用户名: 密码: 验证码:
无线传感器网络能量高效组建关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络通常是指由密布在感知区域内的大量传感器节点组成的网络。无线传感器网络的组建可不依赖于任何网络基础设施,它是一种无中心、分布式、多跳传输、自组织的无线通信网络。由于其具有可快速部署、抗毁性强、监测精度高、覆盖区域大等特点,无线传感器网络技术已经成为当前信息领域的研究热点之一。传感器节点多采用电池进行供电,能量十分有限,因此如何高效利用传感器节点的有限能量,尽可能的延长无线传感器网络的寿命成为无线传感器网络技术的基本研究目标。针对这一研究目标,本文对能量高效的无线传感器网络组网技术中的几个关键技术,包括地址分配技术、密度控制技术、拓扑控制技术和接入技术进行了研究,通过在其中使用节能技术,提高了无线传感器网络的能量效率,延长了网络寿命。
     传感器节点的地址自动分配是实现无线传感器网络组建的前提和基础。地址分配协议的效率对传感器节点的能量消耗也有着一定的影响。为了方便传感器网络与Internet的互联,考虑到IPv6可以提供大量网络地址,更符合无线传感器网络要求地址数量较多的这个特点,本文为无线传感器网络提出了一种基于多代理的IPv6地址自动配置协议SNMAAP。通过在网络中使用地址代理节点,不仅可以使节点在很短的时间内获得可用地址,也大大降低了地址出现冲突的概率和网络开销。实验结果表明在相同条件下SNMAAP协议不仅保证了IPv6地址的唯一分配,协议的开销、延迟和重复检测开销也均较小。
     在无线传感器网络中通常密布着大量传感器节点。如果让所有的传感器节点都工作,不仅会出现大量冗余信息,也会对网络吞吐率、带宽、时延、能量等造成很大影响,因此需要使用密度控制技术,在保证网络覆盖与网络连通的前提下减少工作节点的数量。本文为无线传感器网络提出一种密度控制算法SNDC,通过使用此算法只要令尽量少的传感器节点处于活跃工作状态中,就可获得对一个感知区域的连通的完全覆盖。不活跃的传感器可以关闭它们的感知模块来节约能量。与其它算法不同,本算法不依赖于传感器节点的精确位置信息或者距离信息。它只要求每个活跃的传感器节点周期性的发送三个不同传输距离的信标帧,传感器节点可以由此决定是否保持活跃状态或者不活跃状态。此算法也是具有容错性的,当任何活跃的传感器节点因为能量耗尽或者出现故障而失效时,一个或多个不活跃的传感器节点可以转化为活跃节点来接管工作。在假设RC≥2RS的前提下,本文的算法可获得接近最优的连通覆盖,其中RC为传感器节点的通信半径,RS为传感器节点的感知半径。
     拓扑控制技术对无线传感器网络性能也有着直接的影响。本文在本地最小生成树LMST算法的基础上,提出一种能量均衡的拓扑控制算法EBTCA。该算法在构建局部最小生成树时不仅考虑了节点间的通信能耗,也考虑了节点剩余能量,从而既能使局部总能耗接近最小化,又获得了节点能量平衡的效果,解决了网络中“瓶颈”节点因负载过大较快死亡的问题,延长了节点的工作时间,进而延长了网络的生命期。实验结果表明EBTCA算法在保证了较低的端到端时延、较高的吞吐量与投递率等前提下,提高了网络内生存节点的数量,有效地延长了网络寿命。
     当无线传感器网络接入到Internet中时,可以更好的发挥无线传感器网络的作用。传统的无线传感器网络接入策略没有对多sink网络环境中的sink节点进行负载平衡处理,也没有考虑sink节点一跳范围内传感器节点的负载平衡问题,这样不仅会使接入延迟较大,也会大量消耗节点能量,缩短网络接入时间。本文提出了一种在多sink环境下的无线传感器网络接入策略ELSIC,将sink节点一跳范围内的传感器节点设置为代理节点,综合考虑能量、延迟、距离等因素,通过负载平衡策略,将无线传感器网络的接入负载分摊给每个代理节点和sink节点,这样既可减少接入延迟,又延长了网络接入时间。仿真实验结果表明在相同的条件下ELSIC策略不仅实现了传感器网络与Internet的数据接入,其接入延迟更小,节点工作时间更长,网络接入时间更久,吞吐量也较高。
     为了考察在组建无线传感器网络过程中综合使用本文研究内容时的网络性能和节能效果,本文对传感器网络的体系结构进行了分析与设计,并将此网络于OPNET Modeler仿真平台上进行了仿真测试。为了考察传感器网络在不同节点数量、密度和不同网络负载情况下的性能,本文又设计了四种网络场景。在仿真时主要对生存节点数量、网络总能量、平均节点能量、投递率、端到端时延、吞吐量进行了考察。仿真结果显示,本文研究的协议和算法不仅可以保证较好的投递率、端到端时延和吞吐量,也可以大大提高网络中生存节点的数量和能量效率,网络寿命得到了延长。
A wireless sensor network is a wireless network consisted of a great deal of sensor nodes which are deployed densely in the sensing region. The establishment of wireless sensor network does not depend on any network infrastructure. It is a non-central, distributed, multi-hop transmission, self-organizing wireless communication networks. Owing to its features, such as rapid deployment, survivability, high accuracy surveillance and large coverage, wireless sensor network technology has become a research hotspot of IT field. Sensor node is battery-powered, and its energy is very limited. Consequently, how to efficiently use the limited energy of sensor nodes and extend wireless sensor network lifetime as long as possible has become its basic research goal. Aim at this goal, this article studies some key technologies which are used to build sensor networks, including address allocation strategy, density control technology, topology control technology and access technology. By putting energy-saving technology in these technologies, the wireless sensor network improves energy efficiency and extends its lifetime.
     The auto assignment of IP address is the premise and foundation to form wireless sensor networks. It also has an effect on energy consumption of sensor nodes. In order to communicate with the Internet easily, in this paper, we present SNMAAP (Sensor Networks Multi-agents Address Assignment Protocol), an IPv6 address assignment protocol based on multi-agents for sensor networks, utilizing the IPv6 to meet the wireless sensor network requirement of considerable network addresses. By using agent nodes in the network, not only each node can get an IP address in a short period of time, but also the probability of the address collision and overhead is low. The simulation results demonstrate that under the same condition, SNMAAP guarantees a unique IP address assignment and has lower latency, communication and duplicate address detection overhead.
     There are often a large number of sensor nodes in wireless sensor network. If all sensor nodes worked together, not only there would be a lot of redundant information, but also they would have great adverse impact on network throughput, bandwidth, latency, and energy. So we use density control technology to reduce the number of active sensor nodes under the precondition of ensuring network coverage and network connectivity. We propose SNDC (Sensor Network Density Control), a density control algorithm for wireless sensor network to keep as few as possible sensors in active state to achieve a complete connected coverage of a specific monitored area. Inactive sensors can turn off sensing modules to save energy. Unlike other algorithms, the proposed one does not rely on position information or ranging information of sensors. It just requires each active sensor to periodically send three beacons of different transmission ranges. Sensors can decide to stay active or inactive state according to received beacons. The proposed algorithm is fault-tolerant in the sense that one or more inactive sensors can switch to the active state to take over the surveillance responsibility when any active sensor runs out of energy or fails. Under the assumption of RC≥2RS, the algorithm can approximate the optimal connected coverage, where RC and RC are the radio communication radius and the sensing radius of sensors, respectively.
     Topology control technology of wireless sensor network has a direct impact on network performance. This article proposes EBTCA (Energy Balance Topology Control Algorithm) based on LMST algorithm. The algorithm takes not only the communication but also the remaining node energy into account. It will be able to minimize total energy consumption, achieve energy balance, and solve the problem that bottlenecks nodes die rapidly because of high load. It can also extend the working time of the sensor nodes, and then extend the network lifetime. The simulation results show that EBTCA effectively extends the lifetime of the network under the premise of guaranteeing low end-to-end latency, high throughput and delivery rate.
     The internet connectivity is required in order that the wireless sensor network can be applied effectively. Traditional wireless sensor network connectivity strategy doesn't take the load balance of sinks and sensor nodes within the one hop range of sinks into account. It will lead to the increase of connection latency, the consumption of node energy and the decrease of connection time. In this paper, we present ELSIC (Energy-aware Load-balanced Strategy for Internet Connectivity of wireless sensor network). We make the sensor node that in the one hop range of sink the agent node. By using the load balance strategy which takes energy, latency, distance and other factors into account, we distribute the connection load to every sink and agent node. This will decrease the latency, prolong the connection time. The simulation results demonstrate that under the same condition, ELSIC guarantees the internet connectivity and has lower latency, longer node life and connection time, and the higher throughput.
     In order to evaluate the network performance and energy performance when building wireless sensor network with the algorithm proposed by this paper, we analysis and design architecture of wireless sensor network and simulate search strategy on the OPNET Modeler. We design four scenes for studying sensor network performance in different node density and network load. The number of alive nodes, network energy, avergy node energy, delivery ratio, end-to-end latency, and throughput are considered and compared in the simulation. The simulation results demonstrate that proposed algorithms not only can ensure good delivery rate, end-to-end latency and throughput, but also can greatly increase the number of alive nodes in the network, improved energy efficiency and prolong the lifetime of network.
引文
1任丰原,黄海宁,林闯.无线传感器网络.软件学报, 2003, 14(7): 1282~1291
    2 Yee Him Cheung, Maxemchuk, N.F. Telescopic Data Compression in Dense Sensor Networks that Support Fire-Fighters. Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE 26-30 Nov. 2007: 914~919
    3 ZHANG J G, LI W B, HAN N, KAN J M. Forest fire detection system based on Zigbee wireless sensor network. Journal of Beijing Forestry University. 2007, 29(4): 41~45
    4 Hefeeda, M. Bagheri, M. Wireless Sensor Networks for Early Detection of Forest Fires. Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on 8-11 Oct. 2007:1~6
    5崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展.计算机研究与发展, 2005, 42(1): 163~174
    6陈丹,郑增威,李际军.无线传感器网络研究综述.计算机测量与控制. 2004, 12(8): 701~704
    7 Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. IEEE Communications Magazine, 2002, (8): 102~114.
    8 J. Kulik, W. Heinzelman, H. Balakrishnan. Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless Networks, March 2002, (8): 169~185
    9 Jeong-Hee Kim, Do-Hyeon Kim, Ho-Young Kwak, Yung-Cheol Byun. Address Internetworking between WSNs and Internet supporting Web Services. Multimedia and Ubiquitous Engineering, 2007. MUE '07. International Conference on. 26-28 April 2007: 232~240
    10 Fang Weiwei, Liu Yi, Wu Jin, Qian Depei, An On-demand Address Allocation Scheme for Query based Sensor Networks. Autonomous Decentralized Systems, 2007. ISADS '07. Eighth International Symposium on. 21-23 March 2007: 173~179
    11 Zhigao Du, Depei Qian, Stanczak S, Heras R, Yi Liu. Auto-configuration of Shared Network-layer Address in Cluster-based Wireless Sensor Network.Networking, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on. 6-8 April 2008: 148~153
    12 Uddin M.Y.S, Akbar M.M. Addressing Techniques in Wireless Sensor Networks: A Short Survey. Electrical and Computer Engineering, 2006. ICECE '06. International Conference on. 19-21 Dec. 2006: 581~584
    13 Miaoqi Fang, Jian Wan, Xianghua Xu. A Preemptive Distributed Address Assignment Mechanism for Wireless Sensor Networks. Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference on. 12-14 Oct. 2008: 1~5
    14 Lu JiaLiang, Valois Fabrice, Barthel Dominique, Dohler Mischa. Low-Energy Address Allocation Scheme for Wireless Sensor Networks. Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on. 3-7 Sept. 2007: 1~5
    15 Droms R. Dynamic Host Configuration Protocol. Network Working Group, IETF, RFC 2131, (Mar 1997)[Mar 2008]. http://www.ietf.org/rfc/rfc2131.txt
    16 Thomson S. IPv6 Stateless Address Autoconfiguration. Network Working Group, IETF, RFC 2462, (December 1998)[Mar 2008]. http://www.ietf.org/rfc/rfc2462.txt
    17 Weniger K, Zitterbart M. IPv6 Autoconfiguration in Large Scale Mobile Ad Hoc Networks. Proceedings of European Wireless 2002, Florence, Italy, February 2002, volume 1: 142~148
    18 Perkins C E, Malinen J T, Wakikawa R, Belding-Royer E M, Sun Yuan. IP Address Autoconfiguration for Ad Hoc Networks. Mobile Ad Hoc Networking Working Group, INTERNET DRAFT, (14 November 2001)[Mar 2008]. http://tools.ietf.org/html/draft-perkins-manet-autoconf-01.txt
    19 ZHAO Yun-long, YANG Xiao-zong, YANG Nan, GAO Zhen-guo. IPv6 Address Assignment in MANETs. Journal of Astronautics, 2005, 26(1): 52~59
    20 Nesargi S, Prakash R. MANETconf: configuration of hosts in a mobile ad hoc network. Proceedings of Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), IEEE, 23-27 June 2002, Volume 2: 1059~1068.
    21 Mansi R T, Ravi P. A Distributed Protocol for Dynamic Address Assignment in Mobile Ad Hoc Networks. IEEE TRANSACTIONS ON MOBILE COMPUTING, JANUARY 2006, 5(1): 4~19.
    22 McAuley A J, Manousakis K. Self-Configuring Networks. Proceedings of 21st Century Military Communications Conference (MILCOM 2000), 22-25 Oct 2000, Volume 1: 315~319.
    23 Misra A, Das S, McAuley A, Das S K. Autoconfiguration, Registration, and Mobility Management for Pervasive Computing. Personal Communications, IEEE, 2001, 8(4): 24~31.
    24 Patchipulusu P. Dynamic Address Allocation Protocols for Mobile Ad Hoc Networks. Texas A&M University, Aug 2001.
    25 Jobin J, Krishnamurthy S V, Tripathi S K. A Scheme for the Assignment of Unique Addresses to Support Self-Organization in Wireless Sensor Networks. Vehicular Technology Conference 2004, 26-29 Sept 2004, Volume 6: 4578~4582.
    26罗什. IPv6详解.沙斐,程莉.机械工业出版社,2000:1~155
    27伍海桑,陈茂科,陈名华,胡欣蔚,严程. IPv6原理与实践.人民邮电出版社. 2000: 12~66
    28 Hyojeong Shin, Talipov, E, Hojung Cha. IPv6 lightweight stateless address autoconfiguration for 6LoWPAN using color coordinators. Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on. 9-13 March 2009:1~9
    29 T. Narten, E. Nordmark, W. Simpson. Neighbor Discovery for IP Version 6 (IPv6). RFC2461. 1998
    30 Vaidya M H. Weak duplicate address detection in mobile ad hoc networks. Proceedings of ACM MobiHoc 2002, Lausanne, Switzerland, June 2002: 206~216.
    31 Weniger k. Passive Duplicate Address Detection in Mobile Ad Hoc Networks. Proceedings of IEEE WCNC 2003, New Orleans, USA, Mar 2003: 1504~1509.
    32 Bahi J M, Makhoul A, Mostefaoui A. Localization and coverage for high density sensor networks. Computer Communications. 2008, 31(4): 770~781
    33 Mu-Huan Chiang, Byrd, G.T. Neighborhood-Aware Density Control inWireless Sensor Networks. Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC '08. IEEE International Conference on. 11-13 June 2008: 122~129
    34 Ruay-Shiung Chang; Shuo-Hung Wang; Self-Deployment by Density Control in Sensor Networks. Vehicular Technology, IEEE Transactions on. Volume 57, Issue 3, May 2008: 1745~1755
    35 Melo J.C, Ruiz L.B. Data-Centric Density Control for Wireless Sensor Networks. Wireless and Mobile Communications, 2008. ICWMC '08. The Fourth International Conference on. July 27 2008-Aug. 1 2008: 19~24
    36 Jenjaturong S, Intanagonwiwat C. A Set Cover-Based Density Control Algorithm for Sensing Coverage Problems in Wireless Sensor Networks. Cognitive Radio Oriented Wireless Networks and Communications, 2008. CrownCom 2008. 3rd International Conference on. 15-17 May 2008: 1~6
    37 Jehn-Ruey Jiang, Tzu-Ming Sung. Maintaining Connected Coverage for Wireless Sensor Networks. Distributed Computing Systems Workshops, 2008. ICDCS '08. 28th International Conference on. 17-20 June 2008: 297~302
    38 Rajagopal Iyengar, Koushik Kar, Suman Banerjee. Low-coordination Topologies For Redundancy In Sensor Networks. Proc. of ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2005: 332~342
    39 Xiaole Bai, Santosh Kumar, Ziqiu Yun, Dong Xuan, Ten H. Lai. Deploying Wireless Sensors to Achieve Both Coverage and Connectivity. in Proc. of the Seventh International Symposium on Mobile Ad Hoc Networking and Computing, 2006: 131~142
    40 H Zhang, J. C. Hou. Maintaining Sensing Coverage and Connectivity in Large Sensor Networks. Journal on Wireless Ad Hoc and Sensor Networks, Jan 2005 (1): 89~123
    41 R Kershner. The Number of Circles Covering A Set. American Journal of Mathematics, 1939: 665~671
    42 Himanshu Gupta, Samir R. Das, Quinyi Gu. Connect Sensor Cover: Self-Organization of Sensor Networks for Efficient Query Execution. Proc. of ACM International Symposium on Mobile Ad Hoc Networking andComputing, 2003: 189~200
    43 Zongheng Zhou, Samir Das, Himanshu Gupta. Connected K-Coverage Problem in Sensor Networks. Computer Communications and Networks, 2004. ICCCN 2004. Proceedings. 13th International Conference on. 11-13 Oct. 2004: 373~378
    44 Yang-Min Cheng, Li-Hsing Yen. Range-based density control for wireless sensor networks. Proc. 4th Annual Communication Networks and Services Research Conference (CNSR 2006), 2006: 170~177
    45 W. T. Wang, K. F. Ssu, H. C. Jiau. Density Control without Location Information in Wireless Sensor Networks. Proceedings of the International Conference on Wireless and Mobile Communications, 29-31 July 2006: 1~1
    46 Rong-Hou Wu, Yang-Han Lee, Hsien-Wei Tseng, Yih-Guang Jan, Ming-Hsueh Chuang. Study of Characteristics of RSSI Signal,. in Proc. of IEEE International Conference on Industrial Technology (ICIT 2008), 21-24 April 2008: 1~3
    47 C.-F. Hsin, M. Liu. Network coverage using low duty-cycled sensors: Random and coordinated sleep algorithms. In Int’l Symp. on Information Processing in Sensor Networks, 2004: 433~442
    48 Fan Ye, G. Zhong, J. Cheng, Songwu Lu, Lixia Zhang. PEAS: A Robust Energy Conserving Protocol for Long-lived Sensor Networks. Proc. of International Conference on Distributed Computing Systems, May 2003: 28~37
    49 L.-H. Yen, C. W. Yu, Y.-M. Cheng. Expected k-coverage in wireless sensor networks. Ad Hoc Networks, 2006, 5(4): 636~650
    50 Jardosh S, Ranjan P. A Survey: Topology Control For Wireless Sensor Networks. Signal Processing, Communications and Networking, 2008. ICSCN '08. International Conference on. 4-6 Jan. 2008: 422~427
    51 Xiaofang Li, Yingchi Mao, Yi Liang. A survey on topology control in wireless sensor networks. Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on. 17-20 Dec. 2008: 251~255
    52 Jianbo Li, Liusheng Huang, Mingjun Xiao. Energy Efficient Topology Control Algorithms for Variant Rate Mobile Sensor Networks. Mobile Ad-hoc and Sensor Networks, 2008. MSN 2008. The 4th International Conference on. 10-12 Dec. 2008: 23~30
    53 Guoliang Xing, Chenyang Lu, Pless R. Localized and Configurable Topology Control in Lossy Wireless Sensor Networks. Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on. 13-16 Aug. 2007: 75~80
    54 Seungki Hong Yeon-Jun Choi, Sun-Joong Kim. An Energy Efficient Topology Control Protocol in Wireless Sensor Networks. Advanced Communication Technology, The 9th International Conference on. 12-14 Feb. 2007, (1): 537~541
    55 Zhonglou Meng, Shu Wang, Qi Wang. Fault Tolerant Topology Control for Clustered Wireless Sensor Networks. Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference on. 12-14 Oct. 2008: 1~5
    56 Ramanathan R, Rosales-Hain R. Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment. Proc. IEEE INFOCOM. 2000: 404~413
    57 Zhuochuan Huang, Chien-Chung Shen, Srisathapornphat, Jaikaeo C. Topology Control for Ad Hoc Networks with Directional Antennas. In Computer Communications and Networks. 2002: 16~21
    58 Jerzy W. Jaromczyk, Godfried T. Toussaint. The Relative Neighbourhood Graphs and Their Relatives. Proceedings of the IEEE. Sept. 1992, 80(9): 1502~1517
    59 Chi-Fu Huang, Yu-Chee Tseng, Shih-Lin Wu, Jang-Ping Sheu. Distributed Topology Control Algorithm for Multihop Wireless Networks. Proceedings of the 2002 International Joint Conference on. 2002, (1): 355~360
    60 Kenneth J. Supowit. The Relative Neighbourhood Graph with Application to Minimum Spannig Trees. Journal of the ACM. 1983, 30(3): 428~448
    61 Hu L. Topology control for multihop packet radio networks. in Communications, IEEE Transactions on , 1993 41(10): 1474~1481
    62 Gupta P. Kumar P.R. The capacity of wireless networks. IEEE Transactions on Information Theory, 2000, 46(2): 388~404
    63邵晓凌. Ad hoc与Internet互联的网关发现机制研究.通信技术, 2007,40(12): 357~360
    64 Christer Ahlund, Arkady Zaslavsky. Integration of Ad hoc Network and IP Network Capabilities for Mobile Hosts. IEEE. 2003: 482~489
    65 Liang Cheng, Yuecheng Zhang, Tian Lin. Integration of Wireless Sensor Networks. Wireless Local Area Networks and the Internet. Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control Taipei, Taiwan. 2004: 462~467
    66陶洋,唐尧. Ad Hoc与Internet互连的动态网关方案.通信技术, 2008, 41(5): 82~84
    67 R. Wikikawa, J. T. Malinen, C. E. Perkins. Global Connectivity for IPv6 Mobile Ad Hoc Networks. Internet Draft, Internet Engineering Task Force. October, 2003. http://www.cs.ucsb.edu/~ebelding/txt/globalv6.txt
    68 Ding S. Mobile IP handoffs among multiple internet gateways in mobile ad hoc networks. Communications, IET. May 2009, 3(5): 752~763
    69 Sinha A, Chandrakas A. A Dynamic Power Management in Wireless Sensor Networks. IEEE Design & Test of Computers. 2001, 18(2): 62~74
    70 Bin Xie, Anup Kumar. Integrated Connectivity Framework for Internet and Ad hoc Networks. 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems. 2004: 540~542
    71 Ulf Jonsson, Fredrik Alriksson, Tony Larsson. MIPMANET– Mobile IP for Mobile Ad Hoc Networks. International Symposium on Mobile Ad Hoc Networking & Computing archive. Proceedings of the 1st ACM international symposium on Mobile ad hoc networking & computing. 2000: 75~85
    72 Perkins C.E. Mobile networking through Mobile IP. Internet Computing, IEEE. Jan.-Feb. 1998, 2(1): 58~69
    73 Yue Chengqing, Wang Yinglong, Wang Jizhi. A IPv6 Network Performance Test System using Multi-Agent. Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International Conference on. Aug. 16 2007-July 18 2007: 2-113~2-118
    74史蒂文斯. TCP/IP详解.卷1:协议.范建华,胥光辉.机械工业出版社, 2000: 1~423
    75 Hinden R, Deering S. IP Version 6 Addressing Architecture. NetworkWorking Group, IETF, RFC 2373, (July 1998)[Mar 2008]. http://www.ietf.org/rfc/rfc2373.txt
    76 LAN MAN Standards Committee of the IEEE Computer Society, IEEE Std 802.11-1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. IEEE 1999
    77 Camp T, Boleng J, Davies V. A survey of mobility models for ad hoc network research. Wireless Communication & Mobile Computing: Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, 2002, 2(5): 483~502
    78 A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler. Wireless sensor networks for habitat monitoring. Proc. of First ACM International Workshop on Wireless Workshop in Wireless Sensor Networks and Applications (WSNA 2002), August 2002: 88~97
    79 Mohamed K. Watfa, Sesh Commuri. Optimal 3-Dimensional Sensor deployment Strategy. in Proc. of Consumer Communications and Networking Conference, 2006(2): 892~896
    80 Xiaoyan Hong, M. Gerla, R. Bagrodia, P. Estabrook,T.J. Kwon, G. Pei. The Mars Sensor Network: Efficient, Power Aware Communications. in Proceedings of IEEE MILCOM 2001 , McLean, VA, Oct. 2001: 418~422
    81 C. E. Jones, K. M. Sivalingam, P. Agrawal, J. C. Chen,“A survey of energy efficient network protocols for wireless networks,”Wireless Network., Aug. 2001, 7(4): 343~358
    82 D. A. Maltz, J. Broch, J. Jetcheva, D. Johnson. The effects of on-demand behavior in routing protocols for multihop wireless ad hoc networks. IEEE J. Sel. Areas Commun., Aug. 1999, 17(8): 1439~1453
    83 P. Gupta, P. R. Kumar. The capacity of wireless networks. IEEE Trans. Inform. Theory, Mar. 2000, 46(2): 388~404
    84 S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, P. R. Kumar. Power control in ad hoc networks: theory, architecture, algorithm and implementation of the COMPOW protocol. in Proc. Eur. Wireless 2002, Next Generation Wireless Networks: Technologies, Protocols, Services and Applications, Florence, Italy, Feb. 2002: 156~162.
    85 P. Santi, D. M. Blough, F. Vainstein. A probabilistic analysis for the rangeassignment problem in ad hoc networks. in Proc. ACM Symp. Mobile Ad Hoc Networking and Computing (MOBIHOC), Long Beach, CA, Aug. 2000: 212~220.
    86 Jerzy W. Jaromczyk, Godfried T. Toussaint. The relative neighbourhood graphs and their relatives. In: Proceedings of the IEEE. 1992, 80(9): 1502~1517
    87 Esther Jennings, Clayton Okino. Topology control for efficient information dissemination in ad-hoc networks. In International Symposium on Performance Evaluation of Computer and Telecommunication Systems SPECTS 2002, 2002: 1~7
    88 Ning Li, Jennifer C. Hou, Lui Sha. Design and analysis of an MST-based topology control algorithm. In: Proc. of Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (INFORCOM 2003). Sanfrancisco, CA: IEEE Press, 2003: 1702~1712
    89 J. Liu, B.Li. Mobile Grid: Capacity-aware topology control in mobile ad hoc networks. In: Proceedings of the 11th International Conference on Computer Communications and Networks. 2002: 570~574
    90 Chi-Fu Huang, Yu-Chee Tseng, Shih-Lin Wu, Jang-Ping Sheu. Distributed topology control algorithm for multihop wireless networks. In: Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International Joint Conference. 2002, 1(1): 355~360
    91 V. Rodoplu, T. H. Meng. Minimum energy mobile wireless networks. IEEE J. Sel. Areas Commun., Aug. 1999, 17(8): 1333~1344
    92 L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, R. Wattenhofer. Analysis of a cone-based distributed topology control algorithm for wireless multihop networks,”in Proc. ACMSymp. Principles of Distributed Computing (PODC), Newport, RI, Aug. 2001: 264~273.
    93 Nicos Christofides. Graph Theory: An Algorithmic Approach. Academic press. 1975
    94 T. He, C. Huang, B. M. Blum, J. A. Stankovic, T. Abdelzaher. Range-free localization schemes for large scale sensor networks,”in Proc. ACMInt. Conf. Mobile Computing and Networking (MOBICOM), San Diego, CA, Sep. 2003: 81~95.
    95 C. Kee, H. Jun, D. Yun, B. Kim, Y. Kim, B. W. Parkinson, T. Langenstein, S. Pullen, J. Lee. Development of indoor navigation system using asynchronous pseudolites,”in Proc. 13th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS), Salt Lake City, UT, Sep. 2000: 1038~1045.
    96 Chang J, Tassiulas L. Energy Conserving Routing in Wireless Ad hoc Networks. Proc of IEEE INFOCOM 2000, 2000, 1: 22~31
    97 C. Monma, S. Suri. Transitions in geometric minimum spanning trees. in Proc. ACM Symp. Computational Geometry, North Conway, NH, 1991: 239~249
    98 I. Chlamtac, A. Farago. Making transmission schedules immune to topology changes in multihop packet radio networks. IEEE/ACMTrans. Netw., Feb. 1994, 2(1): 23~29
    99 J. H. Ju, V. O. K. Li. An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Trans. Networking, June 1998, 6(3): 298~306
    100 A. Striegel, R. Ramanujan, J. Bonney. A Protocol Independent Internet Gateway for Ad-Hoc Wireless Networks. In Proceedings of Conference on Local Computer Networks, 2001: 92~101
    101 ZHAO Yun-long, MEN Chao-guang, YANG Xiao-zong. A symmetrical multi-gateways based internet connectivity for MANET6. Journal of Harbin Institute of Technology, 2005, 12(2): 173~178
    102 Pandana C., Liu K.J.R. Robust connectivity-aware energy-efficient routing for wireless sensor networks. Wireless Communications, IEEE Transactions on, October 2008, 7(10): 3904~3916
    103 Kwang-il Hwang, Jeongsik In, NhoKyung Park, Doo-seop Eom. A Design and Implementation of Wireless Sensor Gateway for Efficient Querying and Managing Through World Wide Web. IEEE Transactions on Consumer Electronics. 2003, 49(4): 1090~1097
    104 Euisin Lee, Younghwan Choi, Soochang Park, Donghun Lee, Sang-Ha Kim. A Data Delivery Mechanism to Support Mobile Users in Wireless Sensor Networks. The 9th International Conference on Advanced Communication Technology. 2007, 1: 245~250
    105 Jieyin Bai, Chuanzhi Zang, Tianran Wang, Haibin Yu. A Mobile Agents-Based Real-Time Mechanism for Wireless Sensor Network Access on the Internet. 2006 IEEE International Conference on Information Acquisition. 2006: 311~315
    106 Fummi F., Quaglia D., Ricciato F., Turolla F. Modeling and Simulation of Mobile Gateways Interacting with Wireless Sensor Networks. Design, Automation and Test. Europe, 2006, 2: 262~267
    107 K. Akkaya, M. Younis. Relocation of Gateway for Enhanced Timeliness in Wireless Sensor Networks. 2004 IEEE International Conference on Performance, Computing, and Communications. 2004: 471~476
    108 W. Su. An Adaptive and Fault-Tolerant Scheme for Gateway Assignment in Sensor Networks. IEEE Military Communications Conference. MILCOM. 2004, 2: 642~648
    109 Pedro M. Ruiz, Antonio F. Gomez-Skarmeta. Enhanced Internet Connectivity for Hybrid Ad hoc Networks Through Adaptive Gateway Discovery. in proc. of the 29th Annual IEEE Conference on Local Computer Networks (LCN-2004), Tampa, FL, November, 2004: 370~377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700