中的地温可恢复特性及其传热的增强[J].吉林大学学报(工学报),2004,34(1):107-111.
    [98]高青,李明等.群井地下换热系统初温和构造因素影响传热的研究[J].热科学与技术,2005:34~40.
    [99]高青,李明,马纯强,江彦,于鸣.地下岩土蓄能过程控制模式[J].吉林大学学报(工学报),2009,39(3):593-597.
    [100]谢慧.热管地板辐射供暖基础理论研究[D].天津大学,2006.
    [101]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [102]中国气象局气象信息中心.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.4.
    [103]陶文铨.数值传热学(第二版)[M].陕西:西安交通大学出版社,2001.
    [104]高青,J D Spitler,李明,于鸣,乔广.地下蓄能及其对地热泵系统的作用[J].吉林大学学报(工学版),2006,36(4):497-501.
    [105]刘研,王永珍,高青.路面太阳能集热状态探讨与分析[C].高等学校工程热物理第十四届全国学术会议,2008.05.
    [106]后尚,田瑞,闫素英.呼和浩特太阳辐射模型分析[J].可再生能源,Vol26,No.2,2008.
    [107]邱国全,夏艳君,杨鸿毅.晴天太阳辐射模型的优化计算[J].太阳能学报,Vol22,No.4,2001.10.
    [108] Spitler J.D., S.J.Rees, and C. Yavuzturk.Recent Developments in Ground Source Heat Pump System Design, Modeling and Applications[C].Proc. of CIBSE/ASHRAE joint conference“20 20 Vision”, Dublin, September 2000, Session 9a, Paper A28:P34.
    [109] Cenk Yavuzturk, Jeffrey D. Spitler.Comparative Study of Operating and Control Strategies for Hybrid Ground-Source Heat Pump Systems Using a Short Time Step SimulationModel[R].ASHRAE Transactions 2000, Vol 106, Part 2.
    [110] Cenk Yavuzturk, Jeffrey D. Spitler.A Transient Two-Dimensional Finite Volume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers[R].ASHRAE Transactions, 105(2): 465-474.
    [111] Andrew D. Chiasson, Jeffrey D. Spitler.A Model for Simulating the Performance of a Shallow Pond as a Supplemental Heat Rejecter with Closed-Loop Ground-Source Heat Pump Systems[R].ASHRAE Transactions 2000, Vol 106, Part2.
    [112] Andrew D.Chiasson.Advances in Modeling of Ground-Source Heat Pump Systems[D].Master Thesis, December, 2003.
    [113]朱百发.基于热泵蓄补能复合系统能效特性分析[D].吉林大学,2007.6:42-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700