用户名: 密码: 验证码:
中国东部陆架海泥质沉积区的物源识别及其环境记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东部陆架海(渤海、黄海和东海)是世界上最宽阔的陆架海之一。长江和黄河输入的巨量泥沙是其主要的物质来源,对本海区的物质通量、陆架泥质沉积体的形成以及海洋生态环境有着重大的影响。确定长江和黄河物质的可靠识别指标,对于确定两种物源在中国东部陆架海区的时空分布,了解长江和黄河物质的“源-汇”作用、阐述陆架海区物质通量和认识东部陆架海区的演化过程等有着重要的科学意义。近年来,长江、黄河物源识别工作已经取得巨大的进展,但迄今为止在长江和黄河物质可能的物源混合区进行长江与黄河物质的准确识别还存在许多不确定性。同时,中国东部陆架海区泥质沉积体中蕴藏着全新世以来丰富的古环境信息,其变化受到大陆、海洋两方面环境变化的影响。这些泥质沉积体中的沉积物和石英敏感粒级、磁性、地球化学以及UK37-古水温等参数已被广泛用于东亚季风等环境变化的替代指标,取得了一系列成果,但目前在东部陆架海区关于东亚冬季风等环境因素的高分辨率长期记录比较缺乏。黄海暖流作为现代黄、东海环流体系的重要组成部分,受到了广泛关注,但目前大多数研究主要报道了其形成年代,对其形成以后的可能变化未进行讨论。
     本文以国家自然科学基金重点项目“末次冰消期以来东部陆架泥质区海洋环境演化的地质记录”和科技部国家重点基础研究发展计划(973计划)项目“我国陆架海生态环境演变过程、机制及未来变化趋势预测”为依托,研究了长江、黄河代表性表层样品23个,泥质区表层样品近150个、济州岛西南泥质区B3孔和南黄海中部泥质区的ZY-1、ZY-2、ZY-3孔4根柱样。利用沉积物粒度测试、X-衍射矿物分析、XRF地球化学分析、UK37-古水温测试、AMS 14C测年等多种分析手段,对中国东部陆架海区泥质区的物源识别和古环境记录进行了研究,得到以下几点结论:
     1.长江与黄河入海沉积物不同粒级中的矿物组合中,方解石与白云石含量的比例在细粒级部分(<16μm)差异最大,是长江与黄河流域风化程度和沉积物物质源区不同的集中体现。同时白云石不是生源物质,因此,在东部陆架海区沉积物中,可以采用<16μm粒级区间的方解石和白云石含量比值的差异,作为识别长江与黄河物源的可靠指标。
     2.利用<16μm粒级中的方解石和白云石比值差异对各泥质区表层沉积物中长江与黄河物源识别取得了很好的效果,尤其在两者混合区域。结果表明,黄河物质的影响在整个东部陆架海区泥质区中均有反映,但在渤海和北黄海海域,主要是现代黄河物质的供应,而在35°N以南的黄河物质主要来自苏北老黄河口再悬浮物质。长江物质分布范围比较小,主要集中在东海内陆架和济州岛西南泥质区,最南界不超过26°N,最北界不超过35°N。长江和黄河物质的扩散模式与中国东部陆架海的海洋动力条件密切相关。
     3.利用济州岛西南泥质区的B3孔沉积物<16μm粒级部分的方解石和白云石含量比例差异,揭示了全新世以来长江、黄河物质对此海区物源贡献的变化历史。结果表明,黄河物质分别在6.7~4.1和0.8~0 ka B.P期间对此海区有所贡献,可能显示了黄河在苏北入海的变迁史,与气候变化和人类活动密切相关。长江物质在6.0 ka B.P以来对此海区均有贡献,与全新世以来长江三角洲从堆积转变为进积的时间一致。B3孔的物源、粒度及沉积速率的变化,与海洋环境及长江与黄河物质供应量的变化历史有较好的对应关系。
     4.利用南黄海中部泥质区的3根柱样(ZY-1、ZY-2、ZY-3孔)的沉积物粒度和地球化学指标,研究了中全新世以来东亚冬季风的演化历史。结果表明,近7200年来东亚冬季风可大致划分为三个阶段,分别为7.2~4.2 ka B.P的东亚冬季风强盛期、4.2~1.8 ka B.P的东亚冬季风的稳定期和1.8~0 ka B.P的东亚冬季风转换期。轨道驱动的太阳辐射量(Solar insolation)变化的季节性差异使得中全新世以来东亚冬、夏季风在整体上呈同步减弱趋势,而太阳活动(Solar irradiance)在十年、百年尺度上使得东亚冬、夏季风反相变化。
     5.在6.2 ka B.P以来,南黄海中部ZY-2孔的海水表层温度(SST)的几次千年尺度降温事件与黑潮减弱事件和北大西洋浮冰(IRD)事件一一对应,表明低纬度边缘海区与高纬度地区的气候变化是同步发生的,有可能是对同一驱动力(Solar irradiance)的响应。通过多个钻孔海水表层温度之间比较,表明黄海暖流“前弱后强”,发现了10次黄海暖流减弱事件。黄海暖流的长期变化和短期的减弱事件与黑潮和西太平洋暖池区的SST变化基本一致,表明黑潮本身的强弱是影响黄海暖流的主要因子,而其他因素(如东亚冬季风)只在某些阶段会对黄海暖流产生显著的影响。
The East China Seas (ECSs), consisted of the Bohai Sea, Yellow Sea and East China Sea, is one of the largest continental marginal seas in the world. Two large rivers (Huanghe and Changjiang) annually delivered more than 1.5 billion tons of sediments to the ECSs. These huge amounts of sediments are the primary terrigenous sediment sources of these epicontinental seas, and hence have immense impacts on the sedimentary, aquatic and ecological systems, as well as the geochemical cycles in these epicontinental seas. Therefore discriminating the provenances of the sediments is critical not only for understanding the temporal and spatial dispersal pattern of the sediments from the Changjiang and Huanghe, but also for deciphering and reconstructing paleoenvironmental changes archived in the sediment deposits. In recent years, great advances in discriminating the Changjiang and Huanghe sediments have been reached; however, there is also considerable uncertainty to distinguish them in the mixed areas. In addition, the mud depositional areas of ECSs archived abundant paleoenvironment information, which reflected both of the changes in the continent and ocean. Multi-proxies (bulk sediment and Quartz grain size, Magnetic properties, pollen, geochemical data, Alkenone-derived sea surface temperature) have been used to study the paleoclimate history archived in these mud deposits. However, there is little consensus about the long-term and high resolution records of the East Asia Winter Monsoon and the Yellow Sea Warm Current.
     A total of 23 samples collected from the Huanghe (12) and Changjiang (11) Estuary are separated into seven particle-size fractions (<2μm,2-4μm,4-8μm, 8-16μm,16-32μm,32-63μm,63-125μm). These sub-samples are analyzed by X-ray diffraction (XRD) to characterize its mineral assembles. The results show that the mineral assembles of the Huanghe and Changjiang sub-samples are much different with each other. Particularly, the carbonate minerals (calcite and dolomite) in the <16μm particle-size fractions exhibit significant discrepancy between the Huanghe and Changjiang samples, the calcite is the dominant carbonate minerals in the Huanghe sub-samples in<16μm fractions whereas the dolomite became more enrichment in the Changjiang sub-samples (<16μm). This discrepancy (Calcite/Dolomite ratio) is the result of the different chemical weathering intensity and sediment source within these two river basins. Therefore, it can be used as a reliable and simple proxy to distinguish the Huanghe and Changjiang sediments.
     The discrepancy of Calcite/Dolomite ratio in<16μm particle-size fractions is applied to identify the sediment provenance of 150 samples collected from the mud depositional area of ECSs. Results show that this proxy can easily distinguish the Huanghe and Changjiang sediment provenance in the mud area of ECSs, especially in the areas where the Huanghe and Changjiang sediments mixed. The Huanghe sediments can be found in almost all of the mud depositional areas whereas the Changjiang sediments are mostly constrained in the inner shelf and the Southwestern Cheju Island Mud (SWCIM).
     This proxy is also used to identify the Huanghe and Changjiang sediment provenance in the core-B3 (located in the SWCIM) during the Holocene. Results show that the Changjiang sediments have an effect on the SWCIM until 6.0 ka B.P., which consistent with the transition of the Changjiang Delta from the accumulation to progradation in 6.0 ka B.P.. Moreover, the contribution of the Huanghe sediments to the SWCIM only existed in two periods (6.8-4.1 and 0.8-0 ka B.P.), which likely revealed the history shift of the lower Huanghe in the Subei Plain. The evolvement history of sediment provenance in this area largely depend on the formation of marine current system, as well as the changes in the Huanghe and Changjiang sediment supplies, which related to the delta evolution and channel shifting.
     Three cores (ZY-1, ZY-2 and ZY-3) are retrieved from the central Yellow Sea mud (CYSM). AMS 14C dating, Grain-size and XRF-geochemical data for these cores are used to reconstruct the history of the East Asian Winter Monsoon (EAWM) since the mid-Holocene. Results show that these data provide a continuous history of the EAWM over the past 7200 years, and the EAWM can be divided into three periods:strong and highly fluctuation during 7.2~4.2 ka B.P.; moderate and relatively stable during 4.2~1.8 ka B.P. and weakened during 1.8-0 ka B.P.. The evolution history of EAWM broadly follows the orbital-derived winter insolation with a similar long-term step-decreased trend as the East Asian Summer Monsoon (EASM); however, an anti-relationship existed between them in centennial-scale, mostly likely caused by solar activity.
     Alkenone-derived sea surface temperature (UK37-SST) at Core-ZY2 varied largely over the past 6200 years, the UK37-SST of Core-ZY2 is relative low with three abrupt cooler events (5.0~5.4,3.8~4.0 and 3.0z 2.4 ka B.P.) during 6.2-2.0 ka B.P.; since 2.0 ka B.P., the UK37-SST of Core-ZY2 increased largely and relatively stable. The millennial-scale cooler events in Core-ZY2 are consistent with the Kuroshio current decreased events and the North Atlantic ice-drift events (Bond events). This implies the climate change in the low-latitude continental marginal seas is synchronized with the high-latitude areas, likely derived by the same driving force (e.g. solar irradiance).The sea surface temperature differences between several cores are used to reflect the intensity of the Yellow Sea Warm Current (YSWC). Results show that the intensity of YSWC in 6.2-2.0 ka B.P. is weaker than the later period (2.0~0 ka B.P.), with ten centennial-scale YSWC weaker events. The long-term trend and centennial-scale weaker events of the YSWC are consistent with the changes in UK37-SST of the Core MD05-2908 (located at Southern Okinawa Trough) and Mg/Ca-SST of the Core MD 81 (located at Western Pacific Warm-Pool). This suggests that the intensity of KC-self is the dominant factor controlling the variation of YSWC. The reconstructed intensity of TWC and KE is consistent with the previous studies.
引文
[1]Clement AC, Peterson LC. Mechanisms of abrupt climate change of the last glacial period[J]. Rev Geophys,2008,46.
    [2]Dansgaard W, Johnsen S, Clausen H, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature,1993,364(6434):218-220.
    [3]Dansgaard W, Johnsen S, Clausen H, et al. North Atlantic climatic oscillations revealed by deep Greenland ice cores[J]. Climate processes and climate sensitivity,1984:288-298.
    [4]Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature,1993,365(6442):143-147.
    [5]Bond G, Showers W, Cheseby M, et al. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates[J]. Science,1997,278(5341):1257-1266.
    [6]Hemming SR. Heinrich events:Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Rev Geophys,2004,42:RG1005.
    [7]Dansgaard W, White JWC, Johnsen SJ. The abrupt termination of the Younger Dryas climate event[J]. Nature,1989,339(6225):532-534.
    [8]Broecker WS. Does the Trigger for Abrupt Climate Change Reside in the Ocean or in the Atmosphere?[J]. Science,2003,300(5625):1519-1522.
    [9]Porter SC, An Z. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature,1995,375(6529):305-308.
    [10]Wang Y, Cheng H, Edwards RL, et al. The Holocene Asian Monsoon:Links to Solar Changes and North Atlantic Climate[J]. Science,2005,308(5723):854-857.
    [11]Yuan D, Cheng H, Edwards RL, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon[J]. Science,2004,304(5670):575-578.
    [12]杨子赓.南黄海第四纪轨道事件与非轨道事件的探讨[J].海洋地质与第四纪地质,1993,13(003):25-34.
    [13]汪品先,卞云华,李保华,et al西太平洋边缘海的“新仙女木”事件[J].中国科学:D辑,1996,26(5):452-460.
    [14]Tada R, Irino T, Koizumi I. Land-Ocean Linkages Over Orbital and Millennial Timescales Recorded in Late Quaternary Sediments of the Japan Sea[J]. Paleoceanography,1999,14.
    [15]Li T, Liu Z, Hall M, et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,176(1):133-146.
    [16]韩喜彬,李广雪,杨子赓,et al.中国东部陆架海对“新仙女木”事件的响应[J].海洋地质动态,2005,21(012):1-5.
    [17]Bond G, Showers W, Elliot M, et al. The North Atlantic's 1-2 kyr climate rhythm:relation to Heinrich events, Dansgaard/Oeschger cycles and the little ice age [M/OL]. Mechanisms of global climate change at millennial time scales,1999[
    [18]Bond G, Kromer B, Beer J, et al. Persistent Solar Influence on North Atlantic Climate During the Holocene[J]. Science,2001,294(5549):2130-2136.
    [19]Mayewski P, Rohling E, Curt Stager J, et al. Holocene climate variability[J]. Quaternary Research,2004,62(3):243-255.
    [20]deMenocal P, Ortiz J, Guilderson T, et al. Coherent High-and Low-Latitude Climate Variability During the Holocene Warm Period[J]. Science,2000,288(5474):2198-2202.
    [21]Bianchi GG, McCave IN. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland[J]. Nature,1999,397(6719):515-517.
    [22]Gupta AK, Das M, Anderson DM. Solar influence on the Indian summer monsoon during the Holocene[J]. Geophysical Research Letters,2005,32(17):L17703.
    [23]Gupta AK, Anderson DM, Overpeck JT. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature,2003,421(6921n): 354-357.
    [24]Hu FS, Kaufman D, Yoneji S, et al. Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic[J]. Science,2003,301(5641):1890-1893.
    [25]Niggemann S, Mangini A, Mudelsee M, et al. Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland, Germany[J]. Earth and Planetary Science Letters,2003,216(4): 539-547.
    [26]Cosford J, Qing H, Eglington B, et al. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China[J]. Earth and Planetary Science Letters,2008,275(3-4):296-307.
    [27]Yu Z, Campbell ID, Campbell C, et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales[J]. The Holocene,2003, 13(6):801-808.
    [28]Willard D, Bernhardt C, Korejwo D, et al. Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems:pollen-based climatic reconstruction[J]. Global and Planetary Change,2005,47(1):17-35.
    [29]Li Y-X, Yu Z, Kodama KP. Sensitive moisture response to Holocene millennial-scale climate variations in the Mid-Atlantic region, USA[J]. The Holocene,2007,17(1):3-8.
    [30]Baker PA, Fritz SC, Garland J, et al. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation[J]. Journal of Quaternary Science,2005,20(7-8):655-662.
    [31]Hong YT, Hong B, Lin QH, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J]. Earth and Planetary Science Letters,2003, 211(3-4):371-380.
    [32]Hong YT, Hong B, Lin QH, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14,000 years[J]. Quaternary Science Reviews,2009,28(9-10):840-849.
    [33]Hong YT, Hong B, Lin QH, et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Nino[J]. Earth and Planetary Science Letters,2005,231(3-4):337-346.
    [34]Yu Y, Yang T, Li J, et al. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,233(1-2):149-162.
    [35]Zheng Y, Kissel C, Zheng HB, et al. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology,2010, In Press, Corrected Proof.
    [36]Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters,2000,184(1): 305-319.
    [37]Isono D, Yamamoto M, Irino T, et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene[J]. Geology,2009,37(7):591-594.
    [38]Turney C, Baillie M, Clemens S, et al. Testing solar forcing of pervasive Holocene climate cycles[J]. Journal of Quaternary Science,2005,20(6):511-518.
    [39]Wanner H, Beer J, B"'tikofer J, et al. Mid-to Late Holocene climate change:an overview[J]. Quaternary Science Reviews,2008,27(19-20):1791-1828.
    [40]Keeling CD, Whorf TP. The 1,800-year oceanic tidal cycle:A possible cause of rapid climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(8):3814-3819.
    [41]Munk W, Dzieciuch M, Jayne S. Millennial climate variability:Is there a tidal connection?[J]. Journal of climate,2002,15(4):370-385.
    [42]Hunt B. The Medieval Warm Period, the Little Ice Age and simulated climatic variability[J]. Climate Dynamics,2006,27(7):677-694.
    [43]Debret M, Bout-Roumazeilles V, Grousset F, et al. The origin of the 1500-year climate cycles in Holocene North-Atlantic records[J]. Clim Past,2007,3(4):569-575.
    [44]Debret M, Sebag D, Crosta X, et al. Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing[J]. Quaternary Science Reviews,2009,28(25-26): 2675-2688.
    [45]Chen C-TA. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems,2009,78(3):394-410.
    [46]Milliman JD, Meade RH. World-Wide Delivery of River Sediment to the Oceans[J]. Journal of Geology,1983,91(1):1-21.
    [47]Milliman JD, Syvitski JPM. Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers[J]. Journal of Geology,1992,100:525-544.
    [48]Xiang R, Sun Y, Li T, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation:Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,243(3-4):378-393.
    [49]李广雪,杨子赓,刘勇.中国东部陆架海底沉积环境成因研究:《中国东部陆架海海底沉积物成因环境图》说明[M].北京:科学出版社,2005.
    [50]刘健,李绍全,王圣洁,et al末次冰消期以来黄海海平面变化与黄海暖流的形成[J].海洋地质与第四纪地质,1999,19(1):13-24.
    [51]刘健,王红,李绍全,et al南黄海北部泥质沉积区冰后期海侵沉积记录[J].海洋地质与第四纪地质,2004,24(03):1-10.
    [52]Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology,2007,236(3-4):165-187.
    [53]Xiang R, Yang Z, Saito Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea:Benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology,2008,67(1-2):104-119.
    [54]余华,李巍然,刘振夏,et al冲绳海槽晚更新世以来高分辨率古海洋学研究进展[J].海洋科学,2005,29(01):54-58.
    [55]肖尚斌,李安春,陈木宏,et al近8ka东亚冬季风变化的东海内陆架泥质沉积记录[J].地球科学-中国地质大学学报,2005,(05):573-581.
    [56]肖尚斌,李安春,蒋富清,et al近2ka来东海内陆架的泥质沉积记录及其气候意义[J].科学通报,2004,(21).
    [57]Li G, Sun X, Liu Y, et al. Sea surface temperature record from the north of the East China Sea since late Holocene[J]. Chinese Science Bulletin,2009.
    [58]徐方建,李安春,肖尚斌,et al.末次冰消期以来东海内陆架古环境演化[J].沉积学报,2009,27(01):118-127.
    [59]Kim D, Park BK, Shin IC. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary[J]. Geo-Marine Letters,1999,18(3):189-194.
    [60]Kim J-M, Kucera M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years[J]. Quaternary Science Reviews,2000,19(11): 1067-1085.
    [61]秦蕴珊,赵一阳,陈丽蓉,et al.东海地质[M].北京:科学出版社,1987.
    [62]秦蕴珊,赵一阳,陈丽蓉,et al.黄海地质[M].北京:海洋出版社,1989.
    [63]金翔龙.东海海洋地质[M].北京:海洋出版社,1992.
    [64]Lambeck K, Yokoyama Y, Purcell T. Into and out of the Last Glacial Maximum:sea-level change during Oxygen Isotope Stages 3 and 2[J]. Quaternary Science Reviews,2002,21(1-3): 343-360.
    [65]Lambeck K, Chappell J. Sea Level Change Through the Last Glacial Cycle[J]. Science,2001, 292(5517):679-686.
    [66]Liu JP, Milliman JD, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology,2004,209(1-4):45-67.
    [67]Niino H, Emery K. Sediments of shallow portions of East China Sea and South China Sea[J]. Geological Society of America Bulletin,1961,72(5):731.
    [68]秦蕴珊.中国陆棚的海底地形及沉积物类型的初步研究[J].海洋与湖沼,1963,5(1):71-86.
    [69]秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨[M].北京:科学出版社,1982.
    [70]刘锡清.中国边缘海的沉积物分区[J].海洋地质与第四纪地质,1996,16(3):1-11.
    [71]Milliman J, Qin Y, Park Y. Sediments and sedimentary processes in the Yellow and East China Seas [M]//TAIRA A, MASUDA F. Sedimentary facies in the active plate margin Tokyo; Terra Scientific Publishing Company.1989:233-249.
    [72]Lee HJ, Chough SK. Sediment distribution, dispersal and budget in the Yellow Sea[J]. Marine Geology,1989,87(2-4):195-205.
    [73]李全兴.渤海、黄海、东海海洋图集-地质地球物理篇[M].北京;海洋出版社.1990.
    [74]Saito Y, Yang Z. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea:proceedings of the Int Symp Global Fluxes of Carbon and its Related Substances in the Coastal Sea-Ocean-Atmosphere System, Yokohama, 1994[C]. M&J International.
    [75]Milliman JD, Qin Y-S, Ren M-E, et al. Man's influence on the erosion and transport of sediment by Asian rivers:the Yellow River (Huanghe) example[J]. The Journal of Geology, 1987,95(6):751-762.
    [76]Alexander C, DeMaster D, Nittrouer C. Sediment accumulation in a modern epicontinental-shelf setting:the Yellow Sea[J]. Marine Geology,1991,98(1):51-72.
    [77]程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势[J].海洋与湖沼,2000,31(6):604-615.
    [78]Liu J, Milliman J, Gao S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea[J]. Geo-Marine Letters,2002,21(4):212-218.
    [79]程鹏,高抒,刘敬圃,et al.北黄海西部全新统分布的初步认识[J].第四纪研究,2001,21(4):379.
    [80]Yang ZS, Liu JP. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology,2007,240:169-176.
    [81]王利波.黄海北部泥质沉积体的沉积特征[D].青岛:中国海洋大学,2009.
    [82]李绍全,刘健,王圣洁,et al.南黄海东侧陆架冰消期以来的海侵沉积特征[J].海洋地质与第四纪地质,1997,17(04):1-12.
    [83]李绍全,刘健.南黄海东侧冰消期以来的沉积层序与环境演化[J].科学通报,1998,43(008):876-880.
    [84]李凤业杨何史朴崔.南黄海东部泥区沉积速率和物源探讨[J].海洋科学,1999,(05):37-40.
    [85]Park S, Lee H, Han H, et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea[J]. Marine Geology,2000,170(271):288.
    [86]Lee HJ, Chu YS. Origin of Inner-Shelf Mud Deposit in the Southeastern Yellow Sea:Huksan Mud Belt[J]. Journal of Sedimentary Research,2001,71(1):144-154.
    [87]赵松龄,于洪军,严理.晚更新世末期的陆架沙漠化环境[J].海洋科学,1992:30-33.
    [88]赵一阳,李凤业,DeMaster DJ, et al南黄海沉积速率和沉积通量的初步研究[J].海洋与湖沼,1991,22(01):38-43.
    [89]李凤业,史玉兰,申顺喜,et al同位素记录南黄海现代沉积环境[J].海洋与湖沼,1996,27(06):584-589.
    [90]李凤业,袁巍,Demaster DJ, et al南海、南黄海、渤海~(210)Pb垂直分布模式[J].海洋地质与第四纪地质,1991,11(03):35-43.
    [91]李凤业,高抒,贾建军,et al黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼,2002,33(04):364-369.
    [92]Kim J-M, Kennett JP. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae)[J]. Marine Micropaleontology,1998,34(1-2):71-89.
    [93]庄丽华,常凤鸣.南黄海EY02-2孔底栖有孔虫群落特征与全新世沉积速率[J].海洋地质与第四纪地质,2002,22(4):7-14.
    [94]王桂芝,高抒,李凤业.北黄海西部的全新世泥质沉积[J].海洋学报,2003,25(004):125-134.
    [95]王利波,杨作升,赵晓辉,et al南黄海中部泥质区YE-2孔8.4kaBP来的沉积特征[J].海洋地质与第四纪地质,2009,29(05):1-11.
    [96]胡敦欣.东海北部的一个气旋型涡淤的初步分析[J].科学通报,1980,1:29-31.
    [97]Hu D. Upwelling and sedimentation dynamics[J]. Chin J Oceanol Limnol,1984,2(1):12-19.
    [98]Qu T, Hu D. Upwelling and sedimentation dynamics[J]. Chinese Journal of Oceanology and Limnology,1993,11(4):289-295.
    [99]申顺喜,陈丽蓉,高良,et al南黄海冷涡沉积和通道沉积的发现[J].海洋与湖沼,1993,24(006):563-570.
    [100]申顺喜,李安春,袁巍.南黄海中部的低能沉积环境[J].海洋与湖沼,1996,27(05):518-522.
    [101]石学法,申顺喜,Yi H-i, et al南黄海现代沉积环境及动力沉积体系[J].科学通报,2001,(S1):1-6.
    [102]胡敦欣,杨作升.东海海洋通量关键过程[M].北京:科学出版社,2001.
    [103]石学法,刘焱光,任红,et al南黄海中部沉积物粒径趋势分析及搬运作用[J].科学通报,2002,47(6):452-456.
    [104]Zhu Y, Chang R. Preliminary Study of the Dynamic Origin of the Distribution Pattern of Bottom Sediments on the Continental Shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science,2000,51(5):663-680.
    [105]朱玉荣.潮流场对渤,黄,东海陆架底质分布的控制作用[J].海洋地质与第四纪地质,2001,21(002):7-13.
    [106]Uehara K, Saito Y, Hori K. Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model[J]. Marine Geology,2002,183(1-4):179-192.
    [107]Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology[J]. Sedimentary Geology, 2003,162(1-2):25-38.
    [108]Martin JM, Zhang J, Shi MC, et al. Actual flux of the Huanghe (yellow river) sediment to the Western Pacific ocean[J]. Netherlands Journal of Sea Research,1993,31(3):243-254.
    [109]毕乃双.黄河三角洲毗邻海域悬浮泥沙扩散和季节性变化及冲淤效应[D].青岛:中国海洋大学,2009.
    [110]Liu JP, Xue Z, Ross K, et al. Fate of sediments delivered to the sea by Asian large rivers: Long-distance transport and formation of remote alongshore clinothems[J]. The Sedimentary Record,2009,7(4):4-9.
    [111]Chough SK, Kim DC. Dispersal of fine-grained sediments in the southeastern Yellow Sea; a steady-state model[J]. Journal of Sedimentary Research,1981,51(3):721-728.
    [112]Park YA, Khim BK. Clay minerals of the recent fine-grained sediments on the Korean continental shelves[J]. Continental Shelf Research,1990,10(12):1179-1191.
    [113]Park YA, Khim BK. Origin and dispersal of recent clay minerals in the Yellow Sea[J]. Marine Geology,1992,104(1-4):205-213.
    [114]Lim DI, Choi JY, Jung HS, et al. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas[J]. Progress in Oceanography,2007,73(2): 145-159.
    [115]杨作升,Milliman JD长江入海沉积物的输送及其入海后的运移[J].山东海洋学院学报,1983,13(3):1-12.
    [116]Nittrouer CA, DeMaster DJ, McKee BA. Fine-scale stratigraphy in proximal and distal deposits of sediment dispersal systems in the East China Sea[J]. Marine Geology,1984, 61(1):13-24.
    [117]Demaster D, McKee B, Nittrouer C, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea[J]. Continental Shelf Research,1985,4:143-158.
    [118]Milliman JD, Shen Huang-ting, Yang Zuo-sheng, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research,1985,4:37-45.
    [119]Liu J, Li A, Xu K, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research,2006,26(17-18): 2141-2156.
    [120]Liu JP, Xu KH, Li AC, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology,2007,85(3-4):208-224.
    [121]Huh C-A, Su C-C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and239,240Pu[J]. Marine Geology,1999,160(1-2):183-196.
    [122]Su C-C, Huh C-A.210Pb,137Cs and 239-240Pu in East China Sea sediments:sources, pathways and budgets of sediments and radionuclides[J]. Marine Geology,2002,183(1-4):163-178.
    [123]王可,郑洪波,Prins M, et al东海内陆架泥质沉积反映的古环境演化[J].海洋地质与 第四纪地质,2008,28(004):1-10.
    [124]杨作升郭王徐高.黄、东海毗邻海域悬浮体与水团的对应关系及影响因素[J].中国海洋大学学报(自然科学版),1991,21(03):55-68.
    [125]杨作升郭王徐高.黄东海陆架悬浮体向其东部深海区输送的宏观格局[J].海洋学报(中文版),1992,14(02):81-90.
    [126]郭志刚,杨作升,范德江,et al长江口泥质区的季节性沉积效应[J].地理学报,2003,58(04):591-597.
    [127]Xu K, Milliman JD, Li A, et al. Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research,2009, In Press, Corrected Proof.
    [128]Youn J, Kim T-J. Geochemical composition and provenance of muddy shelf deposits in the East China Sea[J]. Quaternary International,2010, In Press, Corrected Proof.
    [129]向荣,杨作升,郭志刚,Satio Y.,范德江,肖尚斌,陈木宏.济州岛西南泥质区粒度组分变化的古环境应用[J].地球科学-中国地质大学学报,2005,30(5):582-588.
    [130]乔淑卿.全新世以来东海远端泥质区高分辨率物源记录及其对全球变化的响应[D].青岛:中国海洋大学,2006.
    [131]孙晓燕,李广雪,刘勇,et al东海北部泥质区敏感粒度组分对东亚季风演变的响应[J].海洋地质与第四纪地质,2008,28(004):11-17.
    [132]Milliman JD, Beardsley RC, Zuosheng Y, et al. Modem Huanghe-defived muds on the outer shelf of the East China Sea:identification and potential transport mechanisms[J]. Continental Shelf Research,1985,4:175-188.
    [133]郭志刚,杨作升,王兆祥.黄、东海海域水团发育对底质沉积物分布的影响[J].青岛海洋大学学报,1995,25(01):75-84.
    [134]郭志刚,杨作升,雷坤,et al冲绳海槽中南部及其邻近陆架悬浮体的分布、组成和影响因子分析[J].海洋学报(中文版),2001,23(01):66-72.
    [135]Youn J, Yang S, Park Y. Clay minerals and geochemistry of the bottom sediments in the northwestern East China Sea[J]. Chinese Journal of Oceanology and Limnology,2007, 25(3):235-246.
    [136]郭志刚,杨作升,雷坤,et al东海陆架北部泥质区沉积动力过程的季节性变化[J].青岛海洋大学学报(自然科学版),1999,29(3):507-513.
    [137]孙效功,方明,黄伟.黄、东海陆架区悬浮体输运的时空变化规律[J].海洋与湖沼, 2000,31(6):581-587.
    [138]Wang W, Jiang W. Study on the seasonal variation of the suspended sediment distribution and transportation in the East China Seas based on SeaWiFS data[J]. Journal of Ocean University of China (English Edition),2008,7(4):385-392.
    [139]Yuan D, Zhu J, Li C, et al. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations[J]. Journal of Marine Systems,2008,70(1-2): 134-149.
    [140]Yanagi T, Takahashi S, Hoshika A, et al. Seasonal variation in the transport of suspended matter in the East China Sea[J]. Journal of Oceanography,1996,52(5):539-552.
    [141]Moon J, Pang I, Yoon J. Response of the Changjiang diluted water around Jeju Island to external forcings:A modeling study of 2002 and 2006[J]. Continental Shelf Research,2009.
    [142]孙白云.黄河,长江和珠江三角洲沉积物中碎屑矿物的组合特征[J].海洋地质与第四纪地质,1990,10(003):23-34.
    [143]陈丽蓉,徐文强,申顺喜.东海沉积物的矿物组合及其分布特征的研究[D],1982.
    [144]陈丽蓉,申顺喜,徐文强,et al中国海的碎屑矿物组合及其分布模式的探讨[J].沉积学报,1986,3.
    [145]陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究[J].海洋科学,1989,(02):1-8.
    [146]王腊春,储同庆.黄河,长江泥沙特性对比分析[J].地理研究,1997,16(004):71-79.
    [147]杨守业,李从先,朱金初,et al长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学,2000,29(05):480-484.
    [148]杨作升,赵晓辉,乔淑卿,et al长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价[J].中国海洋大学学报(自然科学版),2008,38(2):244-250.
    [149]杨作升,孙宝喜,沈渭铨.黄河口毗邻海域细粒级沉积物特征及沉积物入海后的运移[J].山东海洋学院学报,1985,15(2):121-128.
    [150]杨作升,王兆祥.黄河三角州沿岸及相邻渤海海域碳酸盐研究[J].青岛海洋大学学报:自然科学版,1989,19(003):91-99.
    [151]李国刚,秦蕴珊.中国近海细粒级沉积物中的方解石分布,成因及其地质意义[J].海洋学报,1991,13(003):381-386.
    [152]杨作升,范德江,郭志刚,et al东海陆架北部泥质区表层沉积物碳酸盐粒级分布与物源分析[J].沉积学报,2002,20(1):1-6.
    [153]范德江,杨作升,王文正.长江、黄河沉积物中碳酸盐组成及差异[J].自然科学进展,2002,12(1):60-64.
    [154]杨作升,王海成,乔淑卿.黄河与长江入海沉积物中碳酸盐含量和矿物颗粒形态特征及影响因素[J].海洋与湖沼,2009,40(6):674-681.
    [155]Yang SY, Jung HS, Lim DI, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews,2003,63(1-2):93-120.
    [156]杨作升.黄河,长江,珠江沉积物中粘土的矿物组合,化学特征及其与物源区气候环境的关系[J].海洋与湖沼,1988,19(4):336-346.
    [157]何良彪,刘秦玉.黄河与长江沉积物中粘土矿物的化学特征[J].科学通报,1997,42(007):730-734.
    [158]范德江,杨作升,毛登,et al长江与黄河沉积物中粘土矿物及地化成分的组成[J].海洋地质与第四纪地质,2001,21(4):7-12.
    [159]范德江,杨作升,孙效功,et al东海陆架北部长江、黄河沉积物影响范围的定量估算[J].青岛海洋大学学报(自然科学版),2002,32(05):748-756.
    [160]陈涛,王欢,张祖青,et al粘土矿物对古气候指示作用浅析[J].岩石矿物学杂志,2003,22(004):416-420.
    [161]赵一阳,鄢明才.黄河,长江,中国浅海沉积物化学元素丰度比较[J].科学通报,1992,37(013):1202-1204.
    [162]杨守业,李从先.长江与黄河现代表层沉积物元素组成及其示踪作用[J].自然科学进展,1999,9(10):930-937.
    [163]杨守业,李从先.长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质,1999,19(02):19-25.
    [164]Yang SY, Li CX, Jung HS, et al. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China[J]. Marine Geology,2002,186(3-4):229-241.
    [165]杨守业,李从先,Hoi-soo J, et al中韩河流沉积物微量元素地球化学研究[J].海洋地质与第四纪地质,2003,23(02):19-24.
    [166]Yang SY, Lim DI, Jung HS, et al. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea[J]. Marine Geology,2004,206(1-4):41-53.
    [167]Yang S, Jung H-S, Li C. Two unique weathering regimes in the Changjiang and Huanghe drainage basins:geochemical evidence from river sediments[J]. Sedimentary Geology,2004, 164(1-2):19-34.
    [168]杨守业,Hoi-Soo J,李从先,et al黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征[J].地球化学,2004,33(1):99-105.
    [169]Lim DI, Jung HS, Choi JY, et al. Geochemical compositions of river and shelf sediments in the Yellow Sea:Grain-size normalization and sediment provenance[J]. Continental Shelf Research,2006,26(1):15-24.
    [170]刘明,范德江.长江、黄河入海沉积物中元素组成的对比[J].海洋科学进展,2009,27(01):42-50.
    [171]范德江,孙效功,杨作升,et al沉积物物源定量识别的非线性规划模型——以东海陆架北部表层沉积物物源识别为例[J].沉积学报,2002,20(01):30-33.
    [172]杨守业,李从先.长江与黄河沉积物ree地球化学及示踪作用[J].地球化学,1999,(04).
    [173]Yang SY, Jung HS, Choi MS, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002,201(2):407-419.
    [174]乔淑卿,杨作升.长江和黄河入海沉积物不同粒级组分中稀土元素的比较[J].海洋地质与第四纪地质,2007,27(06):9-16.
    [175]蒋富清,周晓静,李安春,et al.δEu_N-ΣREEs图解定量区分长江和黄河沉积物[J].中国科学(D辑:地球科学),2008,38(11):1460-1468.
    [176]杨守业,李从先,Lee CB, et al黄海周边河流的稀土元素地球化学及沉积物物源示踪[J].科学通报,2003,48(11):1233-1236.
    [177]Xu Z, Lim D, Choi J, et al. Rare earth elements in bottom sediments of major rivers around the Yellow Sea:implications for sediment provenance[J]. Geo-Marine Letters,2009,29(5): 291-300.
    [178]Song Y-H, Choi MS. REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea[J]. Chemical Geology,2009, In Press, Corrected Proof.
    [179]Cullen HM, deMenocal PB, Hemming S, et al. Climate change and the collapse of the Akkadian empire:Evidence from the deep sea[J]. Geology,2000,28(4):379-382.
    [180]Lee Jl, Park B-K, Jwa Y-J, et al. Geochemical characteristics and the provenance of sediments in the Bransfield Strait, West Antarctica[J]. Marine Geology,2005,219(2-3): 81-98.
    [181]Bentahila Y, Hebrard O, Ben Othman D, et al. Gulf of Guinea continental slope and Congo (Zaire) deep-sea fan:Sr"CPb isotopic constraints on sediments provenance from ZaiAngo cores[J]. Marine Geology,2006,226(3-4):323-332.
    [182]Cole J, Goldstein S, Demenocal P, et al. Contrasting compositions of Saharan dust in the eastern Atlantic Ocean during the last deglaciation and African Humid Period[J]. Earth and Planetary Science Letters,2009,278(3-4):257-266.
    [183]Singh P. Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India[J]. Chemical Geology,2009,269(3-4).
    [184]Singh P. Major, trace and REE geochemistry of the Ganga River sediments:Influence of provenance and sedimentary processes[J]. Chemical Geology,2009,266(3-4):242-255.
    [185]Asahara Y.87Sr/86Sr variation in north Pacific sediments:a record of the Milankovitch cycle in the past 3 million years[J]. Earth and Planetary Science Letters,1999,171(3): 453-464.
    [186]Stein M, Almogi-Labin A, Goldstein SL, et al. Late Quaternary changes in desert dust inputs to the Red Sea and Gulf of Aden from 87Sr/86Sr ratios in deep-sea cores[J]. Earth and Planetary Science Letters,2007,261(1-2):104-119.
    [187]Zhou H, Feng Y-x, Zhao J-x, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment[J]. Chemical Geology,2009,268(3-4):233-247.
    [188]aberg G. The use of natural strontium isotopes as tracers in environmental studies[J]. Water, Air,& Soil Pollution,1995,79(1):309-322.
    [189]Nohara M, Yokoto S, Saito Y. Sr-Nd isotopic and trace elements constrained on the origin of the sediments in the Yellow and the East China Seas:proceedings of the Proceedings of an international workshop on sediment transport and storage in coastal sea-ocean system, Tsukuba, Japan,1999[C]. STA (JISTEC)& Geological Survey of Japan.
    [190]孟宪伟,杜德文,陈志华,et al长江,黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义[J].地球化学,2000,29(6):562-569.
    [191]杨守业,蒋少涌,凌洪飞,et al长江河流沉积物Sr-Nd同位素组成与物源示踪[J].中国 科学d辑:(地球科学),2007,37(05):682-690.
    [192]Meng X, Liu Y, Shi X, et al. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers:Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China[J]. Frontiers of Earth Science in China,2008,2(4): 418-426.
    [193]乔淑卿,杨作升,李云海,et al长江和黄河河口沉积物中石英氧同位素的对比[J].海洋地质与第四纪地质,2006,26(03):15-19.
    [194]吕厚远,韩家懋.中国现代土壤磁化率分析及其古气候意义[J].中国科学:B辑,1994,24(012):1290-1297.
    [195]An Z. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews,2000,19(1-5):171-187.
    [196]孙有斌,孙东怀.灵台红粘土—黄土—古土壤序列频率磁化率的古气候意义[J].高校地质学报,2001,7(003):300-306.
    [197]胡守云.呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J].中国科学:D辑,1998,28(004):334-339.
    [198]汪卫国冯李张马安郭.蒙古北部Gun Nuur湖记录的全新世气候突发事件[J].科学通报,2004,49(01):27-33.
    [199]张卫国,戴雪荣,张福瑞,et al近7000年巢湖沉积物环境磁学特征及其指示的亚洲季风变化[J].第四纪研究,2007,27(006):1053-1062.
    [200]葛宗诗,南黄海QC-2孔磁化率研究[J].海洋地质与第四纪地质,1996,16(04):35-42.
    [201]刘健,李绍全,王圣洁,et al南黄海东北陆架YSDP-105孔冰消期以来沉积层序的磁学特征研究[J].海洋地质与第四纪地质,1997,17(4):13-24.
    [202]刘健,朱日样,李绍全,et al南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应[J].中国科学:D辑,2003,33(006):583-592.
    [203]Liu J, Zhu R, Li G. Rock magnetic properties of the fine-grained sediment on the outer shelf of the East China Sea:implication for provenance[J]. Marine Geology,2003,193(3-4): 195-206.
    [204]Liu J, Zhu R, Li T, et al. Sediment-magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough[J]. Marine Geology,2007, 239(1-2):19-31.
    [205]葛淑兰,石学法,朱日祥,et al南黄海EY02-2孔磁性地层及古环境意义[J].科学通报,2005,50(22):2531-2540.
    [206]时连强,李九发,张卫国,et al黄河三角洲飞雁滩HF孔沉积物的磁性特征及其环境意义[J].海洋学研究,2007,25(004):13-23.
    [207]张卫国,贾铁飞,陆敏,et al长江口水下三角洲Y7柱样磁性特征及其影响因素[J].第四纪研究,2007,27(006):1063-1071.
    [208]周开胜,孟翊,刘苍字,et al长江口北支兴隆沙XL2孔沉积物的磁性特征与沉积环境分析[J].沉积学报,2008,26(002):300-307.
    [209]王永红,沈焕庭,张卫国.长江与黄河河口沉积物磁性特征对比的初步研究[J].沉积学报,2004,22(004):658-663.
    [210]牛军利,杨作升,李云海,et al长江与黄河河口沉积物环境磁学特征及其对比研究[J].海洋科学,2008,32(04):24-30.
    [211]Zhang W, Xing Y, Yu L, et al. Distinguishing sediments from the Yangtze and Yellow Rivers, China:a mineral magnetic approach[J]. The Holocene,2008,18(7):1139-1145.
    [212]Wang Y, Yu Z, Li G, et al. Discrimination in magnetic properties of different-sized sediments from the Changjiang and Huanghe Estuaries of China and its implication for provenance of sediment on the shelf[J]. Marine Geology,2009,260(1-4):121-129.
    [213]葛淑兰,石学法,韩贻兵.南黄海海底沉积物的磁化率特征[J].科学通报,2001,46(S1):36-38.
    [214]李萍,李培英,张晓龙,et al冲绳海槽沉积物不同粒级的磁性特征及其与环境的关系[J].科学通报,2005,50(003):262-268.
    [215]李萍,李培英,徐兴永,et al冲绳海槽现代沉积物磁学性质分布特征与环境的关系[J].沉积学报,2007,25(05):753-758.
    [216]刘健,秦华峰,孔祥淮,et al黄东海陆架及朝鲜海峡泥质沉积物的磁学特征比较研究[J].第四纪研究,2007,27(006):1031-1039.
    [217]李铁刚,江波,孙荣涛,et al末次冰消期以来东黄海暖流系统的演化[J].第四纪研究,2007,27(6):945-954.
    [218]李铁刚李苍刘JHC. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建[J].海洋与湖沼,2000,31(06):588-595.
    [219]Kong GS, Park SC, Han HC, et al. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea[J]. Quaternary International,2006,144(1):38-52.
    [220]Liu J, Saito Y, Kong X, et al. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea[J]. Continental Shelf Research,2009,29(7):846-855.
    [221]Liu J, Li A, Chen M. Environmental evolution and impact of the Yellow River sediments on deposition in the Bohai Sea during the last deglaciation[J]. Journal of Asian Earth Sciences, 2010,38(1-2):26-33.
    [222]Liu J, Li A, Chen M, et al. Sedimentary changes during the Holocene in the Bohai Sea and its paleoenvironmental implication[J]. Continental Shelf Research,2008,28(10-11): 1333-1339.
    [223]孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步分析[J].科学通报,2003,48(1):83-86.
    [224]肖尚斌李蒋李黄徐.近2ka来东海内陆架的泥质沉积记录及其气候意义[J].科学通报,2004,49(21):2233-2238.
    [225]Xiao S, Li A, Liu JP, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,237:293-304.
    [226]徐方建,李安春,万世明,et al东海内陆架泥质区中全新世环境敏感粒度组分的地质意义[J].海洋学报,2009,31(3):95-102.
    [227]向荣,杨作升,Y.Saito, et al济州岛西南泥质区近2300a来环境敏感粒度组分记录的东亚冬季风变化[J].中国科学:D辑,2006,36(07):654-662.
    [228]Qiao S, Yang Z, Liu J, et al. Records of late-Holocene East Asian winter monsoon in the East China Sea:Key grain-size component of quartz versus bulk sediments[J]. Quaternary International,2010, In Press, Corrected Proof.
    [229]汪品先.全球季风的地质演变[J].科学通报,2009,(005):535-556.
    [230]孙千里,周杰,沈吉,et al北方环境敏感带岱海湖泊沉积所记录的全新世中期环境特征[J].中国科学(D辑:地球科学),2006,(09).
    [231]周静,王苏民,杨桂山,et al新仙女木事件及全新世早中期降温事件——来自洱海湖泊沉积的记录[J].气候变化研究进展,2006,(03).
    [232]Jiang WY, Liu TS. Timing and spatial distribution of mid-Holocene drying over northern China:Response to a southeastward retreat of the East Asian Monsoon[J]. J Geophys Res, 2007,112.
    [233]王维,马玉贞,冯兆东,et al蒙古国中部Ugii Nuur湖8660 a BP以来高分辨率孢粉记录及气候变化[J].科学通报,2009,54(04):469-478.
    [234]徐海,洪业汤.红原泥炭纤维素氧同位素指示的距今6ka温度变化[J].科学通报,2002,47(015):1181-1186.
    [235]Hong YT, Wang ZG, Jiang HB, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on a 丨A13C time series from peat cellulose[J]. Earth and Planetary Science Letters,2001,185(1-2):111-119.
    [236]洪冰,刘丛强,林庆华,et al哈尼泥炭6180记录的过去14000年温度演变[J].中国科学D辑,2009,39(5):626-637.
    [237]Fleitmann D, Burns SJ, Mudelsee M, et al. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman[J]. Science,2003,300(5626):1737-1739.
    [238]Zhang P, Cheng H, Edwards RL, et al. A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record[J]. Science,2008,322(5903):940-942.
    [239]Thompson LG, Yao T, Davis ME, et al. Tropical Climate Instability:The Last Glacial Cycle from a Qinghai-Tibetan Ice Core[J]. Science,1997,276(5320):1821-1825.
    [240]姚檀栋,Thompson L敦德冰芯记录与过去5ka温度变化[J].中国科学B辑,1992,10:1089-1093.
    [241]Ding Z, Liu T, Rutter N, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years[J]. Quaternary Research,1995,44(2):149-159.
    [242]Ding YH. Study on the test of the South China Sea monsoon and the East China monsoon [M]. The leading edge and prospect of modern atmospheric science. Beijing; China Meteorological Press.1996:43-46.
    [243]刘锡清,丛鸿文.黄海地形特征[M].北京:地质出版社,1997:8-12.
    [244]许东禹,刘锡清.中国近海地质[M].地质出版社,1997.
    [245]李家彪.东海区域地质[M].北京:海洋出版社,2008.
    [246]郭炳火,许建平.中国近海环流[M]//苏纪兰.中国近海水文.北京;海洋出版社.2005:174-182.
    [247]Liu SM, Hong GH, Zhang J, et al. Nutrient budgets for large Chinese estuaries[J]. Biogeosciences,2009,6(10):2245-2263.
    [248]俞旭,江超华.现代海洋沉积矿物及其X射线衍射研究[M].北京:科学出版社,1984:1-63.
    [249]李晶莹,张经.中国主要流域盆地风化剥蚀率的控制因素[J].地理科学,2003,23(04):434-440.
    [250]陈静生,李远辉,乐嘉祥,et al我国河流的物理与化学侵蚀作用[J].科学通报,1984,29(15):932-936.
    [251]Li J, Zhang J. Chemical weathering processes and atmospheric CO2 consumption of Huanghe River and Changjiang River basins[J]. Chinese Geographical Science,2005,15(1): 16-21.
    [252]杨作升,李国刚,王厚杰,et al55年来黄河下游逐日水沙过程变化及其对干流建库的响应[J].海洋地质与第四纪地质,2008,28(06):9-18.
    [253]Zhang J, Huang WW, Liu MG, et al. Drainage Basin Weathering and Major Element Transport of Two Large Chinese Rivers (Huanghe and Changjiang)[J]. J Geophys Res,1990, 95.
    [254]Chen J, Wang F, Xia X, et al. Major element chemistry of the Changjiang (Yangtze River)[J]. Chemical Geology,2002,187(3-4):231-255.
    [255]Yang Z, Wang H, Saito Y, et al. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea:The past 55 years and after the Three Gorges Dam[J]. Water Resour Res,2006,42.
    [256]Hu B, Yang Z, Wang H, et al. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea[J]. Hydrol Earth Syst Sci,2009, 13(11):2253-2264.
    [257]Wang H, Yang Z, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):Impacts of climate change and human activities[J]. Global and Planetary Change,2007,57(3-4):331-354.
    [258]刘东生.黄土与环境[J].1985.
    [259]陈骏,季峻峰,仇纲,et al陕西洛川黄土化学风化程度的地球化学研究[J].中国科学:D辑,1997,27(006):531-536.
    [260]Diekmann B, Kuhn G. Sedimentary record of the mid-Pleistocene climate transition in the southeastern South Atlantic (ODP Site 1090)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,182:241-258.
    [261]Wang X, Miao X. Weathering history indicated by the luminescence emissions in Chinese loess and paleosol[J]. Quaternary Science Reviews,2006,25(13-14):1719-1726.
    [262]陈志华石王.南黄海表层沉积物碳酸盐及Ca、Sr、Ba分布特征[J].海洋地质与第四纪地质,2000,20(04):9-16.
    [263]Li G, Chen J, Chen Y, et al. Dolomite as a tracer for the source regions of Asian dust[J]. J Geophys Res,2007,112(D17):D17201.
    [264]Ravaioli M, Alvisi F, Vitturi LM. Dolomite as a tracer for sediment transport and deposition on the northwestern Adriatic continental shelf (Adriatic Sea, Italy)[J]. Continental Shelf Research,2003,23(14-15):1359-1377.
    [265]范德江.长江黄河入海沉积物组成、海洋改造作用及有效识别[D].青岛:中国海洋大学,2000.
    [266]陈木宏,郑范,陆钧,et al南海西南陆坡区沉积物粒级指标的物源特征及古环境意义[J].科学通报,2005,50(007):684-690.
    [267]张海龙,邢磊,赵美训,et al东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力[J].中国海洋大学学报,2008,38(006):992-996.
    [268]Wright L, Yang Z, Bornhold B, et al. Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front[J]. Geo-Marine Letters,1986,6(2):97-105.
    [269]Wright LD, Wiseman Jr WJ, Yang ZS, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River)[J]. Continental Shelf Research,1990,10(1):1-40.
    [270]Wright LD, Wiseman WJ, Bornhold BD, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature,1988,332(6165):629-632.
    [271]Li G, Tang Z, Yue S, et al. Sedimentation in the shear front off the Yellow River mouth[J]. Continental Shelf Research,2001,21(6-7):607-625.
    [272]Qiao LL, Bao XW, Wu DX, et al. Numerical study of generation of the tidal shear front off the Yellow River mouth[J]. Continental Shelf Research,2008.
    [273]Wang H, Yang Z, Li Y, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Continental Shelf Research,2007,27(6): 854-871.
    [274]Bi N, Yang Z, Wang H, et al. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period[J]. Estuarine, Coastal and Shelf Science,2010,86(3):352-362.
    [275]Qiao S, Shi X, Zhu A, et al. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea[J]. Estuarine, Coastal and Shelf Science,2010,86(3):337-344.
    [276]李国胜,王海龙,董超.黄河入海泥沙输运及沉积过程的数值模拟[J].地理学报,2005,60(5):707-716.
    [277]秦蕴珊,李凡.黄河入海泥沙对渤海和黄海沉积作用的影响[J].海洋科学集刊,1986,27:125-136.
    [278]孔祥淮,刘健,李巍然,et al山东半岛东北部滨浅海区表层沉积物的稀土元素及其物源判别[J].海洋地质与第四纪地质,2007,27(3):3.
    [279]孔祥淮,刘健,李巍然,et al山东半岛东北部滨浅海区表层沉积物粒度及矿物成分[J].海洋地质与第四纪地质,2006,26(003):21-29.
    [280]王伟,李安春,徐方建,et al北黄海表层沉积物粒度分布特征及其沉积环境分析[J].海洋与湖沼,2009,40(05):525-531.
    [281]Qin Y-S, Li F. Study of influence of sediment loads discharged from the Huanghe River on sedimentation in the Bohai Sea and Huanghai Sea:proceedings of the ProcIntSympon Sedimentation on the continental shelf with special reference to the East China Sea,1983[C]. China Ocean Press.
    [282]Jiang W, Pohlmann T, Sundermann J, et al. A modelling study of SPM transport in the Bohai Sea[J]. Journal of Marine Systems,2000,24(3-4):175-200.
    [283]Yang ZS, Milliman JD, Galler J, et al. Yellow River's Water and Sediment Discharge Decreasing Steadily[J]. EosTransactions,1998,79(48):589-592.
    [284]Cheng P, Gao S, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis[J]. Estuarine, Coastal and Shelf Science,2004,60(2): 203-212.
    [285]赵一阳,陈毓蔚.试论南黄海中部泥的物源及成因[J].地球化学,1991,2:112-117.
    [286]赵一阳朴秦高张于.南黄海沉积学研究新进展——中韩联合调查[J].海洋科学,1998, (01):34-37.
    [287]魏建伟,石学法,辛春英,et al南黄海黏上矿物分布特征及其指示意义[J].科学通报,2001,46(S1):30-33.
    [288]蔡德陵,石学法,周卫健,et al南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据[J].科学通报,2001,46(S1):16-23.
    [289]蓝先洪,王红霞,李日辉,et al南黄海沉积物常量元素组成及物源分析[J].地学前缘,2007,14(04):197-203.
    [290]蓝先洪,张训华,张志殉.南黄海沉积物的物质来源及运移研究[J].海洋湖沼通报,2005,(04):53-60.
    [291]Yang S, Youn J-S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology,2007,243(1-4):229-241.
    [292]张志忠,李双林,董岩翔,et al浙江近岸海域沉积物沉积速率及地球化学[J].海洋地质与第四纪地质,2005,25(003):15-24.
    [293]郭志刚,杨作升,曲艳慧,et al东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究[J].海洋与湖沼,1999,30(04):421-426.
    [294]刘升发.全新世以来东海内陆架泥质区沉积作用及古环境演变[D].青岛,2009.
    [295]叶菁.长江口外冬季颗粒物“源-汇”效应初探[D]:中国海洋大学,2006.
    [296]Hung J-J, Chan C-L, Gong G-C. Summer distribution and geochemical composition of suspended-particulate matter in the east china sea[J]. Journal of Oceanography,2007,63(2): 189-202.
    [297]郭志刚,张东奇.冬,夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J].海洋学报,2002,24(5):71-80.
    [298]Hughen B, McCormac G, van der Plicht J, et al. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP[J]. Radiocarbon,1998,40(3):1041-1083.
    [299]Zong Y. Mid-Holocene sea-level highstand along the Southeast Coast of China[J]. Quaternary International,2004,117(1):55-67.
    [300]Saito Y, Yang Z, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas:a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology,2001,41(2-3):219-231.
    [301]Hori K, Saito Y, Zhao Q, et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China[J]. Geomorphology,2001,41(2-3):233-248.
    [302]Hori K, Saito Y, Zhao Q, et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression[J]. Marine Geology,2001,177(3-4): 331-351.
    [303]Hori K, Saito Y, Zhao Q, et al. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China[J]. Sedimentary Geology,2002,146(3-4):249-264.
    [304]Li C, Wang P, Sun H, et al. Late Quaternary incised-valley fill of the Yangtze delta (China): its stratigraphic framework and evolution[J]. Sedimentary Geology,2002,152(1-2): 133-158.
    [305]李保华,沈焕庭.冰后期长江三角洲沉积通量的初步研究[J].中国科学:D辑,2002,32(009):776-782.
    [306]王张华,Jingpu Paul L,赵宝成.全新世长江泥沙堆积的时空分布及通量估算[J].古地理学报,2007,9(04):419-429.
    [307]李从先,范代读.全新世长江三角洲的发育及其对相邻海岸沉积体系的影响[J].古地理学报,2009,11(01):115-122.
    [308]朱玉荣.潮流在长江三角洲形成发育过程中所起作用的探讨[J].海洋通报,1999,18(002):1-10.
    [309]Ren M-e, Zhu X. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene[J]. The Holocene,1994,4(3):314-320.
    [310]Xue C. Historical changes in the Yellow River delta, China[J]. Marine Geology,1993, 113(3-4):321-330.
    [311]Xue C, Zhu Z, Lin H. Holocene sedimentary sequence, foraminifera and ostracoda in west coastal lowland of Bohai Sea, China[J]. Quaternary Science Reviews,1995,14(5):521-530.
    [312]Shi C, Dian Z, You L. Changes in sediment yield of the Yellow River basin of China during the Holocene[J]. Geomorphology,2002,46(3-4):267-283.
    [313]谭其骧.西汉以前的黄河下游河道[J].历史地理(创刊号),1980:48-64.
    [314]杨子庚.南黄海陆架晚更新世以来的沉积及环境[J].海洋地质与第四纪地质,1985,5(4):1-19.
    [315]杨子庚Olduvai亚时南黄海沉积层序及古地理变迁[J].地质学报,1993,67(4):357-366.
    [316]薛春汀,周永青,朱雄华.晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J].海洋学报,2004,26(1):48-61.
    [317]Dykoski CA, Edwards RL, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters,2005,233(1-2):71-86.
    [318]Marsset T, Xia D, Berne S, et al. Stratigraphy and sedimentary environments during the Late Quaternary, in the Eastern Bohai Sea (North China Platform)[J]. Marine Geology, 1996,135(1-4):97-114.
    [319]孙千里,肖举乐.岱海沉积记录的季风/干旱过渡区全新世适宜期特征[J].第四纪研究,2006,26(05):781-790.
    [320]安成邦,冯兆东,唐领余.黄土高原西部全新世中期湿润气候的证据[J].科学通报,2003,48(021):2280-2287.
    [321]朱诚,卢春成.长江三角洲及苏北沿海地区7000年以来海岸线演变规律分析[J].地理科学,1996,16(003):207-214.
    [322]凌申.全新世以来江苏中部地区海岸的淤进[J].台湾海峡,2006,(03).
    [323]Yancheva G, Nowaczyk NR, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature,2007,445(7123):74-77.
    [324]Sawada K, Handa N. Variability of the path of the Kuroshio ocean current over the past 25,000 years[J]. Nature,1998,392(6676):592-595.
    [325]Saito Y, Wei H, Zhou Y, et al. Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China[J]. Journal of Asian Earth Sciences,2000,18(4):489-497.
    [326]袁仲翔.黄河流域综述[M].河南人民出版社,1998.
    [327]Folk R, Ward W. Brazos River bar:a study in the significance of grain size parameters[J]. Journal of sedimentary petrology,1957,27(1):3-26.
    [328]Hughen K, Baille M, Bard E, et al. Marine04 Marine radiocarbon age calibration,26? 0 ka BP[J]. Journal Name:Radiocarbon; Journal Volume:46; Journal Issue:3,2004:Medium: ED; Size:PDF-file:37 pages; size:30.37 Mbytes.
    [329]孙东怀.古环境中沉积物粒度组分分离的数学方法及其应用[J].自然科学进展,2001,11(003):269-276.
    [330]Weltje G. End-member modeling of compositional data:Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology,1997,29(4):503-549.
    [331]Boulay S, Colin C, Trentesaux A, et al. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,228(3-4): 260-277.
    [332]Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144):proceedings of the Proc ODP, Sci Results,2003 [C].
    [333]陈国成,郑洪波,李建如,et al南海西部陆源沉积粒度组成的控制动力及其反映的东亚季风演化[J].科学通报,2007,52(023):2768-2776.
    [334]张存勇,冯秀丽.连云港近岸海域沉积物粒度空间分布特征及其分析[J].海洋学报,2009,(004):120-127.
    [335]Fowell SJ, Hansen BCS, Peck JA, et al. Mid to late holocene climate evolution of the lake telmen basin, north central mongolia, based on palynological data[J]. Quaternary Research, 2003,59(3):353-363.
    [336]王淑云,吕厚远,刘嘉麒,et al湖光岩玛珥湖高分辨率孢粉记录揭示的早全新世适宜期环境特征[J].科学通报,2007,52(011):1285-1291.
    [337]王华洪朱林冷毛.红原泥炭腐殖化度记录的全新世气候变化[J].地质地球化学,2003,31(02):51-56.
    [338]谢远云李王殷.江汉平原6000年以来的古降水变化:江陵剖面沉积物粒度记录[J].海洋地质与第四纪地质,2005,25(03):119-124.
    [339]施雅风,孔昭宸.中国全新世大暖期的气候波动与重要事件[J].中国科学:B辑,1992,(012):1300-1308.
    [340]吴文祥,刘东生.5500aBP气候事件在三大文明古国古文明和古文化演化中的作用[J].地学前缘,2002,9(001):155-162.
    [341]Yamamoto N, Kitamura A, Irino T, et al. Climatic and hydrologic variability in the East China Sea during the last 7000 years based on oxygen isotope records of the submarine cavernicolous micro-bivalve Carditella iejimensis[J]. Global and Planetary Change,2010, In Press, Corrected Proof.
    [342]洪业汤,姜洪波,陶发祥,et al近5ka年温度的金川泥炭6180记录[J].中国科学d辑, 1997,27(6):525-530.
    [343]deMenocal PB. Cultural Responses to Climate Change During the Late Holocene[J]. Science,2001,292(5517):667-673.
    [344]Weiss H, Courty M-A, Wetterstrom W, et al. The Genesis and Collapse of Third Millennium North Mesopotamian Civilization[J]. Science,1993,261(5124):995-1004.
    [345]Staubwasser M, Sirocko F, Grootes PM, et al. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability[J]. Geophys Res Lett,2003,30.
    [346]Migowski C, Stein M, Prasad S, et al. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record[J]. Quaternary Research,2006,66(3): 421-431.
    [347]Wu W, Liu T. Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China[J]. Quaternary International,2004,117(1):153-166.
    [348]An C-B, Tang L, Barton L, et al. Climate change and cultural response around 4000 cal yr B.P. in the western part of Chinese Loess Plateau[J]. Quaternary Research,2005,63(3): 347-352.
    [349]谭亮成,安芷生,蔡演军,et al.4.2 ka BP气候事件在中国的降雨表现及其全球联系[J].地质论评,2008,54(001):94-104.
    [350]竺可桢.中国近5000年来气候变迁的初步研究[J].中国科学,1973,2:168-189.
    [351]Wang P, Clemens S, Beaufort L, et al. Evolution and variability of the Asian monsoon system:state of the art and outstanding issues[J]. Quaternary Science Reviews,2005, 24(5-6):595-629.
    [352]Nakagawa T, Okuda M, Yonenobu H, et al. Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms[J]. Geology,2008,36(6):491-494.
    [353]段福才,汪永进,董进国,et al.13ka以来东亚夏季风演变过程和全新世适宜期问题[J].地球化学,2009,38(02):105-113.
    [354]Zhang De, Lu L. Anti-correlation of summer/winter monsoons?[J]. Nature,2007,450(7168): E7-E8.
    [355]周波涛,赵平.古东亚冬季风和夏季风反位相变化吗?[J].科学通报,2009,54(20):3136~3143.
    [356]Kutzbach JE. Monsoon Climate of the Early Holocene:Climate Experiment with the Earth's Orbital Parameters for 9000 Years Ago[J]. Science,1981,214(4516):59-61.
    [357]Lorenz SJ, Kim J-H, Rimbu N, et al. Orbitally driven insolation forcing on Holocene climate trends:Evidence from alkenone data and climate modeling[J]. Paleoceanography, 2006,21(1):PA1002.
    [358]Tan M, Liu T, Hou J, et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophys Res Lett,2003,30.
    [359]吴江滢,邵晓华,孔兴功,et al盛冰期太阳活动在南京石笋年层序列中的印迹[J].科学通报,2006,51(004):431-435.
    [360]Neff U, Burns SJ, Mangini A, et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6[thinsp]kyr ago[J]. Nature,2001,411(6835):290-293.
    [361]Agnihotri R, Dutta K, Bhushan R, et al. Evidence for solar forcing on the Indian monsoon during the last millennium[J]. Earth and Planetary Science Letters,2002,198(3-4):521-527.
    [362]Speranza A, van Geel B, van der Plicht J. Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence[J]. Global and Planetary Change,2003,35(1-2): 51-65.
    [363]Tan L, Cai Y, Yi L, et al. Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity[J]. Clim Past,2008,4(1): 19-28.
    [364]Tan L, Cai Y, Cheng H, et al. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,280(3-4):432-439.
    [365]Liu X, Dong H, Yang X, et al. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau[J]. Earth and Planetary Science Letters,2009,280(1-4):276-284.
    [366]Moy CM, Seltzer GO, Rodbell DT, et al. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature,2002,420(6912): 162-165.
    [367]Gagan MK, Hendy EJ, Haberle SG, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nino-Southern oscillation[J]. Quaternary International,2004,118-119: 127-143.
    [368]Langton SJ, Linsley BK, Robinson RS, et al.3500 yr record of centennial-scale climate variability from the Western Pacific Warm Pool[J]. Geology,2008,36(10):795-798.
    [369]Clement A, Seager R, Cane M. Suppression of El Nino during the mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography,2000,15(6):731C737.
    [370]Rein B, L"1ckge A, Reinhardt L, et al. El Ni o variability off Peru during the last 20,000 years[J]. Paleoceanography,2005,20(4):18.
    [371]Tudhope A, Chilcott C, McCulloch M, et al. Variability in the El Nino-Southern Oscillation through a glacial-interglacial cycle[J]. Science,2001,291(5508):1511.
    [372]邱庆伦,吴江滢,李明霞,et al中全新世持续近600年的湖北神农架石笋年纹层[J].第四纪研究,2006,26(5):835-842.
    [373]徐建军,朱乾根.东亚季风的准两年振荡及其与ENSO变率的联系[J].南京气象学院学报,1998,21(001):23-31.
    [374]李崇银,穆明权.东亚冬季风—暖池状况—ENSO循环的关系[J].科学通报,2000,45(007):678-685.
    [375]Sakai K, Kawamura R. Remote response of the East Asian winter monsoon to tropical forcing related to El Nino–Southern Oscillation[J]. J Geophys Res,2009,114(D6): D06105.
    [376]Li C. Interaction between anomalous winter monsoon in East Asia and El Nino events[J]. Advances in Atmospheric Sciences,1990,7(1):36-46.
    [377]李崇银,穆明权ENSO—7赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的循环[J].地球科学进展,2002,17(005):631-638.
    [378]李跃清,李崇银,黄荣辉.SVD相空间分析方法及其在海气耦合关系中的初步应用[J].高原气象,2003,22(B10):17-23.
    [379]Koutavas A, deMenocal PB, Olive GC, et al. Mid-Holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments[J]. Geology,2006,34(12):993-996.
    [380]Donders T, Wagner-Cremer F, Visscher H. Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability[J]. Quaternary Science Reviews, 2008,27(5-6):571-579.
    [381]Berger A, Loutre M. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews,1991,10(4):297-317.
    [382]Steinhilber F, Beer J, Fr hlich C. Total solar irradiance during the Holocene[J]. The Holocene,2009,36(L19704).
    [383]刘明,徐琳,张爱斌,et al台式偏振X射线荧光光谱仪在海洋沉积物元素分析中的应用[J].中国海洋大学学报,2009,39(Sup.Ⅱ):421-427.
    [384]Singh M, Sharma M, Tobschall HJ. Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River[J]. Applied Geochemistry,2005, 20(1):1-21.
    [385]徐方建,李安春,万世明,et al东海内陆架陆源物质矿物组成对粒度和地球化学成分的制约[J].地球科学(中国地质大学学报),2009,34(04):613-622.
    [386]Wehausen R, Brumsack H-J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments[J]. Earth and Planetary Science Letters,2002,201(3-4):621-636.
    [387]Wei G, Liu Y, Li X, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications[J]. Paleoceanography,2003,18.
    [388]Wei G, Liu Y, Li X-h, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,212(3-4):331-342.
    [389]Sun Y, Wu F, Clemens SC, et al. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle[J]. Chemical Geology,2008, 257(3-4):240-246.
    [390]Nesbitt WH, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta,1997,61(8):1653-1670.
    [391]McLennan S. Weathering and global denudation[J]. The Journal of Geology,1993,101(2): 295-303.
    [392]Nesbitt H, Young G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984,48(7):1523-1534.
    [393]王中波,杨守业,李从先.南黄海中部沉积物岩芯常量元素组成与古环境[J].地球化学,2004,33(05):483-490.
    [394]Yang S, Yim WWS, Huang G. Geochemical composition of inner shelf Quaternary sediments in the northern South China Sea with implications for provenance discrimination and paleoenvironmental reconstruction[J]. Global and Planetary Change,2008,60(3-4): 207-221.
    [395]王顺华,张国栋,张纪双,et al.东海内陆架泥质沉积Rb和Sr的地球化学及其古气候意义[J].科技导报(北京),2007,25(003):22-27.
    [396]Zabel M, Bickert T, Dittert L, et al. Significance of the Sedimentary Al: Ti Ratio as an Indicator for Variations in the Circulation Patterns of the Equatorial North Atlantic[J]. Paleoceanography,1999,14.
    [397]Zabel M, Schneider R, Wagner T, et al. Late Quaternary climate changes in central Africa as inferred from terrigenous input to the Niger Fan[J]. Quaternary Research,2001,56(2): 207-217.
    [398]Nesbitt HW, Young GM. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885):715-717.
    [399]Taylor SR, McLennan SM. The continental crust:Its composition and evolution[M].1985: Medium:X; Size:Pages:328.
    [400]Rosell-Mele A, Carter J, Eglinton G. Distributions of long-chain alkenones and alkyl alkenoates in marine surface sediments from the North East Atlantic[J]. Organic Geochemistry,1994,22(3-5):501-509.
    [401]Prahl FG, Wakeham SG. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment[J]. Nature,1987,330(6146):367-369.
    [402]Muller PJ, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta,1998,62(10):1757-1772.
    [403]Rosell-Mele A, Eglinton G, Pflaumann U, et al. Atlantic core-top calibration of the U37K index as a sea-surface palaeotemperature indicator[J]. Geochimica et Cosmochimica Acta, 1995,59(15):3099-3107.
    [404]Herbert TD. Review of alkenone calibrations (culture, water column, and sediments)[J]. Geochem Geophys Geosyst,2001,2(2).
    [405]Zhou H, Li T, Jia G, et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,246(2-4):440-453.
    [406]Yu H, Liu Z, Berne S, et al. Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,281(1-2):154-164.
    [407]南青云.25k a BP以来黑潮流域古环境演化对高频全球变化事件的响应[D].青岛:中国科学院研究生院(海洋研究所),2008.
    [408]刘振夏,李铁刚,黄奇瑜,et al冲绳海槽5万年以来的古气候事件[J].科学通报,2000,45(16):1776-1781.
    [409]刘振夏,Saito Y,李铁刚,et al冲绳海槽晚第四纪千年尺度的古海洋学研究[J].科学通报,1999,44(8):883-887.
    [410]常凤鸣.冲绳海槽晚更新世——全新世的古环境演化[D].青岛:中国科学院研究生院(海洋研究所),2004.
    [411]Sun Y, Oppo DW, Xiang R, et al. Last deglaciation in the Okinawa Trough:Subtropical northwest Pacific link to Northern Hemisphere and tropical climate[J]. Paleoceanography, 2005,20.
    [412]Kim J-H, Rimbu N, Lorenz SJ, et al. North Pacific and North Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews,2004, 23(20-22):2141-2154.
    [413]周厚云,李铁刚,贾国东,et al应用长链不饱和烯酮重建末次间冰期以来冲绳海槽中部sst变化[J].海洋与湖沼,2007,(05).
    [414]Li B, Jian Z, Wang P. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years[J]. Marine Micropaleontology,1997, 32(1):59-69.
    [415]Ujiie H, Ujiie Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean[J]. Marine Micropaleontology,1999,37(1):23-40.
    [416]Lin Y-S, Wei K-Y, Lin I-T, et al. The Holocene Pulleniatina Minimum Event revisited: Geochemical and faunal evidence from the Okinawa Trough and upper reaches of the Kuroshio current[J]. Marine Micropaleontology,2006,59(3-4):153-170.
    [417]Ujiie Y, Ujiie H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years:evidence from planktonic foraminifera[J]. Marine Micropaleontology,2003,49(4):335-364.
    [418]黄小慧,王汝建,翦知渭,et al全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J].地球科学进展,2009,24(06):652-661.
    [419]Yamamoto M. Response of mid-latitude North Pacific surface temperatures to orbital forcing and linkage to the East Asian summer monsoon and tropical ocean-atmosphere interactions[J]. Journal of Quaternary Science,2009,24(8):836-847.
    [420]Yamamoto M, Suemune R, Oba T. Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation[J]. Geophys Res Lett,2005,32.
    [421]李铁刚,孙荣涛,张德玉,et al晚第四纪对马暖流的演化和变动:浮游有孔虫和氧碳同位素证据[J].中国科学:D辑,2007,37(005):660-669.
    [422]Kawahata H, Ohshima H, Shimada C, et al. Terrestrial--oceanic environmental change in the southern Okhotsk sea during the Holocene[J]. Quaternary International,2003,108(1): 67-76.
    [423]Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch[J]. Nature,2004,431(7004):56-59.
    [424]Xu L, Wu D, Lin X, et al. The Study of the Yellow Sea Warm Current and Its Seasonal Variability[J]. Journal of Hydrodynamics, Ser B,2009,21(2):159-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700