用户名: 密码: 验证码:
冀西滇西等地中新生代陆生植物与古大气CO_2浓度重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,从陆生高等植物化石中提取古大气CO2浓度信息的方法主要有两种:一种是通过维管植物叶角质层气孔参数,来重建古大气CO2浓度;另一种则是通过测定苔类植物化石的碳同位素组成(δ13C),进而计算其碳同位素判别(△13C)来恢复古大气C02浓度。两种方法对所使用的化石材料都有着较为严格的要求。利用维管植物叶角质层解剖结构来重建古大气CO2浓度一般需要保存良好的实体压型化石,这样才能够通过化学处理获得其角质层特征;而利用陆生苔类植物化石重建古大气CO2浓度,同样需要较难保存为实体的苔藓植物。
     云南腾冲是保存新生代压型植物化石最好的地区之一,河北蔚县侏罗系发现的苔藓植物实体化石种类最多,并伴生有大量中生代裸子植物压型化石,因而是本文的重点工作地区。同时,由于苔类化石较难发现,采集标本过程中在黑龙江七台河早白垩世地层发现了一种大型苔类化石Marchantiolites blairmorensis,在此一并进行了研究。
     本文全面综述了利用苔类植物化石碳同位素判别重建古大气CO2浓度的原理、方法及其对应模型BROCARB的建立,很好地利用了苔藓植物碳同位素作为重建古大气CO2浓度新指标。对采集自河北蔚县中侏罗统的三种苔类化石进行了分类鉴定后,测定了它们的碳同位素组成,进而计算其碳同位素判别。基于冀西三种苔类植物化石(Riccardiopsis hsui, Metzgerites yuxianensi, Hepaticites sp.)的碳同位素判别,结合其他相关环境参数,利用BRYOCARB模型恢复了中侏罗世的古大气CO2浓度:对应BRYOCARBP模型和BRYOCARBNP模型的古大气CO2浓度平均值分别为566μmol/mol和705μmol/mol。
     为了进行交叉验证,利用采自冀西中侏罗世与苔类化石同一层位的一种银杏类植物Baiera cf. concinna (裸子植物)的气孔参数作为另一个独立指标,亦重建了当时的古大气C02浓度。分别对化石Baiera cf. concinna和2010年采集自兰州的现生银杏Ginkgo biloba进行了角质层分析,获得了良好表皮特征。利用气孔比率法在对应于“最近的校正标准”和“石炭纪校正标准”下获得的古大气CO2浓度结果平均值分别为811μmol/mol和1622μmol/mol,在未对化石和现生材料进行海拔校正前,此结果与苔类指标相差较大。但是,由于维管植物气孔参数会随海拔高度而变化,需要通过化石植物的古海拔参数和所用NLE种的海拔参数对结果进行校正。因此,本文结合化石点的地质背景,认为中侏罗世蔚县地区古海拔与现今相当,约为500-1000m。再次利用气孔比率法对应于“最近的校正标准”和“石炭纪校正标准”,对化石植物和现生植物进行海拔参数校正后重建的古大气CO2浓度分别为725-766μmol/mol和1454-1535μmol/mol.在“最近的校正标准”下获得的结果与苔藓所获得古大气CO2浓度相一致。
     将两种独立指标的结果互相验证,再结合前人对中侏罗世古大气CO2浓度重建的结果,本文认为冀西蔚县地区植物群生活时期的CO2浓度应该在705-766μmol/mol范围内。但是由于化石缺乏绝对年龄资料,我们无法准确知道这次低CO2浓度事件究竟具体发生在中侏罗世何时。在与Bener的长期碳平衡模型对比后发现,这是在中侏罗世所谓“温室世界”(green house world)中的一次低CO2浓度波动事件,可能代表着一个短暂的低温期。这一结论支持了前人的中侏罗世可能存在多个低CO2浓度波动事件,并也可能出现寒冷期或冰期的观点。
     本文还研究了滇西芒棒组晚上新世至早更新世地层中保存非常精致的桦木属植物Betula yunnanensis(新种)叶片化石。由于被子植物较裸子植物叶片形态复杂得多,种类也更为繁多。为了进行准确的系统分类,并为重建古大气CO2浓度找到准确的现生最近对应种(NLE species),本文运用植物解剖学、植物分类学方法对它们进行了细致的宏观叶结构和微观角质层分析。将化石植物叶片特征与我国(包括一日本特有种)所有桦木属植物,以及国内外已发表的各桦木属植物化石进行了宏观和微观对比,最终将其限定在西桦组植物(Betulaster)内,认为B.yunnanensis为西桦组植物一相先种。进一步详细研究了西桦组总共六种植物叶结构和角质层特征后,发现B.yunnanensis无论在形态上还是生态特征上都与西桦组内的B.alnoides最为近似,因而将B.alnoides选为其现生最近对应种。在统计了大量B.yunnanensis及其NLE种的气孔参数,并利用气孔比率法对现生植物生存点海拔参数校正后,获得化石植物生存时期大气CO2浓度为357μmol/mol,略高于Berner碳平衡模型GEOCARBⅢ的最高CO2浓度值.本文认为这同样可能是一次由于GEOCARB粗略的时间精度忽略了的CO2浓度波动事件。结合前人芒棒组地层测年资料和腾冲地区火山活动期次结果,分析其绝对年龄为2.4-2.7Ma,属于晚上新世至早更新世。由于腾冲地区地处青藏高原东南缘,新生代以来构造运动较为剧烈频繁,当时腾冲地区古海拔暂时无法确定,因此,目前获得的古CO2浓度357μmol/mol尚待更多资料进一步校正。
Nowadays, there are two approaches to extract palaeo-CO2 levels from terrestrial higher plant fossils. The first approach utilizes the stomatal parameters of terrestrial vascular plants as palaeo-CO2 proxy, which is based on the anatomical structure of the fossil leaves. The second approach is based on carbon isotope discrimination (Δ13C) of fossil bryophytes (mainly liverworts), which is derived from carbon isotope composition (813C). Both approaches require a high demand on the fossil materials. To reconstruct the palaeo-CO2 level, well-preserved compressions of the fossils are required so that the cuticular features can be achieved after cuticular analysis with chemical treatments, if based on the stomatal parameters of terrestrial vascular fossil plants. As to the second approach, well-preserved compressions of fossil liverworts are also required to get the carbon isotope composition.
     Tengchong County in Yunnan Province is one of the best fossil sites where compressions of Cenozoic fossil plants are well preserved. Yuxian County in Hebei Province is one of the best fossil sites of Jurassic bryophyte together with lots of compressions of gymnosperm fossil. Therefore, the two areas mentioned above are the key areas where materials in this study were collected to reconstruct palaeo-CO2 levels. Meanwhile, as one of the liverwort fossils, Marchantiolites blairmorensis, from the Lower Cretaceous of Qitaihe City in Heilongjiang Province, is also studied as liverwort fossils are difficult to be found and the fossil records are rare in China.
     In this paper, a comprehensive overview of the usage of carbon isotope discrimination of liverworts fossil to reconstruct the atmospheric palaeo-CO2 concentration and the way of the establishment of the corresponding model BROCARB is presented. This study introduces fossil liverworts as a new good proxy to rebuild palaeo-CO2 levels. After the systematic work of three fossil liverworts of the Middle Jurassic collected from the west Hebei, their carbon isotope composition is measured, and then the carbon isotope discrimination is calculated. On the basis of the carbon isotope discrimination of the three fossil liverworts, Riccardiopsis hsui, Metzgerites yuxianensi, Hepaticites sp., the palaeo-CO2 level of the Middle Jurassic is reconstructed running with the BRYOCARB model, associate with some other palaeoenvironmental parameters. The palaeo-CO2 level of the Middle Jurassic is reconstructed with an association of some other palaeoenvironmental parameters, based on the BRYOCARB model. The palaeo-CO2 level is 566μmol/mol and 705μmol/mol, respectively, based on the theoretical model version of BRYOCARBP and BRYOCARBNP.
     In order to take a cross-check of the palaeo-CO2 level from the fossil liverwort proxy, the other proxy, the stomatal parameter of fossil Baiera cf. concinna from the same strata with the same age of the fossil liverwort was also used to reconstruct the palaeo-CO2 level. Cuticular analyses were carried out on Baiera cf. concinna and it's selected nearest living equivalent (NLE) species, Ginkgo biloba, collected from Lanzhou in 2010. Good cuticular features of both the fossils and extant plants were achieved to measure stomatal parameters for stomatal ratio method to reconstruct palaeo-CO2 level. The mean Middle Jurassic palaeo-CO2 level is 811μmol/mol and 1622μmol/mol respectively for the Recent Standard and the Carboniferous Standard, before adjusted by the elevation parameter of both fossil and extant plants. The preliminary result of the stomatal proxy does not coincide well with that of the liverwort proxy. As the stomatal parameters such as stomatal index and stomatal density are sensitive to the elevation, the preliminary palaeo-CO2 level must be adjusted by the (palaeo-) elevation. The palaeo-elevation of the fossil site in Middle Jurassic was nearly the same as present as 500-1000m after the analysis of the geological background in this area conducted. After control for the elevation and palaeo-elevation, the mean palaeo-CO2 level in the Middle Jurassic is 725-766μmol/mol and 1454-1535μmol/mol under the Recent Standard and the Carboniferous Standard respectively. The result the Recent Standard is in good agreement with that got from the liverworts proxy.
     After cross-checking with the two independent proxies, together with the palaeo-CO2 level in the Middle Jurassic reconstructed by the former scholars, we suggest that the palaeo-CO2 level in the period of the Middle Jurassic when the fossil plants were living is 705-766μmol/mol. After a comparison with Berner's long-term carbon cycle model in which the temporal resolution of his study is from 5 to 10 million years and thus is too long, a conclusion was achieved that during this short period in the so-called 'green house world'of the Middle Jurassic, a low CO2 event happened with a low level of palaeo-CO2,705-766μmol/mol, was ignored by Berner's GEOCARB model. However, as the fossils lack of absolute age, the accurate time of the brief event cannot be determined. Generally, this conclusion supports the former scholars'point of view:there were many Mesozoic climate shifts and may cause cool glacial or non-glacial events.
     In this study, the well-preserved fossil leaves of Betula yunnanensis from the late Pliocene to the early Pleistocene of Mangbang Formation in west Yunnan are also studied. As the leaf morphology and system of angiosperm are more complex than that of gymnosperm, a detailed study on leaf architecture, cuticular analysis and fine venation was carried out to get an accurate systematic result and find the best NLE species for the fossil leaves to reconstruct palaeo-CO2 level. Thirty-four extant Betula species occurring in China and Japan, and four selected extinct species from China and Poland were compared with the fossil leaves in macro-and micro-characters. All the features show that the fossil species is most similar to the species of section Betulaster. We suggest that the Betula yunnanensis is one of the ancestors of the section Betulaster. Cuticular analysis of all the six species found in China and Japan that belong to the section Betulaster (including Betula alnoides, B. rhombibracteata, B. cylindrostachya, B. luminifera, B. maximowicziana, B. fujianensis) was subsequently performed. The result shows that leaves Betula yunnanensis are most similar to B. alnoides, both ecologically and morphologically. Therefore, B. alnoides is selected as the NLE species for stomatal ratio method. After the stomatal parameters of B. yunnanensis and its NLE species were counted and calculated, the mean palaeo-CO2 level was 357μmol/mol after the elevation of the extant leaves was adjusted. This level is slightly higher than the GEOCARB's prediction. Furthermore, it also might be an ignored high-CO2 event in the Cenozoic by Berner's model due to its too wide time span. Associate with the age-dating of the Mangbang Formation and the volcanic activity of Tengchong area, the absolute age is 2.4-2.7 Ma, the late Pliocene to the early Pleistocene, according to the latest geologic time scale. However, since Tengchong area locates in the southeast boarder of Qinghai-Tibet Plateau where the tectonic activities were significant and frequent during the Cenozoic, the palaeo-elevation of the fossil site in 2.4-2.7 Ma is hard to confirm. Therefore, the palaeo-CO2 level in this period needs further calibration.
引文
1. Beerling D J, Chaloner W G, Huntley B, Pearson J A, Tooley M J, Woodward F I. Variations in the Stomatal Density of Salix herbacea L under the Changing Atmospheric CO2 Concentrations of Late-Glacial and Postglacial Time. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1992,336(1277):215-224.
    2. Beerling D J, Chaloner W G. Evolutionary responses of stomatal density to global CO2 change. Biological Journal of The Linnean Society,1993a,48(4):343-353.
    3. Beerling D J, Chaloner W G. Stomatal Density Responses of Egyptian Olea-Europaea L Leaves to CO2 Change since 1327 Bc. Annals of Botany,1993b,71(5):431-435.
    4. Beerling D J, Franks P J. Plant science:The hidden cost of transpiration. Nature,2010,464(7288):495-496.
    5. Beerling D J, Lomax B H, Royer D L, Upchurch G R, Jr., Kump L R. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc Natl Acad Sci U S A,2002, 99(12):7836-7840.
    6. Beerling D J, Osborne C P, Chaloner W G. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature,2001,410(6826):352-354.
    7. Beerling D J, Royer D L. Reading a CO2 signal from fossil stomata.New Phytologist,2002,153(3): 387-397.
    8. Beerling D J, Woodward F 1. Vegetation and the Terrestrial Carbon Cycle:Modelling the First 400 Million Years. Cambridge:Cambridge University Press,2001:135-183.
    9. Beerling D J. Changes in the stomatal density of Betula nana leaves in response to increases in atmospheric carbon dioxide concentration since the Late-Glacial. Special Papers in Palaeontology,1993,49: 181-187.
    10. Beerling D J. Stomatal density and index:theory and application.in:Fossil Plants and Spores:Modern Techniques (Jones T P, Rowe N P)(eds) London:The Geological Society London,1999:251-256.
    11. Bergman N M, Lenton T M, Watson A J. COPSE:A new model of biogeochemical cycling over phanerozoic time. American Journal of Science,2004,304(5):397-437.
    12. Berner R A, Kothavala Z. Geocarb III:A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science,2001,301(2):182-204.
    13. Berner R A. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science,1991, 291(4):339-376.
    14. Berner R A. GEOCARB Ⅱ:a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science,1994,294(1):56-91.
    15. Berner R A. GEOCARBSULF:A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et CosmochimicaActa,2006,70(23 SPEC. ISS.):5653-5664.
    16. Berner R A. The Phanerozoic carbon cycle:CO2 and O2. Oxford:Oxford University Press,2004.
    17. Berry E W. The Kootenay and lower Blairmore floras. Nat. Mus. Canada Bull,1929,58:28-54.
    18. Bettarini I, Vaccari F P, Miglietta F. Elevated CO2 concentrations and stomatal density:Observations from 17 plant species growing in a CO2 spring in central Italy. Global Change Biology,1998,4(1):17-22.
    19. Bonis N R, Van Konijnenburg-Van Cittert J H A, Kurschner W M. Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 295(1-2):146-161.
    20. Breecker D O, Sharp Z D, McFadden L D. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D.2100. Proceedings of the National Academy of Sciences of the United States of America,2010,107(2):576-580.
    21. Brooks A, Farquhar G D. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light-Estimates from gas-exchange measurements on spinach. Planta,1985,165(3):397-406.
    22. Brown J T, Robison C R. Observations on the Structure of Marchantiolites blairmorensis (Berry) n. comb. from the Lower Cretaceous of Montana, U.S.A.. Journal of Paleontology,1976,50(2):309-311.
    23. Budyko M I, Ronov A B, Yanshin A L. History of the Earth's atmosphere. Berlin:Springer-Verlag,1987.
    24. Caldeira K, Kasting J F. The life span of the biosphere revisited. Nature,1992,360(6406):721-723.
    25. Cerling T E. Carbon dioxide in the atmosphere:evidence from Cenozoic and Mesozoic paleosls. American Journal of Science,1991,291(4):377-400.
    26. Chaloner W G, McElwain J. The fossil plant record and global climatic change. Review of Palaeobotany and Palynology,1997,95(1-4):73-82.
    27. Chaney R W. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society, New Series,1951, 40(3):171-263.
    28. Christophel D C. Fossil floras of the Smoky Tower locality, Alberta, Canada. Palaeontographica,1976,157: 1-43.
    29. Cronin T M. Principles of Paleoclimatology. New York:Columbia University Press,1999:1-560.
    30. Damesin C, Rambal S, Joffre R. Seasonal and annual changes in leaf δ13C in two co-occurring Mediterranean oaks:Relations to leaf growth and drought progression. Functional Ecology,1998,12(5):778-785.
    31. Dilcher D L. Approaches to the identification of angiosperm leaf remains. The Botanical Review,1974,40(1): 1-157.
    32. Egle K, Schenk W. Der Einfluss der Temperatur Auf die Lage des CO2 Kompensationspunktes. Pianta,1953, 43(2):83-97.
    33. Ekart D D, Cerling T E, Montanez I P, Tabor N J. A 400 million year carbon isotope record of pedogenic carbonate:Implications for paleoatmospheric carbon dioxide. American Journal of Science,1999, 299(10):805-827.
    34. Endal A S, S. S. Rotation in solar-type stars. Ⅰ-Evolutionary models for the spin-down of the sun. Astrophysics Journal,1981,243:625-640.
    35. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature,2004(429):623-628.
    36. Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1989,40:503-537.
    37. Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology,1982, 9(2):121-137.
    38. Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta,1980,149(1):78-90.
    39. Fletcher B J, Beerling D J, Brentnall S J, Royer D L. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study. Global Biogeochemical Cycles,2005,19(3): 1-13.
    40. Fletcher B J, Beerling D J, Chaloner W G. Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton. Geobiology,2004,2:107-119.
    41. Fletcher B J, Brentnall S J, Anderson C W, Berner R A, Beerling D J. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience,2008,1(1):43-48.
    42. Fletcher B J, Brentnall S J, Quick W P, Beerling D J. BRYOCARB:A process-based model of thallose liverwort carbon isotope fractionation in response to CO2, O2, light and temperature. Geochimica et Cosmochimica Acta,2006,70(23):5676-5691.
    43. Fletcher B J. Environmental controls on the carbon isotope fractionation of bryophytes, and its significance for intepreting their fossil record. Doctor of Philosophy thesis, Sheffield, UK:University of Sheffield, 2006.
    44. Freeman K H, Hayes J M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles,1992,6(2):185-198.
    45. Friedli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature,1986,324:237-238.
    46. Gale J. Availability of carbon dioxide for photosynthesis at high altitudes:Theoretical considerations. Ecology,1972,53:494-497.
    47. Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae:Mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology,2005,56:99-131.
    48. Gray J E, Holroyd G H, Van Der Lee F M, Bahrami A R, Sijmons P C, Woodward F I, Schuch W, Hetherington A M. The HIC signalling pathway links CO2 perception to stomatal development. Nature,2000,408(6813):713-716.
    49. Hardin J W, Bell J M. Atlas of foliar surface features in woody plants, IX.Betulaceae of eastern United States. Brittonia,1986,38(2):133-144.
    50. Harley P C, Thomas R B, Reynolds J F, Strain B R. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell & Environment,1992,15(3):271-282.
    51. Haworth M, Hesselbo S P, McElwain J C, Robinson S A, Brunt J W. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology,2005,33(9):749-752.
    52. Hernick L V, Landing E, Bartowski K E. Earth's oldest liverworts--Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA. Review of Palaeobotany and Palynology, 2008,148(2-4):154-162.
    53. Hickey L J. A revised classification of the architecture of dicotyledonous leaves.in:Anatomy of the Dicotyledons (Metcalfe C R, Chalk L)(eds) Oxford:Clarendon Press,1979:25-39.
    54. Hobbie E A, Gregg J, Olszyk D M, Rygiewicz P T, Tingey D T. Effects of climate change on labile and structural carbon in Douglas-fir needles as estimated by δ13C and Carea measurements. Global Change Biology,2002,8(11):1072-1084.
    55. Jassens J A P, Horton D G, Basinger J. Aulacomnium heterostichoides sp. nov., an Eocene moss from south central British Columbia. Canadian Journal of Botany,1979,57(20):2150-2161.
    56. Jones H G. Plants and Microclimate. Cambridge, UK:Cambridge University Press,1992:428.
    57. Kashiwagi H, Shikazono N. Climate change during Cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,199(3-4):167-185.
    58. Katz M E, Wright J D, Miller K G, Cramer B S, Fennel, K., Falkowski P G. Biological overprint of the geological carbon cycle. Marine Geology,2005,217(3-4):323-338.
    59. Keeling R F, Piper S C, Bollenbacher A F, Walker J S. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends:A Compendium of Data on Global Change..2009.
    60. Kennedy M C, Anderson C W, Conti S, O'Hagan A. Case studies in Gaussian process modelling of computer codes. Reliability Engineering & System Safety,2006,91(10-11):1301-1309.
    61. Kennett J P. Marine geology. Englewood Cliffs:Prentice-Hall,1982.
    62. Korner C, Cochrane P M. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia,1985,66(3):443-455.
    63. Kump L R, Arthur M A. Global chemical erosion during the Cenozoic:Weatherability balances the budget. Tectonic Uplift and Climate Change,1997:399-426.
    64. Kurschner W M, Kvacek Z. Oligocene-Miocene CO2 fluctuations, climatic and palaeofloristic trends inferred from fossil plant assemblages in central Europe. Bulletin of Geosciences,2009,84(2):189-202.
    65. Kurschner W M, Van der Burgh J, Visscher H, Dilcher D L. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology.1996,27(1-4): 299-312.
    66. Kurschner W M, Wagner F, Dilcher D L, Visscher E H. Using fossil leaves for the reconstruction of Cenozoic paleoatmospheric CO2 concentrations.in:Geological perspectives of global climate change (Gerhards L C E A)(eds):AAAPG Studies in Geology,2001:169-189.
    67. Kurschner W M. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert)-Implications for their use as biosensors of palaeoatmospheric CO2 levels. Review of Palaeobotany and Palynology,1997,96(1-2):1-30.
    68. Lambers H, Chapin F S, Pons T L. Plant Physiological Ecology. New York:Springer,1998.
    69. LAWG (Leaf Architecture Working Group). Manual of Leaf Architecture:morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiospersms. Washington, D.C.:Simithsonian Institution,1999.
    70. Laws E A, Popp B N, Bidigare R R, Kennicutt M C, Macko S A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq:Theoretical considerations and experimental results. Geochimica et Cosmochimica Acta,1995,59(6):1131-1138.
    71. Laws E A, Popp B N, Cassar N, Tanimoto J.13C discrimination patterns in oceanic phytoplankton:Likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Functional Plant Biology,2002,29(2-3):323-333.
    72. Li P, Skvortso A K. Betulaceae. Flora of China, Beijing, China & St. Louis, USA:Science Press, China & Missouri Botanical Garden Press, St. Louis, USA,1999:286-313.
    73. Lin Z-C, Sun B-N, Lomax B H, Wu J-Y, Xie S-P, Lv X-D, Li X-C, Dai J. Leaf megafossils of Betula yunnanensis sp. nov. (Betulaceae) from the Mangbang Formation, SW China and its taphonomic implications. Review of Palaeobotany and Palynology,2010a,163(1-2):84-103..
    74. Lin Z, Sun B, He W, Wu J. Fossil Baiera cf. concinna from Middle Jurassic Qiaoerjian Formation in Yuxian County, Hebei Province, North China and Their Paleoclimate Significances. Earth Science Frontiers(地学前缘),2010b,17(Special Issue):352-354.
    75. Liu Y J, Li C S, Wang Y F. Studies on fossil Metasequoia from north-east China and their taxonomic implications. Botanical Journal of the Linnean Society,1999,130(3):267-297.
    76. Manum S. Ginkgo spitsbergensis n. sp. from the Paleocene of Spitsbergen and a discussion of certain Tertiary species of Ginkgo from Europe and North America. Norsk Polarinst. Arb.,1966,1965: 49-58.
    77. McAllister H.540.Betula Insignis.in:Curtis's Botanical Magazine. The Board of Trustees of the Royal Botanic Gardens, Kew 2005 Oxford, UK and Malden, USA:Blackwell Publishing Ltd,2005: 220-224.
    78. McElwain J C, Chaloner W G. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals Of Botany,1995,76(4):389-395.
    79. McElwain J C, Chaloner W G. The fossil cuticle as a skeletal record of environmental change. Palaios,1996, 11(4):376-388.
    80. McElwain J C. Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Philosophical Transactions of the Royal Society B:Biological Sciences,1998,353(1365):83-96.
    81. McKown A D, Cochard H, Sack L. Decoding Leaf Hydraulics with a Spatially Explicit Model:Principles of Venation Architecture and Implications for its Evolution. The American Naturalist,2010,175(4): 447-460.
    82. Mitchell P L. Growth stages and microclimate in coppice and high forest. Ecology and Management of Coppice Woodlands, London:Chapman & Hall,1992:31-51.
    83. Montanez I P, Tabor N J, Ekart D, Collister J W. Evolution of Permian atmospheric pCO2 as derived from latest Carboniferous through Permian paleosol carbonates, Midland and Paradox Basins, U.S.A. and northern Italian Alps. GSA Abstracts with Programs,1999,31.
    84. Mosbrugger V. The nearest living relative method.in:Fossil plants and spores:modern techniques (Jones T P, Rowe N P)(eds) London:Geological Society of London,1999:261-265.
    85. Mosle B, Collinson M E, Finch P, Stankiewicz B A, Scott A C, Wilson R. Factors influencing the preservation of plant cuticles:A comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry,1998,29(5-7-7 pt 2):1369-1380.
    86. Ogg J G, Ogg G, Gradstein F M. The Concise Geologic Time scale.2009.
    87. Ogg J G, Ogg G, Gradstein F M. The Concise Geologic Time scale.Cambridge University Press,2008.
    88. Osmond C B, Valaane N, Haslam S M, Uotila P, Roksandic Z. Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia,1981,50(1):117-124.
    89. Pagani M, Arthur M A, Freeman K H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 1999a,14(3):273-292.
    90. Pagani M, Freeman K H, Arthur M A. Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science,1999b,285(5429):876-879.
    91. Paoletti E, Gellinni R. Stomatal density variation in beech and holm oak leaves collected over the last 200 years. Acta Oecologia,1993,14:173-178.
    92. Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000,406(6797):695-699.
    93. Pearson P N, Palmer M R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science,1999,284(5421):1824-1826.
    94. Penuelas J, Matamala R. Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. Journal of Experimental Botany,1990,41: 1119-1124.
    95. Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature,1999,399(6735):429-436.
    96. Poole I, Kurschner W M. Stomatal density and index:the practice.in:Fossil Plants and Spores:Modern Techniques (Jones T P, Rowe N P)(eds) London:The Geological Society London,1999:257-260.
    97. Popp B N, Laws E A, Bidigare R R, Dore J E, Hanson K L, Wakeham S G. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta,1998,62(1):69-77.
    98. Popp B N, Takigiku R, Hayes J M, Louda J W, Baker E W. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. American Journal of Science,1989,289(4): 436-454.
    99. Proctor M C F, Raven J A, Rice S K. Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes:physiological and ecological implications. Journal of Bryology,1992,17(2): 193-202.
    100. Proctor M C F. Physiological ecology:Water relations, light and temperature responses, carbon balance.in: Bryophyte Ecology (Smith a J E)(eds) London, UK:Chapman and Hall,1982:333-381.
    101. Qiu Y L, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the United States of America,2006,103(42):15511-15516.
    102. Quan C, Sun C, Sun Y, Sun G. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Research,2009,30(2):424-428.
    103. Raven J A, Macfarlane J J, Griffiths H. The application of carbon isotope discrimination techniques.in:Plant life in Aquatic and Amphilbious Habitats (Crawford R M M)(ed) Oxford:Blackwell,1987:129-149.
    104. Raven J A, Ramsden H J. Similarity of stomatal index in the C4 plant Salsola kali L. in material collected in 1843 and in 1987:relevance to changes in atmospheric CO2 content. Transactions of the Botanical Society Edinburgh,1989,45:223-233.
    105. Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 2001,411(6835):287-290.
    106. Retallack G J. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 2005,33(4):333-336.
    107. Rice S K, Giles L. The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum. Plant, Cell and Environment,1996,19(1):118-124.
    108. Rice S K. Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland. Oecologia,2000,123(1):1-8.
    109. Royer D L, Berner R A, Beerling D J. Phanerozoic atmospheric CO2 change:Evaluating geochemical and paleobiological approaches. Earth-science Reviews,2001a,54(4):349-392.
    110. Royer D L, Hickey L J, Wing S L. Ecological conservatism in the "living fossil" Ginkgo. Paleobiology,2003, 29(1):84-104.
    111. Royer D L, Wing S L, Beerling D J, Jolley D W, Koch P L, Hickey L J, Berner R A. Paelobotanical evidence for near present-day levels of atmospheric CO2 during part of the tertiary. Science,2001b,292(5525): 2310-2313.
    112. Royer D L. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta,2006, 70(23 SPEC. ISS.):5665-5675.
    113. Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology,2001,114(1-2):1-28.
    114. Rundgren M, Beerling D. A holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. Holocene,1999,9(5):509-513.
    115. Salisbury E J. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London,1927, Series B 216: 1-65.
    116. Seward A C. Fossil Plants 4. Ginkgoales, Coniferales, Gnetales,1919.
    117. Shaparenko K. Ginkgo adiantoides (Unger) Heer:Contemporary and fossil forms. Philippine Journal of Science,1935,57:1-28.
    118. Smith A G, Smith D G, Funnell B M. Atlas of Mesozoic and Cenozoic coastlines. Atlas of Mesozoic and Cenozoic coastlines,1994.
    119. Smith E C, Griffiths H. The role of carbonic anhydrase in photosynthesis and the activity of the carbon-concentrating-mechanism in bryophytes of the class Anthocerotae. New Phytologist,2000, 145(1):29-37.
    120. Smith R Y, Greenwood D R, Basinger J F. Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,293(1-2):120-131.
    121. Tabor N J, Yapp C J, Montanez I P. Goethite, calcite, and organic matter from Permian and Triassic soils: Carbon isotopes and CO2 concentrations. Geochimica et Cosmochimica Acta,2004,68(7): 1503-1517.
    122. Tajika E. Climate change during the last 150 million years:Reconstruction from a carbon cycle model. Earth and Planetary Science Letters,1998,160(3-4):695-707.
    123. Ticha I. Photosynthetic characteristics during ontogenesis of leaves.7. Stomata density and sizes. Photosynthetica,1982,16:375-471.
    124. Tralau H. Evolutionary trends in the genus Ginkgo. Lethaia,1968,1(1); 63-101.
    125. Van de Water P K, Leavitt S W, Betancourt J L. Trends in stomatal density and 13C/12C ratios of Pinus flexilis needles during last glacial-interglacial cycle. Science,1994,264(5156):239-242.
    126. Van der Burgh J, Visscher H, Dilcher D L, Kurschner W M. Paleoatmospheric signatures in Neogene fossil leaves. Science,1993,260(5115):1788-1790.
    127. Wagner F, Bohncke S J P, Dilcher D L, Kurschner W M, Van Geel B, Visscher H. Century-scale shifts in early holocene atmospheric CO2 concentration. Science,1999,284(5422):1971-1973.
    128. Wahlen M, Allen D, Deck B, Herchenroder A. Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP 2 ice core from central Greenland. Geophysical Research Letters,1991, 18(8):1457-1460.
    129. Wallmann K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta,2001,65(18):3005-3025.
    130. Wang Y-D, Wu X-W. Records and diversity of the fossil bryophytes in China. Chenia,2007,9:61-72.
    131. Wellman C H, Osterloff P L, Mohiuddin U. Fragments of the earliest land plants. Nature,2003,425(6955): 282-285.
    132. Wellman C H. The invasion of the land by plants:When and where? New Phytologist,2010,188(2): 306-309.
    133. White J W C, Ciais P, Figge R A, Kenny R, Markgraf V. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature,1994,367(6459):153-156.
    134. Wilkinson H P. The plant surface(mainly leaf). Second edition. Anatomy of the Dicotyledons, Oxford:Clarendon Press,1979.
    135. Williams T G, Flanagan L B. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia,1996,108(1): 38-46.
    136. Wolfe J A, Spicer R A. Fossil leaf character states:multivariate analyses.in:Fossil plants and spores:modem techniques (Jones T P, Rowe N P)(eds) London:Geological Society of London,1999:233-239.
    137. Wolfe J A. Paleoclimatic estimates from Tertiary leaf assemblages. Annu. Rev. Earth Planet. Sci.,1995,23 119-142.
    138. Wolfe J A. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia. U.S. Geological Survey professional paper,1979, 1106:1-37.
    139. Woodward F I, Bazzaz F A. The responses of stomatal density to CO2 partial pressure. Journal of Experimental Botany,1988,39(12):1771-1781.
    140. Woodward F I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia,1986,70(4):580-586.
    141. Woodward F I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature,1987, 327(6123):617-618.
    142. Woodward F I. The responses of stomata to changes in atmospheric levels of CO2. Plants Today,1988,1: 132-135.
    143. Worobiec G, Szynkiewicz A. Betulaceae leaves in Miocene deposits of the Belchat6w Lignite Mine (Central Poland). Review Of Palaeobotany And Palynology,2007,147(1-4):28-59.
    144. Wu J, Sun B, Liu Y S, Xie S, Lin Z. A new species of Exbucklandia (Hamamelidaceae) from the Pliocene of China and its paleoclimatic significance. Review of Palaeobotany and Palynology,2009,155(1-2): 32-41.
    145. Wullschleger S D. Biochemical limitations to carbon assimilation in C3 plants-A retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany,1993,44:907-920.
    146. Xie S, Sun B, Dilcher D L, Yan D, Wu J, Lin Z. Numerical taxonomy of Palaeocarya (Juglandaceae) from the Mangbang Formation of West Yunnan, China. Review of Palaeobotany and Palynology,2010, 162(2):193-202.
    147. Yang R-D, Mao J-R, Zhang W-h, Jiang L-J, Gao H. Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China. Acta Botanica Sinica,2004, 46(2):180-185.
    148. Yapp C J. Poths H. Ancient atmospheric CO2 pressures interred from natural goethites. Nature,1992, 355(6358):342-344.
    149. Zeng J, Li J-H, Chen Z-D. A new species of Betula section Betulaster (Betulaceae) from China. Botanical Journal of the Linnean Society,2008,156:523-528.
    150.陈芬,孟祥营,任守勤,吴冲龙.辽宁阜新和铁法盆地早白垩世植物群及含煤地层.北京:地质出版社,1988:31.
    151.陈之端,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):156-163.
    152.戴静,孙柏年,解三平,吴靖宇,李娜.云南腾冲上新统Carpinus miofangiana的发现及古气候意义.地球科学进展,2009(09):1024-1032.
    153.高谦,张光初.东北苔类植物志.北京:科学出版社,1981:1-210.
    154.戈宏儒,李代芸.云南西部新生代含煤盆地及聚煤规律.昆明:云南科技出版社,1999:1-83.
    155.郭双兴.两广南部晚白垩世和早第三纪植物群及地层意义.见:华南中新生代红层(中国科学院古脊椎动物与古人类研究所&中国科学院南京地质古生物所编).北京:科学出版社,1979:223-231.
    156.何承全,孙学坤.黑龙江省东部鸡西盆地城子河组下部早白垩世欧特里夫晚期海相沟鞭藻类.古生物学报,2000,39(1):46-62.
    157.何勇,姜允迪,丹利.中国气候、陆地生态系统碳循环研究.北京:气象出版社,2006:1-162.
    158.河北省地质矿产局(编).河北省、北京市、天津市区域地质志. 中华人民共和国地质矿产部地质专报-区域地质第15号,北京:地质出版社,1989:590-635.
    159.黑龙江省地质矿产局(编).黑龙江省区域地质志中华人民共和国地质矿产部地质专报--区域地质第33号北京:地质出版社,1993:192-215.
    160.胡人亮.苔藓植物学.北京:高等教育出版社,1987:1-463.
    161.姜宝玉,冯金宝.鸡西群城子河组时代的进一步探讨.地层学杂志,2000,25(3):217-221+240.
    162.解三平,孙柏年,闫德飞,吴靖宇,林志成.类黄杞翅果化石在滇西新近纪的发现及其意义.中国植物学会七十五周年年会论文摘要汇编(1933-2008),2008:49.
    163.解三平.滇西新近纪翅果数值分类和被子植物叶片的古环境重建.博士学位论文,兰州:兰州大学,2007.
    164.匡可任,郑斯绪,李沛琼,路安民.中国植物志(第21卷).北京:科学出版社,1979:44-137.
    165.李承森,王宇飞,孙启高.定量分析第三纪以来环境变化的新方法——特有种气候分析法.植物学报,2001(02):217-220.
    166.李承森,扆铁梅,姚轶锋.中国植被演替与环境变迁. 第一卷云南晚新生代植物和气候,南京:江苏科学技术出版社,2008:1-230.
    167.李明涛,孙柏年,肖良,任文秀,李相传,戴静.浙东中新世Betula mioluminifera Hu et Chaney的发现及古气候重建.地球科学进展,2008(06):651-658.
    168.李锡康,谭筱虹,高子英,姚金昌.腾冲上新统芒棒组地质时代及沉积环境.云南地质,2004(02):241-251.
    169.林志成,孙柏年,闫德飞,解三平,吴靖宇.云南腾冲上新世西桦(Betula alnoides Buch.-Ham)角质层研究及其古环境意义.中国古生物学会第24届学木年会论文摘要集,2007.
    170.林志成,闫德飞,孙柏年,李相传,吕晓东,何文龙,杜宝霞,温雯雯.黑龙江七台河下白垩统苔类化石Marchantiolites blairmorensis发现及其地质意义.兰州大学学报(自然科学版),2010(04):1-6.
    171.刘风香.黑龙江鸡西早白垩世侧羽叶—新种—城子河侧羽叶(Pterophyllum chengzihense sp. nov.)世界地质,2006,25(1):1-5.
    172.沙金庚.黑龙江东部早白垩世生物地层学研究的主要进展.地学前缘,2002(03):95-101.
    173.沙金庚.黑龙江省东部Auce llina(双壳类)的发现.地层学杂志,1990(03):226-230.
    174.尚映莲.腾冲硅藻土矿床及其成因.云南地质,2003(04):418-425.
    175.尚玉珂.黑龙江省鸡西城子河组被子植物化石层的孢粉研究.微体古生物学报,1997,14(2):161-174.
    176.施定基.苔藓植物的生理生化.见:苔藓植物生物学, 吴鹏程(编)北京:科学出版社,1998:102-121.
    177.孙柏年,丛培允,阎德飞,解三平.云南腾冲新近纪两种被子植物化石的角质层构造及其古环境意义.古生物学报,2003b(02):216-222.
    178.孙柏年,解三平,阎德飞,丛培允Ulmus harutoriensis Oishiet Huzioka角质层特征及古环境意义.兰州大学学报(自然科学版),2003a(01):80-85.
    179.孙柏年,闫德飞,解三平,吴靖宇,肖良,李相传,林志成,康鸿杰.中国植物化石角质层研究综述.古生物学报,2009a(03):347-356.
    180.孙柏年,闫德飞,解三平,王永栋.化石植物气孔与碳同位素的分析及应用.北京:科学出版社,2009b:1-222.
    181.孙革,郑少林,Dilcher D L,王永栋,梅盛吴.伴生植物化石描述:苔藓类.见:辽西早期被子植物及伴生植物群上海:上海科技教育出版社,2001:67,68,180,181.
    182.孙革,郑少林,孙学坤,何承全,朴太元,尚玉珂,张川波,虞子冶,赵衍华.黑龙江东部侏罗—白垩系界线附近地层研究新进展.地层学杂志,1992(01):49-54+83-84.
    183.孙艳荣,穆治国,崔海亭.全球变化研究中的同位素地球化学.北京大学学报(自然科学版),2001(04):577-586.
    184.唐劲松,钱君龙,尹卓思,杨逢春.用树轮碳同位素年序列重建大气二氧化碳浓度.南京林业大学学报,2000,24(3):45-48.
    185.陶君容.中国晚白垩世至新生代植物区系发展及演变.北京:科学出版社,2000:1-282.
    186.王宇飞,杨健,徐景先,赵良成,蒋洪恩,程业明,扆铁梅,王青,马清温,姚轶锋.中国新生代植物演化及古气候、古环境重建研究进展.古生物学报,2009(03):569-576.
    187.韦利杰,孙柏年,解三平,闫德飞,肖良.云南腾冲上新统植物油丹Alseodaphne hainanensis Merr.表皮微细构造研究.微体古生物学报,2005(04):392-399.
    188.吴靖宇,孙柏年,解三平,林志成,闫德飞,肖良.云南腾冲新近系樟科润楠属两种化石及其古环境意义.高校地质学报,2008(01):90-98.
    189.吴靖宇.云南腾冲上新世团田植物群及其古环境分析.博士学位论文,兰州:兰州大学,2009.
    190.吴鹏程.苔藓植物生物学.北京:科学出版社,1998:1-357.
    191.吴向午,厉宝贤.河北蔚县中侏罗世苔藓植物.古生物学报,1992,31(03):257-279+377-382.
    192.吴向午.新疆北部早、中侏罗世的几种苔类植物.古生物学报,1996(01):60-71+137-140.
    193.星耀武.晚中新世云南先锋植物群及古气候的定量重建.博士学位论文,昆明,2009.
    194.闫德飞,孙柏年,解三平,肖良,韦利杰.云南腾冲上新统芒棒组植物分散角质层研究.古生物学报,2007(01):113-121.
    195.杨振宇,马醒华,孙知明,黄宝春,周姚秀.华北地块显生宙古地磁视极移曲线与地块运动.中国科学(D辑:地球科学),1998(S1):44-56.
    196.叶创兴,朱念德,廖文波,刘蔚秋.植物学.北京:高等教育出版社,2007:1-547.
    197.于恩君.黑龙江省鸡西—勃利含煤盆地层序地层学讨论.吉林地质,2008,27(2):8-13.
    198.张路锁,张树胜,袁东翔,谢明忠,赵克明.冀西北地区早、中侏罗世地层划分及其区域对比.地质论评,2009,55(5):628-638.
    199.张璐瑾.黑龙江省东部若干地区晚中生代孢粉及其时代讨论.见:黑龙江省东部中、上侏罗统与下白垩统化石(上册)(黑龙江省东部中生代含煤地层研究队编)哈尔滨:黑龙江科学技术出版社,1983:51-72.
    200.张树胜.河北蔚县煤田花园组成煤植物初探.中国煤炭地质,2009,21(7):12-14+28.
    201.郑少林,张武.黑龙江省东部地区龙爪沟群及鸡西群植物化石.中国地质科学院沈阳地质矿产研究所所刊,1982,5:277-382.
    202.中国新生代植物编写组.中国植物化石. (第三册)中国新生代植物,北京:科学出版社,1978:1-232.
    203.周志炎,陈广雅,伞文,张川波,张清波,张武,蒲荣干.黑龙江省鸡西、穆棱地区晚中生代地层及其植物组合的基本面貌.中国科学院南京地质古生物研究所丛刊,1980,10:56-75.
    204.朱日祥,杨振宇,马醒华,吴汉宁,孟自芳,方大钧,黄宝春.中国主要地块显生宙古地磁视极移曲线与地块运动.中国科学(D辑:地球科学),1998(S1):1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700