用户名: 密码: 验证码:
污泥吸附除磷脱氮工艺及其数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳源城市废水中的有机物较少,碳、氮与碳、磷的浓度比例小,使得反硝化菌和聚磷菌(phosphate accumulating organisms,即PAOs)之间对碳源的需求矛盾凸显,大部分城市污水处理厂的现有生物工艺很难满足高效除磷脱氮对碳源的要求,导致外排水中氮磷浓度超标,有效处理低有机物浓度、高氮磷含量的污水对传统生物除磷脱氮工艺而言成为极大的挑战。因此,进行此类污水的达标治理成为当前环保界所面临的行业性难题,也是目前的研究热点之一。
     本论文的研究工艺为污泥吸附除磷脱氮工艺,是基于污泥吸附特性提出的一种碳源需求量低的活性污泥法工艺,采用污泥吸附+厌氧+多级好氧/缺氧的运行方式。回流污泥和进水同时进入污泥吸附池,利用活性污泥的吸附性能,将进水中的部分CODC“r贮存”在污泥中,吸附后污泥进入厌氧段释磷,污泥浓度较高,厌氧释磷时间缩短;上清液分多点配入多级好氧/缺氧段,提高厌氧池以及整个处理系统的平均污泥浓度,促进PAOs、硝化菌、反硝化菌等目的菌群的增殖优势;进水点设置在缺氧段,为反硝化菌提供有机碳源;同时多级好氧缺氧的运行方式,使得硝化产物随即在缺氧段被消耗,避免对硝化和吸磷过程产生抑制作用。
     本论文分别从活性污泥吸附有机物的特性和PAOs的厌氧释磷机理出发,提出了污泥吸附模型和一种新的厌氧释磷模型,并通过实验研究与数据拟合分别对模型进行分析。利用模型和实验,研究了污泥吸附除磷脱氮工艺的运行参数,考察了污泥吸附除磷脱氮工艺的除磷脱氮能力,并分析了工艺系统中活性污泥的生物相和微生物菌群。主要研究成果如下:
     (1)提出了污泥吸附模型S t= S 0' e-kT。
     其中,S0 '为0时刻污水中的CODCr浓度,单位mg/L;k为污泥对污水中CODCr的吸附速率常数,与污水中的有机物种类、污泥浓度、污泥特性等因素有关,单位min-1。
     模型分析表明,污泥浓度越高、污泥的吸附效果越好;吸附时间越长,污泥的吸附性也得到加强,其中污泥浓度对吸附效果的影响比吸附时间对吸附效果的影响更明显。在一定范围内,有机物浓度对污泥吸附效果的影响不明显。通过污泥吸附实验,进行了污泥吸附模型的拟合,结果表明该模型能较好地描述不同污泥浓度条件下的污泥对有机物的吸附过程。
     (2)提出了一种新的厌氧释磷模型/[1 ( 0 ) / 0]其中, P0为0时刻系统内的TP浓度,单位mg/L; Pm为最大可释磷质量浓度,单位mg/L,与PAOs在污泥中的比例及其特性有关;K为PAOs厌氧释磷常数,单位L/(mg·min),与污泥浓度、有机物种类有关。
     通过厌氧释磷实验,进行了厌氧释磷模型的拟合,结果表明该模型能较好地描述不同污泥浓度条件下PAOs的厌氧释磷过程。厌氧释磷常数K受PAOs性状、污泥浓度、有机物种类以及可释磷量等因素的综合影响。实验条件下,厌氧释磷常数K值在0.01~0.02 L/(mg·min)范围内。
     (3)提出了“污泥吸附+厌氧+多级好氧/缺氧”新工艺。利用污泥吸附模型、厌氧释磷模型和实验手段,研究了污泥吸附除磷脱氮工艺的运行参数,运行参数定为:污泥吸附时间22 min,回流比0.8,好氧缺氧级数五级,上清液分配比例100%,溶解氧浓度2.5 mg/L~3.0 mg/L,污泥龄20 d
     (4)实验研究表明,污泥吸附除磷脱氮工艺系统具有较好的除磷脱氮能力,NH3-N、TN和TP去除率分别在91.7%、89.1%和87.2%左右。出水TP指标达到《国家城镇污水处理厂污染物排放标准》(GB18918-2002)一级B出水标准,其他水质指标均达到一级A出水标准。
     (5)污泥吸附除磷脱氮工艺实验系统中的沿程水质变化表明,系统中碳源分配较为合理、污泥浓度高、厌氧释磷效率高、缺氧区前后端存在NH3-N浓度差。在相同的实验运行参数条件下,污泥吸附除磷脱氮工艺的除磷脱氮效果优于传统A~2/O工艺的除磷脱氮效果。
     在出水水质(除TP外)达到《国家城镇污水处理厂污染物排放标准》(GB18918-2002)一级A出水标准的前提下,污泥吸附除磷脱氮工艺所能处理城市废水的最低碳氮比3。(6)通过污泥生物相观察和菌群选择培养,发现污泥吸附除磷脱氮工艺实验系统中具有较多的硝酸菌、亚硝酸菌和反硝化菌。与其他工艺相比,污泥吸附除磷脱氮工艺实验系统中的硝酸菌和反硝化菌数量较少,但亚硝酸菌较多。
Municipal sewage with low carbon source increases the contradictions between denitrification and phosphorus release. In most municipal sewage treatment plants, effluent qualities could not reach the present criterions, because the carbon source is too little to meet the demanding of conventional biological treatment processes. How to achieve an effective treatment efficiency becomes a great problem in the treatment of municipal wastewater with low carbon source.
     In this paper, a nutrient removal process by sludge adsorption was employed for the treatment of municipal wastewater with low C/N ratio. The whole flow included sludge adsorption stage, anaerobic phosphorus release stage, as well as multiple aerobic nitrification and anoxic denitrification stage. Influent and returned sludge were pumped into sludge adsorption tank, in which influent CODCr was adsorped by activated sludge. After sedimentation, the adsorption sludge flowed into anaerobic zone for phosphorus release, and the adsorption supernatant was distributed to multiple aerobic and anoxic zones,. By doing so, the sludge concentration in the whole system could be increased, which was preferable for the proliferation of phosphate accumulating organisms (PAOs) and nitrifiers. Supernatant was distributed into anoxic zones to supply carbon source for denitrifiers. By the operation mode of multiple aerobic and anoxic reactions, NO3-N and NO2-N produced by nitrification were consumed in anoxic zones in time, avoiding its inhibitation on nitrification and aerobic phoshorus accumulation.
     Based on the mechanisms of sludge adsorption and phosphorus release, both the model on sludge adsorption and the model on phosphorus release were put forward and analyzed by experimental studies and data fitting. With the two models, sludge adsorption time and phosphorus release time were determined. The technical research on the experimental nutrient removal process by sludge adsorption was carried out in the conditions determined by experiments. With microbiological analysis, the sludge characteristics and floras were analyzed. The chief achievements are as follows.
     (1) Put forward the sludge adsorption model as S t= S 0' e-kT, in which, S0 ' was initial CODCr concentration, and k was the adsorption rate constant, which was related to sludge concentration, organics variety, and so on.
     From the model, the sludge adsorption effect was influenced by sludge concentration and adsorption time, with the sludge concentration as the chief factor. By fitting analysis, the sludge adsorption model could well describe the sludge adsorption process.
     (2) Put forward a new phosphorus release model as in which, Pm was maximum TP concentration in PAOs that could be released, P0 was initial TP concentration, and K was the phosphorus release rate constant. From the model, phosphorus release effect was influenced by sludge concentration, as well as release time and organics variety. High sludge concentration and long release time were beneficial for phosphorus release. By fitting analysis, the phoshorus release model could well describe the phosphorus release process. The phosphorus release rate constant was related to PAOs characteristics, sludge concentration, organics variety and TP concentration in PAOs that could be released. In the experimental conditions, the value of K was between 0.01~0.02 L/(mg·min).
     (3) Put forward a new activate sludge process for nutrient removal, which was the nutrient removal process by sludge adsorption. According to the sludge adsorption model and the phosphorus release model, the design parameters for the nutrient removal processs by sludge adsorption were determined, with the adsorption time 22 min, and anaerobic phosphorus release time 50 min. The sludge concentration was high to 10 g/L, so the phosphorus release time was greatly decreased.
     From the experimental results, the operation parameters were set as multiple aerobic/anoxic orders 5, adsorption time 22 min, returned sludge ratio 0.8, sludge age 20 d, and DO concentraion 2.5~3.0 mg/L in aerobic zones.
     (4) The results during the stable operation showed that with the nutrient removal process by sludge adsorption conditions, the removal rates of NH3-N, TN, and TP were 91.7%, 89.1%, and 87.2%, respectively. Effluent qualities (except TP meeting ClassⅠ-B criteria) could meet the“ClassⅠ-A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant”(GB18918-2002).
     (5) In the whole experimental process system, carbon source was rationally utilized. There exsited significant NH3-N and CODCr concentration changes in the anoxic tanks, indicateing the occurrences of denitrification and ammonia oxidation. The phosphorus release amount of PAOs was high even in relatively short time.
     In the same operation conditions, the nutrient removal effect of the nutrient removal process by sludge adsorption was superior to that of traditional A~2/O process. On the premise of the effluent qualities (except TP meeting ClassⅠ-B criteria) meeting the“ClassⅠ-A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant”after treatment by the nutrient removal process by sludge adsorption, the influent C/N ratio was 3 at least.
     (6) From the analysis and comparison on floras with other two treatment systems, there were less nitromonas and denitrifiers, but more nitrosomonas in the nutrient removal system by sludge adsorption.
引文
[1]侯金良,康勇.城市污水生物脱氮除磷技术的研究进展[J].化工进展,2007,26(3):366-370, 376.
    [2]王青,陈建中.污水生物脱氮除磷技术的研究进展[J].环境科学与管理,2006,31(8):126-129.
    [3] Morgan Scott, Farley Ray, Pearson Rob. Retrofitting an existing trickling filter plant to BNR standard [J]. Wat. Sci. Tech, 1999, 26:152-159.
    [4]郑兴灿.污水除磷脱氮技术[M].北京:中国建筑工业出版社.1998.
    [5]徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社.1996.
    [6]金相灿,刘树刊,章宗涉.中国湖泊环境[M].北京:海洋出版社,1995.
    [7]蔡履冰.太湖流域水体富营养化成因及防治对策的初步研究[J].中国环境监测,2003,19(3):52-55.
    [8]杨建强.滇池污染的治理和生态保护[J].水利学报,2001,5:17-21.
    [9]徐宁,段舜山,李爱芬,等.沿岸海域富营养化与赤潮发生的关系[J].生态学报,2005,25(7):1782-1787.
    [10]张树德,曹国凭,张杰,等.废水生物脱氮新技术及问题[J].河北理工学院学报,2005,27(1):145-150.
    [11]张洁,胡卫新,张雁秋.城市污水生物脱磷除氮工艺的新进展[J].污染防治技术,2003,16(3):40-42.
    [12]国家环境保护总局.中国2003年环境状况公报[J].环境保护,2004,7:3-17.
    [13]汪水源.中国巢湖富营养化趋势及防治对策[J].云南环境科学,1996,1:14.
    [14]冯明祥,王宏,刘鹏飞,等.日本水环境考察[J].东北水利水电,1999,2:45-46.
    [15] TETSUO YANAGI, MACHIKO YAMADA, MANABU SUZUKI. A challenge of water purification of Dokai bay [J], Japan. Marine pollution bulletin, 1999,38(12):1063-1069.
    [16]陈思模.国外一些河流和流域水污染防治与管理的主要经验[J].水利科技,1999,2:6-9.
    [17]郭焕庭.国外流域水污染治理经验及对我们的启示[J].环境保护,2001,8:39-40.
    [18] J R. Vallentynel. Extending causality in the Great Lakes basin ecosystem [J]. Aquatic Ecosystem Health and Management, 1999,2:229-237.
    [19]金立新.美国和加拿大五大湖的水污染防治与管理[J].水资源保护,1998,4:7-9.
    [20] Leon P. Zann. The state of the marine environmental report for Australia (SOMER):process, findings and perspectives [J]. Ocean & Coastal management, 1996,33(13):63-86.
    [21] Caroline Williams. Combatting marine pollution from land-based activities: Australia initiatives [J]. Ocean & Coastal management, 1996,33(13):63-86.
    [22] P.A. Scheren, A.C. Ibe, F.J.Jassen, et al. Environmental pollution in the Gulf of Guinea—aregional approach [J]. Marine Pollution Bulletin, 2002,44:633-641.
    [23]王弘宇,杨开.废水生物除磷技术及其研究进展[J].环境技术,2002,2:38-42.
    [24]王晓莲,彭永臻,王淑莹,等.城市可持续污水生物处理技术[J].水处理技术,2004,30(2):106-109.
    [25] Robert J Seviour, Takashi Mino, Motoharu Onuki. The microbiology of biology phosphorus removal in activated sludge systems [J]. FEMS Microbiology Reviews,2003,27:99-127.
    [26]国家环保总局.国家质量监督检验检疫总局.中华人民共和国国家标准——城镇污水处理厂污染物排放标准(GB18918-2002)[M].北京:中国环境科学出版社,2002.
    [27] Filipe C D M. Ecological engineering of bioreactors for wastewater treatment [J]. Water Air and Soil Pollution, 2000, 123:117-132.
    [28]徐洪斌,吕锡武.生物法除磷脱氮技术及其应用[J].城市环境与城市生态,2003,16(6):195-197.
    [29]汪大翚,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001.
    [30]沈耀良,王宝贞.废水生物处理新技术[M].北京:中国环境科学出版,1999.
    [31]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [32]王小文,张雁秋.水污染控制工程[M].北京:煤炭工业出版社,2002.
    [33]黄骏,陈建中.氨氮废水处理技术研究进展[J].环境污染治理技术与设备,2002,3(1):65-68.
    [34]郁飞远,刘光利,季碧良,等.氨氮废水的生化处理试验[J].兰化科技,1994,12(2):148-153.
    [35]中华人民共和国环保部.《厌氧缺氧好氧活性污泥法污水处理工程技术规范》编制说明[M].北京,2008.
    [36]华光辉,张波.污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水,2000,26(12):1-4.
    [37]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [38] Kuenen J G, Robertson L A. Combined nitrification denitrification process [J]. FEMS. Microbiology Reviews, 1994,15(2):109-117.
    [39] Jetten S M, Strous M. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews,1998,22(5):421-437.
    [40] Castingnetti D, Hollocher T C. Heterotrophic nitrification among denitrifiers [J]. Appl.Env.Microbial,1984,47:16-20.
    [41] Gupta SK, Raja S M. Simultaneous nitrification denitrification in a rotating biological Contactor [J]. Envir. Tech.,1994,15(3):145-153.
    [42] Yoo H, Ahn K H. Nitrogen removal from synthetic waste water by Simultaneous nitrification and denitrification (SND) via nitrate in an intermittently-aerated reactor [J]. Water Res., 1999, 33(1):145-154.
    [43]高大文,李幸,李强,等.两段SBR双污泥系统短程硝化/反硝化除磷研究[C].《中国给水排水》第五届年会暨2008年给水厂、污水厂运行与管理及升级改造高级研讨会论文集,2008.10:188-194.
    [44]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水,2001, 27(1): 22-24.
    [45]张鹏,周琪,屈计宁等.同时硝化反硝化研究进展[J].重庆环境科学,2001, 23(6):20-24.
    [46] Voets J P. Removal of nitrogen from highly nitrogenous wastewater [J]. JWPCF, 1975, 47(4):394-398.
    [47] Sutherson S, Ganczarczyk J J. Inhibition of nitrite oxidation during nitrification: some observation [J]. Wat. Poll. Res. J. Can., 1986, 21(7):257-266.
    [48] Joanna S G, Andrzej C. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and dentrification [J]. Wat. Sci. Tech.,1997,36(10):73-78.
    [49]徐冬梅,聂梅生.亚硝酸型硝化试验研究[J].给水排水,1999,25(7):37-39.
    [50]周少奇.生物脱氮的生化反应计量学关系式[J].华南理工大学学报,1998,26(3):124-126.
    [51]朱晓君,周增炎,高廷耀.低氧活性污泥法脱氮除磷工艺生产性研究[J].中国给水排水,1997,S1:2.
    [52] Jetten S M, Strous M. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews, 1998, 22(5):421-437.
    [53] Bortone G. Malaspina F. Stante L.et al. Biological nitrogen and Phosphorus removal in anaerobic/anoxic sequeneing batch reaetor with separated biofilm nitrification [J].Wat. Sci. Tech., 1994, 30:303-313.
    [54] Ahn J, Daidou T, Tsuneda S, et al.. Metabolic behavior of denitrifying phosphate-accumulat- ing organisms under nitrate and nitrite electron acceptor condition [J]. J. Biosci. Bioeng., 2001, 92(5):442-446.
    [55] E Murnleitner, T Kuba, M C M van Loosdrecht et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal [J]. Biotechnology and bioengineering. 1996, 54(5):434-450.
    [56] Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor [J]. Biochemical Engineering Journal, 2006,27(3):191-196
    [57] Zubair Ahmed, Byung-Ran Lim, Jinwoo Cho. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor:Effect of different carbon sources [J]. Wat. Res., 2008,42(1-2):198-210.
    [58]贾呈玉,李道棠,杨虹.低碳氮比废水生物脱氮新技术[J].上海环境科学,2002,22(5):349-352,369.
    [59]杨殿海,宋拥好,谭巧国,等.低碳源、低能耗型改良A2/O工艺的脱氮除磷研究[J].中国给水排水,2006,22(23):18-21.
    [60] Xia Siqing, LIU Hongbo. The Operation of Threee Parallel AN/AO Processes to Enrich Denitrifying Phosphorus Removal Bacteria for Low Strength Wastewater Treatment [J]. Journal of Environmental Sciences-China, 2006, 18(3):434-439.
    [61]孙扬平.生物脱氮新技术在低碳氮比废水中的应用[J].环境科学与管理,2007,32(6):114-115,119.
    [62]雷灵琰,张雁秋,赵跃民.生物脱氮技术研究的新进展[J].江苏环境科技,2003,16(3):43-46.
    [63]何则芝.高氨氮、低碳氮比生活污水处理中的问题及解决方法[J].能源与环境,2009,3:94-97.
    [64]章北平,颜岗,毛敏,等.CIBR工艺处理低碳磷比城市污水的除磷研究[J].中国给水排水,2008,24(9):30-32,37.
    [65]周爱姣,陶涛,张太平,等.A-A2/O工艺处理低碳源城市污水的除磷脱氮效果[J].环境科学与技术, 2008,31(12):150-152.
    [66]张蔚萍,陈建中.低碳高浓度含氮废水的生物脱氮技术[J].环境保护,2003,(6):20-21,44.
    [67]操卫平,冯玉军,李正山,等.高氮低碳废水生物脱氮研究进展[J].化工环保,2004,24(4):266-270.
    [68]杨殿海,宋拥好,谭巧国,等.低碳源、低能耗改良A2/O工艺的脱氮除磷研究[J].中国给水排水, 2006, 22(23):18-21.
    [69]荣宏伟,张朝升,张可方.(AO)2-SBBR反硝化除磷工艺处理低碳城市污水[J].中国给水排水,2006,22(15):29-32.
    [70]王亚宜,杜红,彭永臻,等.A2N反硝化除磷脱氮工艺及其影响因素[J].中国给水排水,2003,19(9):8-11.
    [71].杨庆娟,王淑莹,刘莹,等.污泥回流比对A2N反硝化除磷工艺脱氮除磷的影响[J].2008,24(13):37-41.
    [72].张杰,李小明,杨麒,等.反硝化除磷技术及其实现新途径[J].工业用水与废水,2007,38(3):1-4.
    [73]羊寿生.一体化活性污泥法UNITANK工艺及其应用[J].给水排水,1998,24(11):16-19.
    [74]吕锡武.多箱一体化活性污泥除磷脱氮工艺研究[C].全国污水处理节能减排新技术、新工艺、新设施高级研讨会论文集,2008.11:20-25.
    [75]张超,吕锡武,荆肇乾,等.五箱一体化脱氮除磷工艺在示范工程中的应用[J].环境污染与防治, 2007,29(7):555-557.
    [76]窦月芹,吕锡武,李发站,等.多点交替进水五箱一体化工艺污泥回流比研究[J].中国给水排水,2006,22(19):91-94.
    [77]张雁秋,张连信.一个新的生物化学反应动力学基本方程[J].中国矿业大学学报,1994, 23(4):84-87.
    [78]张雁秋.对废水生物处理一相说与两相说的统一[J].煤矿环境保护,7(6):12-14.
    [79] ZHANG Yan-qiu, XU Ao-tian, Li Ruo-gu, et al.. Research on Dynamics Design for Active Sludge System [J]. Journal of China University of Mining & Technology, 2002, 12(2):148-151
    [80]张雁秋,杨燕舞,张洁,等.Research on calculation of concentration of returned activated sludge [C].第五届国际采矿会议论文集,2004.
    [81]李昂,张雁秋,李燕.分点进水除磷脱氮工艺在实际工程中的应用[J].中国给水排水,2009,25(4):62-64.
    [82]张雁秋,李昂,李燕,等.分点进水脱氮除磷新工艺的理论基础和实践[J].中国给水排水,2008,24(24):13-15.
    [83]李燕,李昂,张雁秋.城市污水处理厂提高污泥浓度的理论与实践[J].环境污染与防治,2009,31(2):103-104.
    [84] Uemoto H, Saiki H. Behavior of immobilized nitrosomonas europaea and paracoccus denitrificans in tubular gel for nitrogen removal in wastewater [J]. Prog Biotechnol, 1996,11 (immpbized cells):486-493.
    [85] Linping Kuai, Willy Verstraete. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system [J]. Appl. Envir. Microbial.1998, 64:4500-4506.
    [86] Helmer C, Kunst S. Nitrogen loss in a nitrifying biofilm system [J]. Wat. Sci. Tech., 1999, 39(7):13-21.
    [87]叶建峰,薄国柱.低碳源条件下厌氧氨氧化影响因素的研究[J].水处理技术,2006,32(9):30-33.
    [88]卢俊平,杜兵,孙艳玲,等.亚硝化-厌氧氨氧化组合工艺脱氮研究[J].中国给水排水,2006,22(15):40-43.
    [89]廖德祥,吴永明,李小明,等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究[J].环境科学,2006,27(9):1776-1780.
    [90] Sorm R, Wanner J, Saltarelli R, et al. Verification of anoxic phosphate uptake as the main biochemical mechanism of the“Dephanox”process [J]. Wat. Sci. Tech., 1997, 35(10):87-94.
    [91] Barker P S, Dold P L.Denitrification behavior in biological excess phosphorus removal activated sludge system [J].Water Res, 1996,30(4):769-780.
    [92] Zhang Z Y, Zhon J T, Wang J, et al. Integration of nitrification and denitrigying dephosphatation in airlift loop sequencing batch biofilm reactor [J]. Process Biochemistry, 2006,41(3):599-608.
    [93]任南琪,王秀蘅,董晶颢.HITNP同步除磷脱氮新工艺[J].环境科学,2007,28(1):108-112.
    [94]潘碌亭,束玉保,屠小青.接触氧化-强化混凝组合工艺处理低碳源城镇污水[J].水处理技术,2009,35(7):70-72.
    [95]雷灵琰.城市污水短程同步硝化反硝化脱氮的研究[D].中国矿业大学,2004.
    [96]靳建永,薛玉香.厌氧生化处理梯恩梯废水中的污泥吸附作用和厌氧生化作用[J].环境科学丛刊,7,3:48-50.
    [97]徐宏英,李亚新,岳秀萍,等.厌氧颗粒污泥对有机物的初期吸附[J].环境科学学报,2008,28(9):1807-1812.
    [98]李冰璟,刘绍根,倪丙杰,等.活性污泥生物吸附性能的研究[J].安徽建筑工业学院学报(自然科学版),2006,14(4):77-80.
    [99]韦林,刘绍根,倪丙杰,等.污泥吸附性能的研究[J].工业用水与废水,2005,36(1):38-40.
    [100]冯少茹,韦林.污泥吸附动力学与平衡模型的实验研究[J].安徽建筑工业学院学报(自然科学版),2009,17(2):56-59.
    [101]谭丽泉,卢宝光.活性污泥吸附重金属离子的研究[J].韶关学院学报(自然科学版),2005,26(3):73-75.
    [102]聂为超,贾陈忠.活性污泥对含铬废水的吸附处理研究[J].安徽农业科学,2006,34(1):121.
    [103]孔旺盛,刘燕.染料的生物污泥吸附[J].化学通报,2007,2:106-111. wastewater by biomass [J]. Process Biochemistry, 2002,3796:595-600.
    [104] Gulnaz O, Kaya A, Dincer S. The reuse of dried activated sludge for adsorption of reactive dye [J]. Journal of Hazardous Materials, 2006, B134 (1-3):190-196.
    [105] Chu H C, Chen K M. Reuse of activated sludge biomass:Ⅰ. Removal of basic dyes from
    [106] Aksu Z. Biosorption of reactive dyes by dried activated sludge:equilibrium and kinetic modeling [J]. Biochemical Engineering Journal, 2007,1:79-84.
    [107]朱泽民,周正坤.吸附理论的提出与工程实践[J].油气田地面工程,2004,23(10):15.
    [108] Van de Graaf et al. Anaerobic oxidation of ammonium is a biological mediated process [J]. Appl Environ Microbiol, 1995,61:233.
    [109]吕永涛,吴红亚,陈祯,等.生物转盘中厌氧氨氧化污泥特性及菌种的初步鉴定试验研究[J].西安建筑科技大学学报(自然科学版),2009,41(5):715-718.
    [110]陈曦,崔莉凤,杜兵,等.温度和pH值对厌氧氨氧化微生物活性的影响分析[J].北京工商大学学报(自然科学版),2006,24(3):5-8.
    [111]杨洋,左剑恶,沈平,等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学,2006,27(4):691-695.
    [112] DOSTA J, FERNANDEZ I, VAZQUEZ-P J R, et al. Short and long-term effects of temperature on the Anammox process [J]. Journal of Hzzardous Materials, 2007,63(6):2446-2448.
    [113] RYSGAARD S, GLUD R N, RISGAARD P N, et al. Denitrification and anammox activity in Arctic marine sediments [J]. Limnology and ocean ography, 2004,49(5):1493-1502.
    [114]操家顺,王超,蔡娟.低浓度氨氮污水厌氧氨氧化影响因素试验[J].南京理工大学学报,2007,31(6):775-779.
    [115]胡勇有,梁辉强,朱静平,等.有机碳源环境下的厌氧氨氧化批式实验[J].华南理工大学学报(自然科学版),2007,35(6):116-119.
    [116]卢俊平,杜兵,张志,等.有机物对厌氧氨氧化生物脱氮影响研究[J].工业用水与废水,2008,39(4):6-9.
    [117]赵志宏,廖德祥,李小明.厌氧氨氧化微生物颗粒化及其脱氮性能的研究[J].环境科学,2007,28(4):800-804.
    [118]徐庆云,黄勇,袁怡.厌氧氨氧化细菌的富集及不同温度下动力学研究[J].苏州科技学院学报(工程技术版),2007,20(2):49-53.
    [119]赵丰,戴兴春,黄民生,等.A2/O系统中强化ANAMMOX反应的可行性研究[J].中国
    [120]王欢,裴伟征,李旭东,等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J].环境科学, 2009,30(3):815-821.
    [121]唐林平,李小明,曾光明,等.短程硝化-厌氧氨氧化联合工艺的经济特性分析[J].净水技术,2008,27(2):4-6,14.
    [122]陈永,张树德,张杰,等.亚硝酸盐氮浓度对厌氧氨氧化反应的影响[J].中国给水排水,2006,22(17):74-76.
    [123]康淑琴,张少辉.厌氧氨氧化反应器的启动及其稳定性研究[J].武汉理工大学学报,2008,30(2):101-104.给水排水,2009,25(3):7-10.
    [124] Schalk J, Oustad H, Kuenen JG, Jetten MSM. The anaerobic oxidation of hydrazine: a novel reaction in microloial nitrogen metabolism [J]. FEMS Microbidgy Letters, 1998, 158:60-67
    [125]马从安,张树德.厌氧氨氧化及其工艺的研究现状[J].河北理工大学学报(自然科学版),2008,30(3):134-137.
    [126]左剑恶,杨洋,蒙爱红.厌氧氨氧化工艺在UASB反应器中的启动运行研究[J].上海环境科学,2003,22(10):665-669.
    [127]刘寅,杜兵,司亚安,等.厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺[J].环境科学,2005,28(2):137-141.
    [128]王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学,2009.
    [129]缪应祺.水污染控制工程[M].南京:东南大学出版社.2002.12:163-171.
    [130]臧荣春,夏凤毅.微生物动力模型[M].北京:化学工业出版社.2004.01:67-78.
    [131]张自杰,周帆.活性污泥生物学与反应动力学[M].北京:中国环境科学出版社,1989:384-460.
    [132] K. F. Janning, K.Mesterton, P. Harremou?s. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxicand aerobic condition [J]. Wat. Sci. Tech, 1997, 36(1):279-286.
    [133] H Chua. Effects of trace chromium on organic adsorption capacity and organic removal in activated sludge [J]. The Science of the Total Environment, 1998(214):239-245.
    [134] Basibuyuk. M, Forster. C. F. A examination of the adsorption characteristics of basic dye (Maxilon Red BL-N) on to live activated sludge system [J]. Process Biochemistry, 2003(38):1311-1316.
    [135] Chu Hc, Chen K. M. Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass [J]. Process Biochem, 2002(37):595-600.
    [136] Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat [J]. Environ Technol, 1996(17):71-77.
    [137] Banquella B, Benaissa H. Cadmium removal from aqueous solution by chitin: Kinetic and equilibrium studies [J]. Wat. Res., 2002(36):2463-2474.
    [138] G. Mckay, Y. S. Ho. The sorption of lead (Ⅱ) on peat[J]. Wat. Res., 1999 (33):578-584.
    [139] Comeau Y, Hall K J, Hancock R E W, et al. Bilchemical model for enhanced biological phosphorus removal [J]. Wat. Res., 1986, 20(12):1511-1521.
    [140] Wentzel M C. Metabolic behavior of Acinetobacter spp. in enhanced biological phosphate removal- a biochemical model. Water S A, 1986,14(2):81-92.
    [141] Mino T. Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Rome: Proc. IAWQ spec. conf., 1987:27-28.
    [142] Smolders G J F, Van der Meij J, Van Loosdrecht M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence [J]. Biotechnol Bioeng, 1994, 43:461-470.
    [143]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册[M].北京:中国环境科学出版社,1990
    [144]国家环保局.水和废水检测分析方法(第4版)[M].北京:中国环境科学出版社,2000.
    [145]杨造燕,刘飒,陈思源.厌氧快速吸收有机物的两种能量来源研究[J].中国给水排水,1998,14(5):1-3.
    [146]吴群英,林亮.应用数理统计[M].天津:天津大学出版社,2004.
    [147]程声通.环境系统分析教程[M].北京:化学工业出版社,2006.
    [148]蔡天明,蔡舒,宁强,等.影响EBPR系统生物除磷的主要因素[J].环境工程,2008,26(5):74-76.
    [149]荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J].南京理工大学学报,2004,28(4):440-444.
    [150]何争光,温晓灿.葡萄糖为碳源时生物除磷系统的影响因素研究[J].郑州大学学报(工学版),2008,29(2):103-106.
    [151] Kargi F, Ahmet U, Baskays H S. Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR [J]. Journal of Environmental Management, 2005,6(1):71-75.
    [152] Bortone G, Malaspina F, State L, Tilche A. Biological nitrogen and phosphate removal in an anaerobic/anoxic sequencing batch reactor with separated biofilm [J]. Wat.Sci.Technol, 1994,30:303-313.
    [153] Kuba T, Smolders G J F, Loosdrecht M C M Van. Biological phosphate removal from wastewater by anaerobic-anoxic sequencing batch Reactor [J]. Wat. Sci. Tech., 1993, 27:241-252.
    [154]肖宁,谢树宁,孙建春,等.ECOSUNIDE工艺在德州污水处理厂升级改造中的应用[J].中国给水排水,2008,24(22):5-48.
    [155]孙开蓓.分段进水频繁曝气SBR脱氮除磷试验研究[D].中国矿业大学,2009.
    [156] Henze M, Gujer W, Mino T, et al. Activated Sludge Model No.2. IAWQ Scientific and Technical Report No.3 [M]. London: IAWQ, 1995.
    [157] Gujer W, Henze M, Mino T, et al. Activated Sludge model No.3 [J]. Water Sci Technol, 1999,39(10):183-187.
    [158]曾薇,彭永臻,王淑莹.SBR工艺交替硝化反硝化运行方式的可行性研究[J].环境科学学报,2004,24(4):576-580.
    [159]张玉翠,张雁秋,张传义,等.环境污染与防治[J].2009,31(3):40-43.
    [160]金春姬,佘宗莲,高京淑,等.间歇曝气周期对低C/N比污水生物脱氮的影响[J].环境污染与防治,2003,25(5):257-258,261.
    [161] Hanaki K, Wantawin C, Ohgaki. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspenden growth reactor [J]. Wat. Res.,1990,24(3):297-302.
    [162] Goreua T.J. Production of NO2 and N2O by nitrifying bacteria at reduced concentration of oxygen [J]. Applied and Evironmental Microbiology, 1980,40:526-532.
    [163] Nakajima M. Keisuke Hanaki. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended growth reactor [J]. Wat.Res., 1990, 24 (3) :297-302.
    [164] Strous M van Gerven E, Kuenen JG, Jetten MSM. Effects of anaerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge [J]. Applied and Environmental Microbiology, 1997,63(6):2446-2448.
    [165]沈耀良,王宝贞.废水生物处理新技术一理论与应用[M].中国环境科学出版社,1999:157-159.
    [166]沈耀良,王宝贞.废水生物除磷工艺中聚磷菌的作用机制及运行控制要点[J].环境科学与技术,1995,2:11-16.
    [167]刘玉生,朱学庆,刘鸿亮,等.A/O和A2/O法除磷脱氮工艺影响因素及除磷动力学研究[J].环境科学研究,1992,5(2):59-62.
    [168]张显龙,李海燕,刘红侠等.活性污泥法处理污水两个重要参数的理论探讨[J],辽宁化工,2004,33(8):464-466
    [169]周海东,刘勤亚,张业健.泥龄应用中有关问题的探讨[J].污染防治技术,2004,16(2):13-16.
    [170]周继军,崔丽娜,金维平.CSTR型活性污泥法中三个重要参数的理论探讨[J].武汉科技大学学报(自然科学版),2005,28(4):360-362.
    [171]许京骐.给水排水新技术[C].北京:中国建筑出版社,1988: 262-271.
    [172]徐业同.废水中氮磷的去除[M].上海:华东师范大学出版社,1996:250.
    [173]常飞,操家顺,徐续,等.泥龄对反硝化除磷脱氮系统效率的影响分析[J].水资源保护,2004,5:29-32.
    [174]汤兵,王五洲,石太宏.低碳源条件下反硝化同步除磷脱氮的研究[J].工业水处理,2007,27(1):49-51.
    [175]徐洪斌.多点交替进水五箱一体化活性污泥法除磷脱氮工艺研究[D].东南大学,2005:73-78. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700