用户名: 密码: 验证码:
视网膜色素变性大鼠Müller细胞逆分化为视网膜前体细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜色素变性(Retina pigmentosa)是一种严重的致盲眼病,以光感受器细胞死亡为主要病理特征,临床上缺乏有效的治疗方法。目前很多研究集中在视网膜干细胞移植领域,以期望移植的细胞能够补充并修复视网膜色素变性过程中受损的视网膜光感受器细胞(Tomita et al., 2005) (MacLaren et al., 2006) (West et al., 2008)。虽然视网膜干细胞移植目前仍存在许多问题,如:移植细胞存活数量较少;移植细胞向光感受器细胞分化比例较低;难以验证移植细胞真正参与了宿主视网膜的视觉形成过程等,但是多数实验证实视网膜干细胞移植能够一定程度上改善视网膜色素变性动物模型的视功能(Seiler et al., 2008a) (Wang et al., 2008)Gamm (Gamm et al.)。因此,视网膜干细胞移植仍被认为是治疗视网膜色素变性疾病最具有潜在应用前景治疗方法。
     视网膜前体细胞概念的提出让人们从另一个角度认识视网膜损伤后自我修复能力。现在研究已证实,在成年哺乳动物视网膜内多个部位存在视网膜前体细胞(Perron and Harris, 2000)。如:视网膜睫状上皮细胞(Ahmad et al., 2000) (Tropepe et al., 2000)虹膜色素上皮细胞(Haruta et al., 2001) (Asami et al., 2007)等。最近研究发现,成年动物体内的视网膜Müller细胞也具有成为视网膜前体细胞的潜在能力(Fischer and Reh, 2001) (Ooto et al., 2004) (Osakada and Takahashi, 2007)。本实验室既往应用免疫印迹方法研究发现,视网膜前体细胞标记物Chx10表达量在RCS(Roval College Surgery,RCS)大鼠视网膜内呈现出生后减低至消失,而成年又出现增加的趋势。
     既往对Müller细胞的认识仅停留在对神经胶质细胞的传统认识上。随着人们对神经胶质细胞认识的深入,发现视网膜Müller细胞具有逆分化为视网膜前体细胞的潜能。在哺乳动物视网膜中Müller细胞在正常情况无法重新进入细胞周期开始逆分化,但是在一些急性损伤的情况下,如:应用NMDA造成小鼠视网膜神经节细胞和无长突细胞死亡(Karl et al., 2008)应用MNU造成大鼠视网膜光感受器细胞死亡(Wan et al., 2008),或是应用激光造成小鼠视网膜急性损伤(Kohno et al., 2006),视网膜Müller细胞均可重新进入细胞周期并逆分化为视网膜前体细胞。同时有研究发现,外源性给予视网膜Müller细胞营养因子,如脑源性神经营养因子(Brain Derived Neurotrophic Factor,BDNF)、胶质源性生长因子(Glia Derived Neurotropic Factor,GDNF)可增强其逆分化能力(Nickerson et al., 2008) (Insua et al., 2008)。然而,这些研究都是停留在急性损伤中,尚未见慢性损伤导致Müller细胞逆分化的报道。综合上述各项研究,结合本实验室既往研究结果,提出假设:RCS大鼠视网膜变性作为一种慢性刺激可导致Müller细胞出现逆分化并开始表达视网膜前体细胞表面标志物。视网膜干细胞移植或联合BDNF移植可增强RCS大鼠视网膜Müller细胞逆分化能力,从而达到延缓视网膜色素变性的作用。
     针对以上假设,本文的主要内容及研究结果如下:
     1、应用组织化学方法观察RCS大鼠发育过程中视网膜形态变化,发现RCS大鼠视网膜形态改变开始于15天(睁眼时间),30d时达到高峰,90d及120d时属于视网膜色素变性晚期;应用免疫荧光化学技术,研究在RCS大鼠视网膜慢性退行性变过程中,视网膜前体细胞分布特性及变化规律。结果发现,RCS大鼠出生后视网膜前体细胞数量迅速减少,至睁眼(15d)时几乎消失;但在视网膜色素变性高峰期时,视网膜前体细胞又重新出现,并可持续存在至变性晚期;进一步应用视网膜Müller细胞标志物—Vimentin双重标记,发现在RCS大鼠变性高峰期重新出现的视网膜前体细胞来源于视网膜Müller细胞逆分化。结果提示,RCS大鼠视网膜色素变性作为慢性刺激,可以导致视网膜Müller细胞发生逆分化。
     2、通过条件培养基及传代培养方法得到的视网膜干细胞具有自我增殖,自我复制和多向分化潜能,能够分化为各类视网膜神经元。经流式细胞仪检测培养3代后的视网膜干细胞纯度较高,可作为本研究中移植的种子细胞。将DiI红色荧光标记的大鼠视网膜干细胞经巩膜外路法移植入30天龄的RCS大鼠视网膜下腔。于60d、90d及120d时检测移植细胞存活、迁徙、分化,以及RCS大鼠视功能改善情况。结果发现,移植细胞在RCS大鼠视网膜内可以存活至120d,并有向视网膜内层迁徙的趋势;初期移植细胞存活数量较多,主要分布在视网膜外核层,后期移植细胞存活数量减少,较多分布在视网膜内核层。视网膜干细胞联合BDNF移植,有利于移植细胞在RCS大鼠视网膜内存活。应用免疫荧光化学技术,检测移植细胞向各种视网膜神经元分化情况,结果发现视网膜干细胞移植或联合BDNF移植后,移植细胞在RCS大鼠视网膜内具有向多种视网膜细胞分化的能力;早期倾向于向光感受器细胞方向分化,晚期则有较多向神经胶质细胞方向分化;联合应用BDNF未见明显促进移植细胞向光感受器细胞分化。应用视网膜电图(ERG)检测RCS大鼠视功能改善情况,Rod-ERG b波及Max-ERGb波振幅及潜时进行统计比较发现,视网膜干细胞移植在术后1月及2月时可改善RCS大鼠视功能,具体表现为Rod-b波及Max-b波潜时的缩短及振幅的增高。联合应用BDNF后,可在术后1月时增强视网膜干细胞移植对RCS大鼠视功能的改善作用。
     3、在视网膜干细胞移植术后,应用免疫荧光双标技术,观察RCS大鼠视网膜Müller细胞逆分化情况及视网膜前体细胞分布特点。结果发现,视网膜干细胞移植引起RCS大鼠视网膜前体细胞数量增多,且这些增多的视网膜前体细胞多数来源于视网膜Müller细胞逆分化,即视网膜干细胞移植增强了RCS大鼠视网膜Müller细胞逆分化,且部分逆分化的Müller细胞出现去分化现象,表达视网膜光感受器细胞标志物-Recoverin;然而,PBS伪手术及单纯注射BDNF不能增强RCS大鼠视网膜Müller细胞逆分化。经过定量计数分析比较发现,BDNF联合视网膜干细胞移植有更强的促进Müller细胞逆分化作用。
     综上所述,本课题得出如下结论:
     1、慢性视网膜色素变性这种刺激因素可以引起RCS大鼠视网膜Müller细胞发生逆分化,表达视网膜前体细胞标志物。2、视网膜干细胞移植或联合BDNF移植后,移植细胞在RCS大鼠视网膜内具有向多种视网膜细胞分化的能力,并显著改善RCS大鼠视网膜功能。3、视网膜干细胞或联合BDNF移植后通过激活视网膜Müller细胞逆分化为视网膜前体细胞和部分去分化为光感受器细胞达到改善RCS大鼠视网膜功能、延缓视网膜变性的作用。
Retina degeneration disease is the leading cause of blindness worldwide, which lack the suitable clinical treatment. Among several experimental approaches for the treatment of retina degeneration, stem cell-based therapy offers a novel therapeutic approach, based on the stratagem that transplanted progenitor cells could replace the lost photoreceptor cells during the degenerative process. In recent years several reports have been published in this field, proved that transplanted retina progenitor cells could integrate into host retina and differentiate into photoreceptors and play an effective way in rescuing vision in animal models of retinal degeneration. However cell-based therapeutic approaches have been limited to date due to the minimal survival and integration of donor cells into the ONL and their ability to participate into host retinal circuitry.
     With the scientific development, we know more and more about ourselves. It has long been believed that the adult mammalian central nervous system (CNS) lacked for neurogenesis, but in the last decade it has been proved that continuous neurogenesis occurs at two principal sites: the subventricular zone (SVZ) of the lateral ventricles and the hippocampus. Moreover, radial glia which arises from neuroepithelial cells around the time that neurons begin to appear has long been recognized as scaffolds for immature neurons migrating to the cortical plate during neurogenesis, while recent evidence suggests that the radial glia could participate in neural regeneration and showed multipotential character of neural stem cells in adult mammalian CNS. With regard to the retina, which is a part of the CNS, it has been indicated that Müller cells are the radial glia of the neural retina. Recent studies showed that they could behave as endogenous retina progenitor cells and show the proliferation and regenerating potentials in vitro or in vivo, under certain special conditions. These give people a new sight on treating retinal degeneration disease by using this group of cells. However, most of these in vivo studies performed on the mammalian model of acute retina injure, such as N-methy1-D-aspartate (NMDA) neurotoxin injury, laser injury and N-methy1-N-nitrosourea (MNU). These acute retina degenerations are rare in clinic. Till now no researches focus on the neurons progenitor potential of Müller cells in chronically retinal degeneration pathological process. Our lab found out that Chx10, which is a retina progenitor marker re-expressed during the peak time of retina degeneration of RCS rat and then drop down gradually. Based on all the researches above and the previous results in our lab, we make a hypothesis that Müller could be stimulated into cell cycle during the retina degeneration progress and retina stem cells transplantation.
     Based on the hypothesis above, our study initially focused on: 1) investigate whether Müller cells could show potential of regeneration during the pathological process of RCS rats; 2) transplant DiI labeled rat retina stem cells into subretinal space of RCS rat at day 30. Investigate grafts survival, migration, differentiation and rescue effects; 3) investigate whether Müller cells could be stimulated reenter cell cycle and dedifferentiate after retina stem cells transplantation. Our main results are showed as following:
     1. Müller cells could show potential of retina progenitor cells during the pathological process of RCS rats. 2. After transplantation, grafts cells could survival, migration and differentiation into photoreceptors. And the most important is that retina stem cells transplantation could rescue the vision function of RCS rat. 3. The proliferating Müller cells dedifferentiate and a sub set of these cells differentiated into photoreceptors after retina stem cells transplantation.
     In this study, we found evidence that Müller cells show part of their character of being a retinal progenitor cells during the chronically retina degeneration process in RCS rats. In addition, we found that Müller cells can be activated and differentiate into photoreceptors after retinal stem cells transplantation. Our research also point out a new way of understanding cell-based therapy, which not only replace the photoreceptor by exogenous donor cells but also stimulate endogenous progenitor cells into photoreceptor.
引文
1. Ahmad, I., L. Tang, and H. Pham, 2000, Identification of neural progenitors in the adult mammalian eye: Biochem Biophys Res Commun, v. 270, p. 517-21.
    2. Asami, M., G. Sun, M. Yamaguchi, and M. Kosaka, 2007, Multipotent cells from mammalian iris pigment epithelium: Dev Biol, v. 304, p. 433-46.
    3. Bartsch, U., W. Oriyakhel, P. F. Kenna, S. Linke, G. Richard, B. Petrowitz, P. Humphries, G. J. Farrar, and M. Ader, 2008, Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice: Exp Eye Res, v. 86, p. 691-700.
    4. Berardi, N., T. Pizzorusso, and L. Maffei, 2004, Extracellular matrix and visual cortical plasticity: freeing the synapse: Neuron, v. 44, p. 905-8.
    5. Bernardos, R. L., L. K. Barthel, J. R. Meyers, and P. A. Raymond, 2007, Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells: J Neurosci, v. 27, p. 7028-40.
    6. Canola, K., B. Angenieux, M. Tekaya, A. Quiambao, M. I. Naash, F. L. Munier, D. F. Schorderet, and Y. Arsenijevic, 2007, Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate: Invest Ophthalmol Vis Sci, v. 48, p. 446-54.
    7. Canola, K., and Y. Arsenijevic, 2007, Generation of cells committed towards the photoreceptor fate for retinal transplantation: Neuroreport, v. 18, p. 851-5.
    8. Cellerino, A., M. Bahr, and S. Isenmann, 2000, Apoptosis in the developing visual system: Cell Tissue Res, v. 301, p. 53-69.
    9. Close, J. L., B. Gumuscu, and T. A. Reh, 2005, Retinal neurons regulate proliferation of postnatal progenitors and Muller glia in the rat retina via TGF beta signaling: Development, v. 132, p. 3015-26.
    10. Close, J. L., J. Liu, B. Gumuscu, and T. A. Reh, 2006, Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina: Glia, v. 54, p. 94-104.
    11. Di Polo, A., L. Cheng, G. M. Bray, and A. J. Aguayo, 2000, Colocalization of TrkBand brain-derived neurotrophic factor proteins in green-red-sensitive cone outer segments: Invest Ophthalmol Vis Sci, v. 41, p. 4014-21.
    12. Ever, L., and N. Gaiano, 2005, Radial 'glial' progenitors: neurogenesis and signaling: Curr Opin Neurobiol, v. 15, p. 29-33.
    13. Farrar, G. J., P. F. Kenna, and P. Humphries, 2002, On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention: EMBO J, v. 21, p. 857-64.
    14. Fausett, B. V., and D. Goldman, 2006, A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina: J Neurosci, v. 26, p. 6303-13.
    15. Fausett, B. V., J. D. Gumerson, and D. Goldman, 2008, The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration: J Neurosci, v. 28, p. 1109-17.
    16. Fimbel, S. M., J. E. Montgomery, C. T. Burket, and D. R. Hyde, 2007, Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish: J Neurosci, v. 27, p. 1712-24.
    17. Fischer, A. J., 2005, Neural regeneration in the chick retina: Prog Retin Eye Res, v. 24, p. 161-82.
    18. Fischer, A. J., A. Hendrickson, and T. A. Reh, 2001, Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate: Invest Ophthalmol Vis Sci, v. 42, p. 3256-63.
    19. Fischer, A. J., and T. A. Reh, 2001, Muller glia are a potential source of neural regeneration in the postnatal chicken retina: Nat Neurosci, v. 4, p. 247-52.
    20. Florian, C., T. Langmann, B. H. Weber, and C. Morsczeck, 2008, Murine Muller cells are progenitor cells for neuronal cells and fibrous tissue cells: Biochem Biophys Res Commun, v. 374, p. 187-91.
    21. Francis, P. J., S. Wang, Y. Zhang, A. Brown, T. Hwang, T. J. McFarland, B. G. Jeffrey, B. Lu, L. Wright, B. Appukuttan, D. J. Wilson, J. T. Stout, M. Neuringer, D. M. Gamm, and R. D. Lund, 2009, Subretinal Transplantation of Forebrain Progenitor Cells in Non-human Primates: Survival and Intact Retinal Function: Invest Ophthalmol Vis Sci.
    22. Friedlander, M., 2007, Fibrosis and diseases of the eye: J Clin Invest, v. 117, p. 576-86.
    23. Gal, J. S., Y. M. Morozov, A. E. Ayoub, M. Chatterjee, P. Rakic, and T. F. Haydar, 2006, Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones: J Neurosci, v. 26, p. 1045-56.
    24. Gamm, D. M., S. Wang, B. Lu, S. Girman, T. Holmes, N. Bischoff, R. L. Shearer, Y. Sauve, E. Capowski, C. N. Svendsen, and R. D. Lund, 2007, Protection of visual functions by human neural progenitors in a rat model of retinal disease: PLoS ONE, v. 2, p. e338.
    25. Gauthier, R., S. Joly, V. Pernet, P. Lachapelle, and A. Di Polo, 2005, Brain-derived neurotrophic factor gene delivery to muller glia preserves structure and function of light-damaged photoreceptors: Invest Ophthalmol Vis Sci, v. 46, p. 3383-92.
    26. Ghosh, F., and B. Ehinger, 2000, Full-thickness retinal transplants: a review: Ophthalmologica, v. 214, p. 54-69.
    27. Hanisch, U. K., and H. Kettenmann, 2007, Microglia: active sensor and versatile effector cells in the normal and pathologic brain: Nat Neurosci, v. 10, p. 1387-94.
    28. Haruta, M., M. Kosaka, Y. Kanegae, I. Saito, T. Inoue, R. Kageyama, A. Nishida, Y. Honda, and M. Takahashi, 2001, Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue: Nat Neurosci, v. 4, p. 1163-4.
    29. Iandiev, I., A. Wurm, M. Hollborn, P. Wiedemann, C. Grimm, C. E. Reme, A. Reichenbach, T. Pannicke, and A. Bringmann, 2008, Muller cell response to blue light injury of the rat retina: Invest Ophthalmol Vis Sci, v. 49, p. 3559-67.
    30. Ikeda, K., H. Tanihara, T. Tatsuno, H. Noguchi, and C. Nakayama, 2003, Brain-derived neurotrophic factor shows a protective effect and improves recovery of the ERG b-wave response in light-damage: J Neurochem, v. 87, p. 290-6.
    31. Inman, D. M., and P. J. Horner, 2007, Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma: Glia, v. 55, p. 942-53.
    32. Insua, M. F., A. Garelli, N. P. Rotstein, O. L. German, A. Arias, and L. E. Politi, 2003, Cell cycle regulation in retinal progenitors by glia-derived neurotrophic factor and docosahexaenoic acid: Invest Ophthalmol Vis Sci, v. 44, p. 2235-44.
    33. Insua, M. F., M. V. Simon, A. Garelli, B. de Los Santos, N. P. Rotstein, and L. E. Politi, 2008, Trophic factors and neuronal interactions regulate the cell cycle and Pax6expression in Muller stem cells: J Neurosci Res, v. 86, p. 1459-71.
    34. Karl, M. O., S. Hayes, B. R. Nelson, K. Tan, B. Buckingham, and T. A. Reh, 2008, Stimulation of neural regeneration in the mouse retina: Proc Natl Acad Sci U S A.
    35. Kohno, H., T. Sakai, and K. Kitahara, 2006, Induction of nestin, Ki-67, and cyclin D1 expression in Muller cells after laser injury in adult rat retina: Graefes Arch Clin Exp Ophthalmol, v. 244, p. 90-5.
    36. Lamba, D., M. Karl, and T. Reh, 2008, Neural regeneration and cell replacement: a view from the eye: Cell Stem Cell, v. 2, p. 538-49.
    37. LaVail, M. M., D. Yasumura, M. T. Matthes, C. Lau-Villacorta, K. Unoki, C. H. Sung, and R. H. Steinberg, 1998, Protection of mouse photoreceptors by survival factors in retinal degenerations: Invest Ophthalmol Vis Sci, v. 39, p. 592-602.
    38. Lawrence, J. M., D. J. Keegan, E. M. Muir, P. J. Coffey, J. H. Rogers, M. J. Wilby, J. W. Fawcett, and R. D. Lund, 2004, Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats: Invest Ophthalmol Vis Sci, v. 45, p. 267-74.
    39. Liljekvist-Larsson, I., and K. Johansson, 2005, Retinal neurospheres prepared as tissue for transplantation: Brain Res Dev Brain Res, v. 160, p. 194-202.
    40. Liljekvist-Soltic, I., J. Olofsson, and K. Johansson, 2008, Progenitor cell-derived factors enhance photoreceptor survival in rat retinal explants: Brain Res, v. 1227, p. 226-33.
    41. Liu, I. S., J. D. Chen, L. Ploder, D. Vidgen, D. van der Kooy, V. I. Kalnins, and R. R. McInnes, 1994, Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer: Neuron, v. 13, p. 377-93.
    42. MacLaren, R. E., R. A. Pearson, A. MacNeil, R. H. Douglas, T. E. Salt, M. Akimoto, A. Swaroop, J. C. Sowden, and R. R. Ali, 2006, Retinal repair by transplantation of photoreceptor precursors: Nature, v. 444, p. 203-7.
    43. Monnin, J., N. Morand-Villeneuve, G. Michel, D. Hicks, and C. Versaux-Botteri, 2007, Production of neurospheres from mammalian Muller cells in culture: Neurosci Lett, v. 421, p. 22-6.
    44. Nakazawa, T., M. Tamai, and N. Mori, 2002, Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways: Invest Ophthalmol Vis Sci, v. 43, p. 3319-26.
    45. Nickerson, P. E., N. Da Silva, T. Myers, K. Stevens, and D. B. Clarke, 2008, Neural progenitor potential in cultured Muller glia: effects of passaging and exogenous growth factor exposure: Brain Res, v. 1230, p. 1-12.
    46. Ogilvie, J. M., J. D. Speck, and J. M. Lett, 2000, Growth factors in combination, but not individually, rescue rd mouse photoreceptors in organ culture: Exp Neurol, v. 161, p. 676-85.
    47. Ohta, K., A. Ito, and H. Tanaka, 2008, Neuronal stem/progenitor cells in the vertebrate eye: Dev Growth Differ, v. 50, p. 253-9.
    48. Ooto, S., T. Akagi, R. Kageyama, J. Akita, M. Mandai, Y. Honda, and M. Takahashi, 2004, Potential for neural regeneration after neurotoxic injury in the adult mammalian retina: Proc Natl Acad Sci U S A, v. 101, p. 13654-9.
    49. Osakada, F., and M. Takahashi, 2007, [Stem cell therapy for the central nervous system]: Tanpakushitsu Kakusan Koso, v. 52, p. 470-7.
    50. Perron, M., and W. A. Harris, 2000, Retinal stem cells in vertebrates: Bioessays, v. 22, p. 685-8.
    51. Rickman, D. W., and N. C. Brecha, 1995, Expression of the proto-oncogene, trk, receptors in the developing rat retina: Vis Neurosci, v. 12, p. 215-22.
    52. Rohrer, B., J. I. Korenbrot, M. M. LaVail, L. F. Reichardt, and B. Xu, 1999, Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina: J Neurosci, v. 19, p. 8919-30.
    53. Seiler, M. J., B. B. Thomas, Z. Chen, S. Arai, S. Chadalavada, M. J. Mahoney, S. R. Sadda, and R. B. Aramant, 2008a, BDNF-treated retinal progenitor sheets transplanted to degenerate rats: improved restoration of visual function: Exp Eye Res, v. 86, p. 92-104.
    54. Seiler, M. J., B. B. Thomas, Z. Chen, R. Wu, S. R. Sadda, and R. B. Aramant, 2008b, Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons: Eur J Neurosci, v. 28, p. 208-20.
    55. Sun, W., Q. Deng, W. R. Levick, and S. He, 2006, ON direction-selective ganglion cells in the mouse retina: J Physiol, v. 576, p. 197-202.
    56. Takeda, M., A. Takamiya, J. W. Jiao, K. S. Cho, S. G. Trevino, T. Matsuda, and D. F. Chen, 2008, alpha-Aminoadipate induces progenitor cell properties of Muller glia in adult mice: Invest Ophthalmol Vis Sci, v. 49, p. 1142-50.
    57. Thummel, R., S. C. Kassen, J. M. Enright, C. M. Nelson, J. E. Montgomery, and D. R. Hyde, 2008a, Characterization of Muller glia and neuronal progenitors during adult zebrafish retinal regeneration: Exp Eye Res, v. 87, p. 433-44.
    58. Thummel, R., S. C. Kassen, J. E. Montgomery, J. M. Enright, and D. R. Hyde, 2008b, Inhibition of Muller glial cell division blocks regeneration of the light-damaged zebrafish retina: Dev Neurobiol, v. 68, p. 392-408.
    59. Tomita, M., E. Lavik, H. Klassen, T. Zahir, R. Langer, and M. J. Young, 2005, Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells: Stem Cells, v. 23, p. 1579-88.
    60. Tropepe, V., B. L. Coles, B. J. Chiasson, D. J. Horsford, A. J. Elia, R. R. McInnes, and D. van der Kooy, 2000, Retinal stem cells in the adult mammalian eye: Science, v. 287, p. 2032-6.
    61. Wan, J., H. Zheng, Z. L. Chen, H. L. Xiao, Z. J. Shen, and G. M. Zhou, 2008, Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat: Vision Res, v. 48, p. 223-34.
    62. Wan, J., H. Zheng, H. L. Xiao, Z. J. She, and G. M. Zhou, 2007, Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina: Biochem Biophys Res Commun, v. 363, p. 347-54.
    63. Wang, S., S. Girman, B. Lu, N. Bischoff, T. Holmes, R. Shearer, L. S. Wright, C. N. Svendsen, D. M. Gamm, and R. D. Lund, 2008, Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration: Invest Ophthalmol Vis Sci, v. 49, p. 3201-6.
    64. Weber, A. J., and C. D. Harman, 2008, BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury: Invest Ophthalmol Vis Sci, v. 49, p. 2456-63.
    65. West, E. L., R. A. Pearson, M. Tschernutter, J. C. Sowden, R. E. Maclaren, and R. R. Ali, 2008, Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors: Exp Eye Res, v. 86, p. 601-11.
    66. Xuan, A. G., D. H. Long, H. G. Gu, D. D. Yang, L. P. Hong, and S. L. Leng, 2008, BDNF improves the effects of neural stem cells on the rat model of Alzheimer's disease with unilateral lesion of fimbria-fornix: Neurosci Lett, v. 440, p. 331-5.
    67. Zhang, Y., K. Arner, B. Ehinger, and M. T. Perez, 2003, Limitation of anatomical integration between subretinal transplants and the host retina: Invest Ophthalmol Vis Sci, v. 44, p. 324-31.
    1. Kristjan RJ. Glial cells. Cell Biology 2004; 36 (10): 1861–1867.
    2. Roy B, Mark DN, and Patrick AT. Directed nerve outgrowth is enhanced by engineered glial substrates. Exp. Neuro. 2003; 184(1): 141-152.
    3. Harada C, Harada T, Quah HMA, et al. Potential role of Glial cell line-derived neurotrophic factor receptors in Muller glial cells during light-induced retinal degeneration. Neuroscience , 2003; 122(1): 229-235.
    4. Andy JF, Ghezal O, Jim E, et al. Different aspects of gliosis in retinal Muller glia can be induced by CNTF, insulin, and FGF2 in the absence of damage. Molecular Vision, 2004; 10:973-986.
    5. Cao LH, Yu YC, Zhao JW, et al. Expression of natriuretic peptides in rat Muller cells. Neuroscience Letters, 2004; 365(3): 176-179.
    6. Regina CCK, Maria CCC, Ricardo AMR, et al. Expression of functional receptors and transmitter enzymes in cultured Muller cells. Brain Research, 2005; 1038(2): 141-149.
    7. Peter H, Malgorzata O, Alexandra S, et al. Persistent and injury-induced neurogenesis in the vertebrate retina. Progress in Retinal and Eye Research, 2004; 23 (2): 183-194.
    8. Andy JF and Thomas AR. Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nature Neuroscience, 2001; 4(3): 247-252.
    9. Patrick Y, David AC. Responses of Muller glia to retinal injury in adult zebrafish. Vision Research, 2005; 45(8): 991-1002.
    10. Andy JF and Thomas AR. Potential of Muller glia to become Neurogenic Retinal Progenitor Cells. Glia, 2003; 43: 70-76.
    11. Andy JF, Mike S, Ghezal O and Thomas AR. BMP4 and CNTF are neuroprotectivce and suppress damage-induced proliferation of Muller glia in the retina. Mol. Cell Neurosci, 2004; 27(4): 531-542.
    12. Andy JF. Neural regeneration in the chick retina. Progress in Retinal and Eye Research, 2005; 24 (2): 161-182.
    13. Goldman, S. Glia as neural progenitor cells. Trends in Neuroscience, 2003; 26: 590–596.
    14. Garcia M, and Vecino, E. Role of Muller glia in neuroprotection and regeneration in theretina. Histology and Histopathology, 2003; 18: 1205–1218.
    15. Morest D, Silver K. Precursors of neurons, neuroglia, and ependymal cells in the CNS: What are they? Where are they from? How do they get where they are going? Glia, 2003; 43: 6–18.
    16. Cao Wang, Li F, Steinberg RH, Lavail MM. Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res. 2001; 72: 591–604.
    17. Anezary L, Medina JI, Sanchez-Nogueiro J, et al. Shape diversity among chick retina Muller cells and their postnatal differentiation. J Comp Neurol. 2001; 438:32–49.
    18. Harada T, Harada C. Function of glial cell network as a modulator of neural cell death during retinal degeneration. Nippon Ganka Gakkai Zasshi. 2004; 108(11): 674-81.
    19. Kageyama R, Ohtsuka T, Hatakeyama J, et al. Rolles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005; 306(2): 343-348.
    20. Andy JF, Ghezal O. Transitin , a nestin-related intermediate filament, is expressed by neural progenitors and can be induced in Muller glia in the chicken retina. J Comp Neurol. 2005; 484(1): 1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700