用户名: 密码: 验证码:
钢包狭缝式底喷粉元件研制及粉气流行为特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
向熔池中直接喷吹粉剂因具有良好的热力学和动力学条件,此技术在铁水预处理和钢包精炼中得到普遍应用。本文针对现有喷粉工艺存在喷枪价格高、二次氧化和吸氮严重及易引发重大生产事故等缺点,开发了适合于钢包精炼底喷粉的喷粉元件,并对底喷粉过程粉气流行为进行了理论和实验研究,为此新工艺应用奠定理论基础。本论文主要的研究内容及获得的主要结果如下:
     (1)对粉气流在狭缝内的运动机理进行了数值仿真研究,获得了颗粒和气流密度及速度、颗粒直径和黏度的定量关系,即(2ρp+ρg)dVp/dt=3aρg(Vp-Vg)2-k/(2dp)(dp/v)-k +2ρgg-2ρpg,(式中:a和k为系数;V为速度,m/s;t为时间,s;p为密度,kg/m3;d为直径,m;v为运动黏度,m2/s;下标p和g分别代表颗粒和气体)及不同雷诺数下的解析式。研究结果表明:小颗粒只需极短的时间和距离加速就可达到99%的运动终速Vp(T),在150m/s的氮气流中,直径为0.02mm石灰颗粒到达99%Vp(T)需要的时间和运动距离分别为0.01s和1.04m,而直径为2.00mm的石灰颗粒却需时间和距离分别为1.34s和167.21m;颗粒运动速度到达99%Vp(T)后,微小的速度增加量所需的加速距离却大量增加,0.02mm和2.00mm的石灰颗粒达到99.9%Vp(T)所需的距离分别为2.17m和328.65m;同类颗粒增大直径能缩短各自加速到穿透气/钢液界面的临界速度所需运动距离,0.200mm的石灰颗粒达到临界速度所需加速距离为0.46m,而2.00mm石灰的加速距离为0.21m;同直径的石灰、MgO、Fe2O3加速到99%Vp(T)的运动距离依次增加,而加速到各自得穿透临界速度的运动距离却依次减小。
     (2)对底喷粉钢液渗漏和粉剂堵塞的机理进行了理论研究和冷态和热态喷粉及5小时的磨蚀实验,提出了喷粉元件防止钢液渗漏的狭缝厚度即d<-4σcosθ/(ρlgh);防止粉料堆积得流化室夹角即a<180°—2φ;防止粉料在狭缝内堵塞的无导角狭缝。
     (3)对底喷粉熔池的均混特性进行了物理模拟,考察了底喷粉元件的喷嘴形状、狭缝厚度、狭缝之间的距离、位置及气体流量对熔池搅拌的影响规律,结果发现:气体流量在(0.209Nl/s~0.523Nl/s)范围内圆孔喷嘴的均混时间短于狭缝喷嘴;单条狭缝在一定范围内(0.15~0.30mm×15.00mm,0.50~0.80mm×15.00mm)其厚度对熔池的均混时间影响可以忽略,但狭缝厚度增加到一定值后均混时间明显增大,在本实验条件下,狭缝厚度从0.30mm增大到0.50mm,熔池的均混时间增加了7.42s;狭缝之间距离为5mm下,相同出口截面积的双狭缝喷嘴对熔池的均混时间略小于单狭缝喷嘴;无论是单条狭缝还是多狭缝,距中心1/2处喷吹熔池的均混时间是最小的,侧部喷吹均混时间最长,二者最大差值达17.60s。
     (4)对粉剂穿透特性进行了物理模拟研究,通过对狭缝厚度、喷吹位置、喷嘴形状及空塔速度对粉剂穿透行为的研究发现:狭缝喷吹中,窄缝的粉剂穿透比高于宽缝,在本实验中,窄缝的粉剂穿透比平均高出1.3%;空塔速度范围为(10m/s~60m/s)底部中心和距中心1/2处单条狭缝喷粉的穿透比高出圆孔喷粉分别为4.21%和1.38%;空塔速度范围为(10m/s~60m/s)距中心1/2处和侧部位置单狭缝喷吹粉剂的穿透比高出底部中心位置喷粉分别3.68%和2.56%;狭缝喷粉的穿透比随着空塔速度的增加先增加后减小,并存在一个最佳的空塔速度,在本实验条件下,底部中心和距中心1/2处的最佳空塔速度为50m/s,侧部喷吹的最佳空塔速度为40m/s。
With good thermodynamics and kinetics conditions for injecting powder into molten bath, powder injection technology has been universally applied in hot-metal pretreatment and secondary refining ladle. A slot-bottom powder injection device, for bottom powder injection in refining ladle, was developed to overcome disadvantages of lance, such as high cost, reoxidation, absorbing nitrogen, introducing security accident, in existing powder injection technics. And the theoretical and experimental researches on gas/particle flow, in bottom powder injection, were carried out to study the new technology. The main contents and results achieved in this paper are as follows
     (1) The movement characteristics of gas/particle flow in slot were studied with numerical simulation, achieving the quantitative relationship of density, velocity, particle size and viscosity of air and particle, that is, (2ρp+ρg)dVp/dt=3aρg(Vp-Vg)2-k/(2dp)(dp/v)-k +2ρgg-2ρpg, (in which, a and k is coefficient; V is velocity, m/s; t is time, s;ρis density, kg/m3; d is diameter, m; v is viscosity, m2/s; subscript p and g represent particle and gas) and analytic formulas in different Reynolds number. The results show that small particles, only a very short time and distance, can be accelerated to 99 per cent of the movement terminal velocity(abbreviation Vp(T)), e.g. the time and distance required for movement, for diameter of 0.02 mm lime particle, are respectively 0.01 s and 1.04m, moreover, for diameter of 2.00 mm lime particle, are respectively 1.34 s and 167.21m; A slight increase in the speed required for the acceleration distance is a substantial increase after particle velocity reached 99% Vp(T), e.g. achieving 99.9% Vp(T) velocity, the distance required for 0.02mm and 2.00mm particles of lime are respectively 2.17m and 328.65m; Large-diameter particles achieve critical penetration velocity need less accelerating distance, e.g.0.20mm lime particle, accelerating 0.46 m, reaches the critical velocity, however,2.00mm lime particle, accelerating 0.21m, reaches the critical velocity; The movement distance is sequentially increasing for the same diameter of lime, MgO and Fe2O3 particle accelerating to 99% Vp(T), but the particles, accelerating to critical penetration velocity, are reversed.
     (2) Mechanism of liquid steel leakage and powder blocking in bottom powder injection ladle were investigated by theoretical research, cold test, hot test and 5 hours abrasion test. The results show that slot thickness of bottom powder injection device for anti-steel leakage follows the expression (d<-4σcosθ/(ρlgh)). Conical angle of fluidized bed of bottom powder injection device for anti-powder blocking follows the expression (a<180°—2φ). No leading angle of slot of bottom powder injection device can prevent powder blocking in slot.
     (3) The characteristics of homogeneous mixing of molten bath-in bottom powder injection ladle were investigated through physical simulation. Nozzle shape, slot thickness, the distance between the slots, positions and gas flow rates were also carried out to optimize the powder injection process. The results show that the mixing time of round nozzle is shorter than that of slot nozzle under gas flow rates (0.209Nl/s~0.523Nl/s). When single slot specifications in 0.15-0.30mm×15mm or 0.50-0.80mm×15mm, its thickness has no influence on mixing time of molten bath, when slot thickness increase to some degree, the mixing time increase significantly, e.g. The mixing time of molten bath increased 7.42s when slot thickness broadened from 0.30mm to 0.50mm in the experiments. The mixing time of the double-slot nozzle with the distance between the slots of 5 mm is slightly less than that of single-slot nozzle in the same cross-sectional area. Either single-slot or multi-slot nozzle, bath mixing time in 1/2L of centre is shortest and that in side injection is longest, the two largest margin of 17.60s.
     (4) The characteristics of penetration of powder in bottom powder injection ladle are investigated by physical simulation. Nozzle shape, slot thickness, the distance between the slots, positions and gas velocity were also carried out to study the powder injection process. The results show that powder penetration ratio of narrow slot nozzle is higher than that of wide slot nozzle, e.g. the narrow slot nozzles'powder penetration ratio is higher than the wide slot nozzle average 1.3% in the experiments. Powder penetration ratio of single-slot nozzle, at the bottom center and distance to the central 1/2 positions, are higher than that of round nozzle respectively 4.21% and 1.38% in gas velocity (10m/s-60m/s). Powder penetration ratio of single-slot nozzle, at side and distance to the central 1/2 positions, are higher than that of single-slot nozzle at the bottom center respectively 3.68% and 2.56% in gas velocity (10m/s-60m/s). In bottom powder injection through slot nozzle, powder penetration ratio increased firstly, and then decreased with the gas velocity increasing. And in which there was a gas velocity to be the best for powder penetration ratio, e.g. the best gas velocity for bottom powder injection and side powder injection were respectively 50m/s and 40m/s in the experiments.
引文
1.赵沛.炉外精炼及铁水预处理实用技术手册[M],北京:冶金工业出版社, 2004,1.
    2.朱苗勇.现代冶金学(钢铁冶金卷)[M],北京:冶金工业出版社,2005,268.
    3. Baniya S, Hino M, Kaji T. Sulphur solubility in CaO-Al2O3 and CaO-Al2O3-CaF2 slags [J], Developments in Chemical Engineering & Mineral, 2006,14(3/4): 171.
    4. Eriksson G, Pelton A D. Critical evaluation and optimization of the thermodynamics properties and phase diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 systems [J], Metall.Trans, 1993, 24B(10): 807-816.
    5. Inoue R, Inoue H, Suito H. Partitions of nitrogen and sulphur between CaO- Al2O3 melts and liquid iron [J], ISIJ International, 1991, 31(12): 1389-1395.
    6. Presern V, Korousic B, Hastie J W. Thermodynamic conditions for inclusions modification in calcium treated steel [J], Steel Research, 1991, 62(7): 289-295.
    7. Simeonor S R,. Ivancher I N, Hainadjiev A V. Sulphur equilibrium distribution between CaO-CaF2-SiO2-A12O3 slags and carbon saturated iron [J], ISIJ International, 1991, 31(12): 396-1399.
    8.#12
    9.#12
    10.#12
    11.杜锋.铁水脱磷预处理工艺的发展[J],上海金属,1999,21(6):16-20
    12.胡春霞.转炉渣用于铁水预处理脱磷的应用基础研究[D],沈阳:东北大学,2002,35(4).
    13.林企增.铁水脱硫、脱硅、脱磷处理技术的开发与应用[J],钢铁,1992,27(9):11-15.
    14. Puomi P, Fagerholm H M, Rosenholm F B, Sipila R. Comparison of different pretreatment-primer systems on hot-dip galvanized and galfan coated steel [J], Anti-Corrosion Methods and Materials,1999,46(3):163-171.
    15. Grosjean J C, Reboul J P, Bauler C, Grafteaux M, Jego G.. Industrial studies on hot metal pretreatment in Fiance [J], Cahiers d'Informations Techniques-Revue de Metallurgie,1988,85(1):33-41.
    16. Soejima T, Matsui H, Kimura T, Kimura M, Endoh M T H. Hot metal pretreatment technique in torpedo car [J], R&D, Research and Development,1986, 36(1):14-17.
    17. Suito H, Inoue R. Behavior of fluorine dissolution from hot metal pretreatment slag [J], Journal of the Iron and Steel Institute of Japan,2002,88(6):340-346.
    18. Puomi P, Fagerholm H M, Rosenholm J B, Jyrkas K. Comparison of different commercial pretreatment methods for hot-dip galvanized and galfan coated steel [J], Surface and Coatings Technology,1999,115(18):70-80.
    19. Vargas R M, Romero S A, Morales R, Angeles H M, Chavez A F, Castro A J. Hot metal pretreatment by powder injection of lime-based reagents [J], Steel Research, 2001,72(5-6):173-181.
    20. Inoue R, Suito H. Immobilization of fluorine dissolved from hot metal pretreatment slag [J], Journal of the Iron and Steel Institute of Japan,2002,88(6): 347-354.
    21. Kubo Y, Doura K, Yagi J, Hiroki N. Improvement of refractories for torpedo ladle used in hot metal pretreatment [J], Sumitomo Search,1994,55:23-31.
    22. Anon. Hot metal pretreatment and less slag refining in BOF [J], Transactions of the Iron and Steel Institute of Japan,1987,27(11):912-918.
    23. Venkatadri A S, Ghosh M., Ramaswamy V, Tiwary S K. Pretreatment of hot metal with soda ash and with soda ash-sodium sulphate mixture [J], Ironmaking and Steelmaking,1991,18(6):411-416.
    24. Yamase O, Ikeda M, Fukumi J, Taki C, Yamada K, Iwasaki K. Industrialization of a new steelmaking process utilizing hot metal pretreatment and smelting reduction [J], Journal of the Iron and Steel Institute of Japan,1988,74(2):270-277.
    25. Hikosaka A. Effect of vessel shape on dephosphorization rate in the hot metal pretreatment process [J], Transactions of the Iron and Steel Institute of Japan,1985,25(11): b. 287.
    26. Selin R, Dong Y, Wu Q A. Uses of lime-based fluxes for simultaneous removal of phosphorus and sulphur in hot metal pretreatment [J], Scandinavian Journal of Metallurgy, 1990,19(3): 98-109.
    27.#12
    28. Mark A, Hubbard, Howard M, Pielet. Process economics of desulfurization from the blast furnace to the steel ladle [J], Steelmaking Conference Proceedings, 1990,73:357-366.
    29. Jagdish C, Agarwal, John A, Dehuff, Robert V F. Economic benefits of hot metal desulfurization to the iron and steelmaking processes [J], Ironmaking Conference Proceedings, 1981,40: 146-170.
    30.杨天钧,高征凯,刘述临,杨世山.铁水炉外脱硫的新进展[J],钢铁,1999,34(1):65-69.
    31. Khachaturyan S V, Turaev M U, Negmatov S S. Prediction of relative wear resistance of rrail steel by power intensity of material at plastic deformation [J],Trenie i Iznos, 2005,26(5): 497-501.
    32. Topychkanov B I., Pan A V, Palyanichka V A, Stambul'chik M A. Effect of various deoxidizers on the mechanical properties of vanadium micro-alloyed rail-track steel [J], Russian Metallurgy (Metally), 1989, (2): 116-120.
    33. Deryabin A A, Semenkov V E, Deryabin V A, Bogorodskii A A, Kozhurkov V N. Surface tension of rail steel with different deoxidation variants [J], Steel in the USSR, 1988,18(8): 348-350.
    34. Zhang F C, Lv B, Hu B T, Li Y G. Flash butt welding of high manganese steel crossing and carbon steel rail [J], Materials Science & Engineering A, 2007,454-455(25): 288-92.
    35. Khachaturyan S V, Turaev M U, Negmatov S S. Prediction of relative wear resistance of rail steel based on energy capacity at plastic deformation [J], Journal of Friction and Wear, 2005,26(5): 43-6.
    36. De Boer H, Masumoto H. Niobium in rail steel [J], Niobium Science & Technology,2001,821-824.
    37. Inoue Y, Satoh Y, Kashiwaya K. Estimation of growth in rolling contact fatigue damage to rail steel with development of texture [J], Quarterly Report of RTRI, 1991,32(1):35-41.
    38. Kalousek J, Fegredo D M, Laufer E E. Wear resistance and worn metallography of pearlight, bainite and tempered martensite rail steel microstructures of high hardness [J], International Conference on Wear of Materials,1985,212-230.
    39. Hellier A K, Merati A A. Mode I fatigue threshold for head hardened rail steel [J], International Journal of Fatigue,1998,20(3):247-249.
    40. Fegredo D M, Shehata M T, Palmer A, Kalousek J. Effect of sulphide and oxide inclusions on the wear rates of a standard C-Mn and a Cr-Mo alloy rail steel [J], Wear,1988,126(3):285-306.
    41. Kolosova E L, Semenkov V E, Pan A V. Influence of composition of Si-Ca-Zr-Al alloys on nature, amount, and arrangement of non-metallic inclusions in rail steel [J], Steel in the USSR,1988,18(8):352-354.
    42. Mahlke D. The aluminium-steel conductor rail-a major component of the conductor rail installation on the berlin s-bahn [J], Eisenbahningenieur,2005, 57(2):24-9.
    43. Dobuzhskaya A B, Kolosova E L, Syreyshchikova v i. influence of microalloying with carbonitride-forming elements on the structure and properties of rail steel [J], Physics of Metals and Metallography,1990,70(3):121-128.
    44. Anon. Free-machining lead-free steel made for automobile parts [J], Advanced Materials and Processes,2004,162(7):33.
    45. Mir A A, Barton D C, Andrews T D, Church P. Anisotropic ductile failure in free machining steel at quasi-static and high strain rates [J], International Journal of Fracture,2005,133(3):289-302.
    46. Tanaka R, Yamane Y, Sekiya K, Narutaki N, Shiraga T. Machinability of BN free-machining steel in turning [J], International Journal of Machine Tools and Manufacture,2007,47(12-13):1971-7.
    47. Yaguchi H. Manganese sulfide precipitation in low-carbon resulfurized free-machining steel [J], Metallurgical Transactions A,1986,17A(11):2080-3.
    48. Yaguchi H. Scanning electron microscopy and electron microprobe analysis of built-up edges in low carbon sesulfurized free-machining steel [J], Materials Science and Engineering,1986,80(2):127-130.
    49. Mir A A, Barton D C, Andrews T D, Church P. Anisotropic ductile failure in free machining steel at quasi-static high strain rates [J], International Journal of Fracture,2005,133(3):289-302.
    50. Schleithoff K, Schmitz F. Non-corrosive steel condenser tubes-operating experience and materials development [J], VGB Kraftwerkstechnik,1981,61(9): 730-41.
    51. Ferrer F, Idrissi H, Mazille H, Fleischmann P, Labeeuw P. Study of abrasion-corrosion of AISI 304L austenitic stainless steel in saline solution using acoustic emission technique [J], NDT and E International,2000,33(6): 363-371.
    52. Basu K, Balpande S K, Roy D L. Corrosion studies on type 316 stainless steel in phosphoric acid [J], Transactions of the Society for Advancement of Electro-chemical Science and Technology,1978,13(1):11-22.
    53. Berns H, Eul U, Heitz E, Juse R L. Corrosion behaviour of solution nitrided stainless steels [J], Materials Science Forum,1999,318-320:517-22.
    54. Houchin L R, Foxenberg W E, Zhao J. Evaluation of potassium carbonate as a non-corrosive chloride-free completion fluid [C], Proceedings-SPE International Symposium on Formation Damage Control,1994,483-494.
    55.知水,王平,侯树庭.特殊钢炉外精炼[M],北京:原子能出版社,1996,3.
    56.成田贵一.钢铁技术进步[J],铁と钢,1975,61(5):565.
    57.李正邦.钢铁冶金前沿技术[M],北京:冶金工业出版社,1997,83-84,1.
    58.蒋国昌.纯净钢及二次精炼[M],上海:上海科学技术出版社,1996,43.
    59.赵沛.炉外精炼及铁水预处理实用技术手册[M],北京:冶金工业出版社,2004,5.
    60.王楠.浸入式喷粉铁水脱硫过程的模拟研究[D],沈阳:东北大学,2000.
    61.М.Ф.西多连柯.喷粉冶金的理论和实践[M],北京:冶金工业出版社,1983,Ⅱ.
    62.近代炼钢新技术编译组.近代炼钢新技术[M],上海:上海科学技术出版社,1982,12.
    63.孙钟尧,黄可平.厚壁炮钢冶炼工艺的重大变革[J],兵器材料科学与工程,1988,10,62-66.
    64.杜成武.RH真空装置内顶枪喷粉过程的物理与数学模拟[D],沈阳:东北大学,2006.
    65. Xu K D. The circulation characteristic and stirring efficiency in RH injection ladle [C], Tokyo:Proc of 7th Int Conf on Vac Metall,1982,1931-1936.
    66. Mizukami Y. RH-injection process combines degassing and powder injection [J]. Steel Times,1986, (3):142.
    67. Murayama N, Mizukami Y, Azuma. Secondary refining technology for interstitial free steel at NSC [C], Nagoya:Proc.6th Intern. Iron and Steel,1990,151-158.
    68. Hatakeyama T, Mizukami Y, Iga K and Oita M. Development of a new secondary refining process using an RH vacuum degasser [J], Iron and Steel maker,1989, 15(7):23-29.
    69.岡田泰和,ほか.RH粉体上吹精錬法の開發[J],铁と鋼,1994,80(1):T9-T12.
    70.张信昭.喷粉冶金基本原理[M],北京:冶金工业出版社,1988,1-2.
    71.唐萍,文光华,薛伟锋,熊银成,龙贻菊,何宏侠,赵知祥.铁水喷粉脱硫工艺参数优化的研究[J],钢铁研究,2004,140(5):9-14.
    72.欧阳克诚,刘仁华.WPB喷粉脱硫装置的应用与改进[J],冶金设备,2001,4:23-26.
    73. Engh T A, Larsen K, Venas K. Penetration of particle-gas jets into liquids [J], Ironmaking and Steelmaking,1979,6(6):268-273.
    74. Robertson D G C, Conochie D S, Castillejos A H. Model studies on gas-and-solid injection and related phenomena in liquid metal baths [C], Lulea:Scaninject 2, Proceedings-2nd International Conference on Injection Metallurgy,1980, 4.1-4.36.
    75. Farias L R, Robertson D G C. Physical modelling of gas-powder injection into liquid metals [C], Pittsburgh:Proceedings of the Process Technology Conference, 1982,106-220.
    76. Yamanoglu G, Guthrie R I L, Mazumdar D. Study of powder injection into water using an on-line particle detection system [J], Canadian Metallurgical Quarterly, 1999,38(1):61-80.
    77.罗建江,彭一川,肖泽强.短管中粉气两相流粉粒速度的实验研究[J],化工冶金,1994,15(8):243-251.
    78.朱荣,王新华,迪林.钢包浸渍罩钢液喷粉脱硫试验研究[J],特殊钢,2000,21(4):9-12.
    79.刘守平,罗小刚,文光远.钒钛铁水喷粉预处理研究[J],钢铁,2002,37(2):7-10.
    80.田鹏,王会忠,宋满堂.IR喷吹硅钙粉脱硫试验研究[J],炼钢,2003,19(6),41-43.
    81.赵成林,邹宗树.CAS-OB喷粉精炼粉剂配料计算模型[J],中国冶金,2006,16(10):29-31.
    82.张远君,王慧玉,张振鹏.两相流体动力学[M],北京:北京航空学院出版社,1986:264
    83. Franz 0. Metallurgy of Steelmaking [M], Dusseldorf:Verlag Stahleisen GmpH, 1994,224.
    84.张信昭.喷粉冶金基本原理[M],北京:冶金工业出版社,1988,14.
    85.张信昭.喷粉冶金基本原理[M],北京:冶金工业出版社,1988,114.
    86.近代炼钢新技术编译组.近代炼钢新技术[M],上海:上海科学技术出版社,1982,66.
    87.佟薄翘.转炉底喷粉剂输送特性[J],炼钢,1994,(4):52-56,29.
    88.肖兴国.冶金宏观动力学讲义[M],沈阳:东北大学,2002,49.
    89. Zenz F A, Othmer D F. Fluidization and fluid-particle systems [M], New York: Reinhold Publishing Corp.,1960,25.
    90.周建安,朱苗勇,潘时松.PFG型铁液预处理喷粉罐的研制及应用[J],中 国冶金,2006,16(11):27-29.
    91.欧俭平.鱼雷罐喷粉脱磷物理模拟[D],沈阳:东北大学,2001.
    92. Irons G A. Role of mixing in powder injection desulphurisation processes [J], Ironmaking and Steelmaking 1989,16(1):28-35.
    93.罗志国.利用转炉渣的铁水预处理脱磷过程模拟[D],沈阳:东北大学,2003.
    94.张利兵.铁水喷粉处理物理模拟及优化[D],沈阳:东北大学,2001.
    95.朱苗勇,萧泽强.钢的炼精过程数学物理模拟[M],北京:冶金工业出版社,1998,123-125.
    96. Sahai Y, Guthrie R I L. Hydrodynamics of gas stirred melts [J], Metall. Trans., 1982,13B (part Ⅰ):193-202.
    97.朱苗勇,萧泽强.钢的炼精过程数学物理模拟[M],北京:冶金工业出版社,1998,132.
    98. Lehrer L H. Progress design and development [J], I&EC,1968,7:193.
    99.李博,朱荣,蔡海涛,刘广会,宋满堂,王会忠.150t钢包精炼炉喷粉脱硫的试验研究[J],钢铁研究学报,2005,17(3):75-78.
    100.吴明,汤曙光,吴发达,梅忠.复合喷射与单喷镁脱硫效果的分析比较[J],炼钢,2006,22(3):1-3.
    101. Jiang J P, Yamanoglu G, Guthrie R. The main differences between bubbling and jetting regime during submerged powder injection [J], Journal of University of Science and Technology Beijing,1994,1(1~2):36-44.
    102.潘时松,朱苗勇,周建安.精炼钢包底喷粉透气砖的研制与实验研究[J],中国冶金,2007,17(7):41-43.
    103.张信昭.喷粉冶金基本原理[M],北京:冶金工业出版社,1988,109.
    104.张先棹.冶金传输原理[M],北京:冶金工业出版社,1988,195-197.
    105.М.Ф.西多连柯.喷粉冶金的理论和实践(下)[M],北京:冶金工业出版社,1983,24-25.
    106.张信昭.喷粉冶金基本原理[M],北京:冶金工业出版社,1988,130.
    107.侯勤福.鱼雷罐铁水喷粉预处理过程模拟与优化研究[D],沈阳:东北大学,2003.
    108.上海长红机械配件厂.射流技术[M],上海:上海市出版革命组,1970,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700