用户名: 密码: 验证码:
抑癌基因Tg737在肝癌发病机制中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是我国常见恶性肿瘤之一,其死亡率在恶性肿瘤中仅次于胃、食道而居第三位。在我国每年约有11万人死于肝癌,占全世界肝癌死亡人数的45%。研究表明原发性肝癌的预后比较差的主要原因是缺乏特异的早期诊断指标和治疗手段,而研究肝癌的发病机理有助于提高肝癌的早期诊断率,指导肝癌的正确治疗。
     Tg737基因是近年发现的一种肝癌抑癌基因,最初进行研究时发现该基因与遗传性多囊肾病(autosomal recessive polycystic kidney disease, ARPKD)orpk鼠突变模型研究中的目的基因相同。但到目前为止,对于Tg737基因在肝癌发病过程中的如何发挥作用并不十分清楚。因此,进一步揭示Tg737基因的生物学功能,丰富和发展肝癌发生发展理论,为肝癌早期诊断及治疗提供依据有着十分重要的意义。
     本研究共分三个部分:
     第一部分Tg737基因在肝癌中的表达及相关性研究
     目的观察Tg737基因在肝癌组织和细胞中的表达,并分析其与肝癌的相关性。
     方法采用RT-PCR和Western blot方法检测人肝癌组织和肝癌细胞系中Tg737 mRNA和蛋白的表达,并通过统计学方法对表达情况与肝癌的相关性进行分析。
     结果人正常肝细胞系HL-7702中Tg737的mRNA表达和蛋白表达水平均高于肝癌细胞HepG2和MHCC97。65例肝癌组织标本中有30例Tg737mRNA表达呈阳性,且表达水平较相应癌旁组织低;34例检测出Tg737蛋白的阳性表达。而65例癌旁组织中有61例检测出Tg737 mRNA的阳性表达;59例Tg737蛋白表达呈阳性。18例早期(Ⅰ-Ⅱ)肝癌组织中15例Tg737蛋白表达呈阳性,47例中晚期(Ⅲ-Ⅳ)肝癌中19例呈阳性,二者比较有统计学意义。
     结论Tg737基因作为肝癌的抑癌基因,其表达下调可能是肝癌发生、发展过程中的重要因素,检测Tg737基因的表达可能作为判断肝癌分期的参考指标。
     第二部分Tg737基因对肝癌细胞活性的影响
     目的构建Tg737基因的真核表达载体,并将其导入肝癌细胞中,观察该基因对人肝癌细胞增殖活性的影响。
     方法以临床获取的人正常肝组织的mRNA为模板,通过RT-PCR方法获得Tg737基因全长序列,将其克隆至pEGFP-C1载体,进行序列、酶切鉴定。将HepG2细胞随机分为三组:HepG2-Tg737组(pEGFP-Tg737转染组)、HepG2-vect组(空质粒转染组)和HepG2组(空白对照组),利用脂质体转染法将重组质粒转染至肝癌细胞系HepG2中;通过Real-time PCR及Western blot方法明确转染48h后,各组细胞中Tg737的表达情况,并通过流式细胞仪和MTT比色法观察其对细胞周期和活性的影响。
     结果我们成功构建了真核表达载体pEGFP-Tg737,将其转染至肝癌细胞系HepG248h后,HepG2-Tg737组细胞中Tg737mRNA和蛋白的表达水平均明显高于HepG2-vect组和HepG2组。与其它两组相比,HepG2-Tg737组细胞生长明显受到抑制,G1期细胞比例高于HepG2-vect组和HepG2组,S期细胞比例明显较低。
     结论Tg737基因能够过表达于肝癌细胞HepG2中,并可抑制该细胞的增殖能力。
     第三部分肝癌中Tg737基因杂合性缺失的研究
     目的检测肝癌中Tg737基因的杂合性缺失情况,并分析微卫星位点杂合性缺失与临床病理特征的关系。
     方法应用聚合酶链反应-单链构象多态性技术(PCR-SSCP)检测Tg737基因的五个微卫星位点(RH65721、RH118612、SHGC-57879、STS-U20362和G64212)杂合性缺失情况,并通过统计学方法对缺失情况与肝癌临床病理参数的相关性进行分析。
     结果Tg737基因的五个微卫星位点RH65721、RH118612、SHGC-57879、STS-U20362和G64212的LOH发生频率分别为61.54% (32/65)、52.31%(34/65)、65.45%(36/65)、58.33%(28/65)、74.47%(35/65);五个位点之间的LOH发生率差异无统计学意义(P>0.05)。微卫星位点SHGC-57879和G64212的LOH发生率与肝癌的转移及TNM分期相关(P<0.05)。
     结论Tg737基因在肝癌中存在较大比例的杂合性缺失,其微卫星位点表现出较高的不稳定性,影响基因的表达。
     通过以上的研究,初步证实了Tg737基因在肝癌发生的过程中发挥着抑癌基因的作用,对肝癌细胞的增殖有明显的抑制作用。而且Tg737基因在肝癌中存在杂合性缺失,其微卫星位点表现出较高的不稳定性,进而影响基因的表达。因此,Tg737基因有可能作为肝癌的基因治疗靶点,为肝癌的基因治疗提供新思路。
Hepatocellular carcinoma (HCC) is one of the most common malignanttumors in China and its mortality rate ranks the third place after stomach cancerand esophagus cancer. There are over 11 million people who died from HCCevery year, which accounts for 45% of deaths in the world. Studies have shownthat the prognosis of primary liver cancer is still not optimistic, mainly due tothe lack of specific indicators of early diagnosis and treatment. The research ofpathogenesis in HCC is helpful to promote the rate of diagnosis in the earlyperiod.
     Tg737 gene is a kind of tumor suppressor gene in HCC. The initial studyfound that the gene was the same as the target gene of genetic polycystic kidneydisease (autosomal recessive polycystic kidney disease, ARPKD) orpk mutantmouse model. But so far, the mechanism of Tg737 gene in HCC is not very clear.Therefore, it is very important to reveal the biological function of Tg737 geneand develope the theory of HCC for diagnosis and treatment of HCC in the earlyperiod.
     This study is divided into three parts.
     PartⅠStudy of expression of Tg737 and correlation in hepatocellularcarcinoma
     Objective Expression of Tg737 in HCC was analyzed and relationshipbetween the expression of Tg737 and mechanism of HCC was investigated.Materials and methods RT-PCR and Western blot methods were used toanalyze the expression of Tg737 mRNA and protein.
     Results The results showed that Tg737 expression of the mRNA andprotein in liver cells were higher than HepG2 and MHCC97 cells. Thirty casesof Tg737 mRNA expression in 65 cases of HCC tissues were lower than thecorresponding adjacent tissues, while 61 cases of Tg737 mRNA expression inthe adjacent tissues were positive. Fifty-nine (90.78%) cases of Tg737 proteinexpression in 65 cases of the adjacent tissues were positive. There were 34(52.31%) cases of protein positive expression in HCC tissues. Fifteen caseswere positive in 18 (55.56%) cases of early (Ⅰ-Ⅱ) HCC tissues. There were 19(27.66%) cases of positive expression in 47 cases of advanced (Ⅲ-Ⅳ) HCCtissues. Statistical analysis showed that the Tg737 protein in tumor tissue wassignificantly lower than the adjacent liver tissue. The Tg737 protein positive rateof early (Ⅰ-Ⅱ) HCC tissue was significantly higher than in advanced (Ⅲ-Ⅳ)HCC tissues.
     Conclusions It is indicated that Tg737 gene expression in HCC isreduced, which may be important factor in the process of hepatocarcinogenesis.Analysis of Tg737 gene expression may be reference index of HCC stages.
     PartⅡTg737 affecting activity of HCC cells
     Objective Tg737 gene was amplificated from human normal liver tissueand constructed to the eukaryotic expression vector. Then it is studied that Tg737 influences activity of HCC cells.
     MaterialMaterials and methods Plasmid pEGFP-Tg737 was transfected intoHepG2 cell and increased expression level of Tg737. The experiment wasdivided into three groups: HepG2-Tg737 group (pEGFP-Tg737 transfectiongroup), HepG2-vect group (empty vector transfection group), and HepG2 group(blank control group). Cell cycles were analyzed by flow cytometry andexpression of Tg737 was detected by Real-time PCR and Western blot methods.Cell growth curves were made by MTT test.
     Results The eukaryotic expression vector pEGFP-Tg737 was constructedsuccessfully and transfected into hepatocellular carcinoma line. Compared withHepG2-vect group and HepG2 group, Tg737 expression of HepG2-Tg737 groupincreased remarkedly after 48 hours of transfection. Cell growth in HepG2-Tg737 group was significantly inhibited and the proportion of G1 phase cells inHepG2-Tg737 group was higher than that of HepG2-vect group and HepG2group and cells of S phase was significantly lower.Conclusions Tg737 gene can inhibit cell proliferation markedly andinduce block of G1 stage.
     PartⅢStudy of loss of heterozygosity on Tg737 gene
     Objective Loss of heterozygosity (LOH) of Tg737 in HCC was detectedand relationship between LOH status and clinical pathology characters wasanalyzed.
     Materials and methods Polymerase chain reaction-single strandconformation polymorphism (PCR-SSCP) method was used to detect LOH offive microsatellite sites on Tg737.
     Results The results showed that LOH frequences of five microsatellitesites in Tg737 gene were 61.54%(32/65), 52.31%(34/65), 65.45%(36/65), 58.33%(28/65) and 74.47%(35/65). There was no significant difference (P>0.05)between LOH of five microsatellite sites. However, LOH frequences of SHGC-57879 and G64212 related to tumor metastasis and TNM staging (P<0.05).
     Conclusions High frequences LOH of Tg737 gene exist in HCC andmicrosatellite sites had high instability, which can affect on expression of thegene.
     In conclusion, this study confirms that tumor suppressor gene Tg737 playsan important role in the period of hepatocarcinogenesis and inhibits theproliferation of HCC cells. Nevertheless, loss of heterozygosity of the Tg737gene exists in hepatocellular carcinoma and high instability is shown on itsmicrosatellite sites which affect the gene expression. So Tg737 can serve astargets for gene therapy of HCC and provide new ideas for gene therapy of HCC.
引文
1. Isfort RJ, Cody DB, Doersen CJ, Richards WG, Yoder BK, Wilkinson JE, Kier LD,Jirtle RL, Isenberg JS, Klounig JE, Woychik RP. The tetratricopeptide repeatcontaining Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene,1997, 15(15):1797-1803.
    2. Chen CF, Yeh SH, Chen DS, Chen PJ, Jou YS. Molecular genetic evidencesupporting a novel human hepatocellular carcinoma tumor suppressor locus at13q12.11. Genes Chromosomes Cancer, 2005, 44(3):320-328.
    3.汤钊猷.肝癌临床研究的现状与进展.中国临床医学, 2002(05): 465-467.
    4.卞修武.肝癌发病的分子机制.现代消化及介入诊疗, 2004(03): 19.
    5.杨传标,张述平,汪道远,袁靖,左建生,徐克成.肝癌中医证型与野生型p53mRNA、N-ras蛋白表达相关性研究.新中医, 2007(01): 85-86.
    6.胡利富,王露萍,居丽雯.人原发性肝癌种N-ras基因的表达.中国科学(B辑), 1985(05): 458-462.
    7.顾建人,陈渊卿,蒋惠秋.人原发性肝癌的癌基因谱.肿瘤, 1988(06): 289-291.
    8. Kfir S, Ehrlich M, Goldshmid A, Liu X, Kloog Y, Henis YI. Pathway- andexpression level-dependent effects of oncogenic N-Ras: p27(Kip1)mislocalization by the Ral-GEF pathway and Erk-mediated interference withSmad signaling. Mol Cell Biol, 2005, 25(18):8239-8250.
    9. Urquhart JL, Meech SJ, Marr DG, Shellman YG, Duke RC, Norris DA.Regulation of Fas-mediated apoptosis by N-ras in melanoma. J Invest Dermatol,2002, 119(3):556-561.
    10. Wolfman JC, Palmby T, Der CJ, Wolfman A. Cellular N-Ras promotes cellsurvival by downregulation of Jun N-terminal protein kinase and p38. Mol CellBiol, 2002, 22(5):1589-1606.
    11. Wolfman JC, Wolfman A. Endogenous c-N-Ras provides a steady-state antiapoptoticsignal. J Biol Chem, 2000, 275(25):19315-19323.
    12.赵平伟黄姜. C-Myc基因在肝癌与肝硬化组织中扩增的实验研究.中国厂矿医学, 2005(01): 8-9.
    13.石晶.端粒、端粒酶、C-myc与肿瘤.临床口腔医学杂志, 2004(01): 61-62.
    14. El-Bassiouni A, Nosseir M, Zoheiry M, El-Ahwany E, Ghali A, El-Bassiouni N.Immunohistochemical expression of CD95 (Fas), c-myc and epidermal growthfactor receptor in hepatitis C virus infection, cirrhotic liver disease andhepatocellular carcinoma. APMIS, 2006, 114(6):420-427.
    15. Hann SR, Thompson CB, Eisenman RN. c-myc oncogene protein synthesis isindependent of the cell cycle in human and avian cells. Nature, 1985,314(6009):366-369.
    16. Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia, 2000,2(4):291-299.
    17.杨少波,王孟薇,尤纬缔.肝癌组织中p62 c-myc表达及其意义.临床肝胆病杂志, 1996(12).
    18. Santoni-Rugiu E, Nagy P, Jensen MR, Factor VM, Thorgeirsson SS. Evolution ofneoplastic development in the liver of transgenic mice co-expressing c-myc andtransforming growth factor-alpha. Am J Pathol, 1996, 149(2):407-428.
    19. Rohrschneider LR, Bourette RP, Lioubin MN, Algate PA, Myles GM, Carlberg K.Growth and differentiation signals regulated by the M-CSF receptor. Mol ReprodDev, 1997, 46(1):96-103.
    20. Tuyt LM, Bregman K, Lummen C, Dokter WH, Vellenga E. Differential bindingactivity of the transcription factor LIL-STAT in immature and differentiatednormal and leukemic myeloid cells. Blood, 1998, 92(4):1364-1373.
    21. Hatch WC, Ganju RK, Hiregowdara D, Avraham S, Groopman JE. The relatedadhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated andparticipates in colony-stimulating factor-1/macrophage colony-stimulating factorsignaling in monocyte-macrophages. Blood, 1998, 91(10):3967-3973.
    22. Dong ZZ, Yao DF, Yao DB, Wu XH, Wu W, Qiu LW, Jiang DR, Zhu JH, Meng XY.Expression and alteration of insulin-like growth factor II-messenger RNA inhepatoma tissues and peripheral blood of patients with hepatocellular carcinoma.World J Gastroenterol, 2005, 11(30):4655-4660.
    23. Su Q, Liu YF, Zhang JF, Zhang SX, Li DF, Yang JJ. Expression of insulin-likegrowth factor II in hepatitis B, cirrhosis and hepatocellular carcinoma: itsrelationship with hepatitis B virus antigen expression. Hepatology, 1994, 20(4 Pt1):788-799.
    24.杨冬华,刘为纹,顾健人. GF-2、IGF-受体和CSF-1受体/C-fms癌基因产物在肝癌、癌旁肝组织的细胞定位及表达.中华消化杂志, 1993(04): 189-192.
    25. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R,Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific IGF-II is amajor modulator of placental and fetal growth. Nature, 2002, 417(6892):945-948.
    26. Chen GG, Li MY, Ho RL, Chak EC, Lau WY, Lai PB. Identification of hepatitis Bvirus X gene mutation in Hong Kong patients with hepatocellular carcinoma. JClin Virol, 2005, 34(1):7-12.
    27. Tang SH, Yang DH, Huang W, Zhou HK, Lu XH, Ye G. Hypomethylated P4promoter induces expression of the insulin-like growth factor-II gene inhepatocellular carcinoma in a Chinese population. Clin Cancer Res, 2006, 12(14Pt 1):4171-4177.
    28. Wang Z, Ruan YB, Guan Y, Liu SH. Expression of IGF-II in early experimentalhepatocellular carcinomas and its significance in early diagnosis. World JGastroenterol, 2003, 9(2):267-270.
    29. Medema RH, Burgering BM. The X factor: skewing X inactivation towardscancer. Cell, 2007, 129(7):1253-1254.
    30. Robinson WS. Molecular events in the pathogenesis of hepadnavirus-associatedhepatocellular carcinoma. Annu Rev Med, 1994, 45:297-323.
    31. Ng RK, Lau CY, Lee SM, Tsui SK, Fung KP, Waye MM. cDNA microarrayanalysis of early gene expression profiles associated with hepatitis B virus Xprotein-mediated hepatocarcinogenesis. Biochem Biophys Res Commun, 2004,322(3):827-835.
    32. Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complexformation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc NatlAcad Sci U S A, 1994, 91(22):10350-10354.
    33. Elmore LW, Hancock AR, Chang SF, Wang XW, Chang S, Callahan CP, GellerDA, Will H, Harris CC. Hepatitis B virus X protein and p53 tumor suppressorinteractions in the modulation of apoptosis. Proc Natl Acad Sci U S A, 1997,94(26):14707-14712.
    34.沈钦海周张贾罗任张.乙型肝炎病毒及其x基因对培养肝细胞端粒酶活性的影响.中华传染病杂志, 2002(02): 1212.
    35. Lara-Pezzi E, Gomez-Gaviro MV, Galvez BG, Mira E, Iniguez MA, Fresno M,Martinez AC, Arroyo AG, Lopez-Cabrera M. The hepatitis B virus X proteinpromotes tumor cell invasion by inducing membrane-type matrixmetalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest, 2002,110(12):1831-1838.
    36. Chan CF, Yau TO, Jin DY, Wong CM, Fan ST, Ng IO. Evaluation of nuclearfactor-kappaB, urokinase-type plasminogen activator, and HBx and theirclinicopathological significance in hepatocellular carcinoma. Clin Cancer Res,2004, 10(12 Pt 1):4140-4149.
    37.高丰张宋. p53家族新成员研究进展.国外医学遗传学分册, 2000(02): 661.
    38. Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJ, Jr.Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by thep53-regulated protein Gadd45. Oncogene, 1999, 18(18):2892-2900.
    39. Appella E, Anderson CW. Signaling to p53: breaking the posttranslationalmodification code. Pathol Biol (Paris), 2000, 48(3):227-245.
    40. Pluquet O, Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction.Cancer Lett, 2001, 174(1):1-15.
    41. Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma.World J Gastroenterol, 2002, 8(3):385-392.
    42. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V,Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53restoration in murine liver carcinomas. Nature, 2007, 445(7128):656-660.
    43. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARCTP53 database: new online mutation analysis and recommendations to users. HumMutat, 2002, 19(6):607-614.
    44. Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNAhypermethylation in human hepatocellular carcinoma. Cancer Lett, 2006,233(2):271-278.
    45. Zhang C, Li Z, Cheng Y, Jia F, Li R, Wu M, Li K, Wei L. CpG island methylatorphenotype association with elevated serum alpha-fetoprotein level inhepatocellular carcinoma. Clin Cancer Res, 2007, 13(3):944-952.
    46. Kirk GD, Camus-Randon AM, Mendy M, Goedert JJ, Merle P, Trepo C, BrechotC, Hainaut P, Montesano R. Ser-249 p53 mutations in plasma DNA of patientswith hepatocellular carcinoma from The Gambia. J Natl Cancer Inst, 2000,92(2):148-153.
    47. Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P. Geographic variation of p53mutational profile in nonmalignant human liver. Science, 1994, 264(5163):1317-1319.
    48. Scorsone KA, Zhou YZ, Butel JS, Slagle BL. p53 mutations cluster at codon 249in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res,1992, 52(6):1635-1638.
    49. Cha C, Dematteo RP. Molecular mechanisms in hepatocellular carcinomadevelopment. Best Pract Res Clin Gastroenterol, 2005, 19(1):25-37.
    50. Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. TP53 and livercarcinogenesis. Hum Mutat, 2003, 21(3):201-216.
    51. Tan SL, Katze MG. How hepatitis C virus counteracts the interferon response: thejury is still out on NS5A. Virology, 2001, 284(1):1-12.
    52. Alisi A, Giambartolomei S, Cupelli F, Merlo P, Fontemaggi G, Spaziani A,Balsano C. Physical and functional interaction between HCV core protein and thedifferent p73 isoforms. Oncogene, 2003, 22(17):2573-2580.
    53. Lee MN, Jung EY, Kwun HJ, Jun HK, Yu DY, Choi YH, Jang KL. Hepatitis Cvirus core protein represses the p21 promoter through inhibition of a TGF-betapathway. J Gen Virol, 2002, 83(Pt 9):2145-2151.
    54. Yamanaka T, Uchida M, Doi T. Innate form of HCV core protein plays animportant role in the localization and the function of HCV core protein. BiochemBiophys Res Commun, 2002, 294(3):521-527.
    55. Bergqvist M, Brattstrom D, Larsson A, Hesselius P, Brodin O, Wagenius G. Therole of circulating anti-p53 antibodies in patients with advanced non-small celllung cancer and their correlation to clinical parameters and survival. BMC Cancer,2004, 4:66.
    56. Chang SC, Lin JK, Lin TC, Liang WY. Genetic alteration of p53, but notoverexpression of intratumoral p53 protein, or serum p53 antibody is a prognosticfactor in sporadic colorectal adenocarcinoma. Int J Oncol, 2005, 26(1):65-75.
    57. Lin J, Zhu MH. [Interactive pathway of ARF-mdm2-p53]. Ai Zheng, 2003,22(3):328-330.
    58. Anzola M, Cuevas N, Lopez-Martinez M, Saiz A, Burgos JJ, Martinez dePancorboa M. P14ARF gene alterations in human hepatocellular carcinoma. Eur JGastroenterol Hepatol, 2004, 16(1):19-26.
    59.官泳松,刘源,贺庆.血清p53抗体与原发性肝癌临床特征的关系.世界华人消化杂志, 2007(03): 246-253.
    60. Kashyap R, Jain A, Nalesnik M, Carr B, Barnes J, Vargas HE, Rakela J, Fung J.Clinical significance of elevated alpha-fetoprotein in adults and children. Dig DisSci, 2001, 46(8):1709-1713.
    61. Guan YS, La Z, Yang L, He Q, Li P. p53 gene in treatment of hepatic carcinoma:status quo. World J Gastroenterol, 2007, 13(7):985-992.
    62. Bykov VJ, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53.Eur J Cancer, 2003, 39(13):1828-1834.
    63. Klein C, Vassilev LT. Targeting the p53-MDM2 interaction to treat cancer. Br JCancer, 2004, 91(8):1415-1419.
    64. Pan HW, Chou HY, Liu SH, Peng SY, Liu CL, Hsu HC. Role of L2DTL, cellcycle-regulated nuclear and centrosome protein, in aggressive hepatocellularcarcinoma. Cell Cycle, 2006, 5(22):2676-2687.
    65. Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, Kobayashi R, Sun H,Zhang H. L2DTL/CDT2 and PCNA interact with p53 and regulate p53polyubiquitination and protein stability through MDM2 and CUL4A/DDB1complexes. Cell Cycle, 2006, 5(15):1719-1729.
    66. Ito M, Jiang C, Krumm K, Zhang X, Pecha J, Zhao J, Guo Y, Roeder RG, Xiao H.TIP30 deficiency increases susceptibility to tumorigenesis. Cancer Res, 2003,63(24):8763-8767.
    67. Zhao J, Zhang X, Shi M, Xu H, Jin J, Ni H, Yang S, Dai J, Wu M, Guo Y. TIP30inhibits growth of HCC cell lines and inhibits HCC xenografts in mice incombination with 5-FU. Hepatology, 2006, 44(1):205-215.
    68. Zou Y, Zong G, Ling YH, Hao MM, Lozano G, Hong WK, Perez-Soler R.Effective treatment of early endobronchial cancer with regional administration ofliposome-p53 complexes. J Natl Cancer Inst, 1998, 90(15):1130-1137.
    69. Jiang C, Pecha J, Hoshino I, Ankrapp D, Xiao H. TIP30 mutant derived fromhepatocellular carcinoma specimens promotes growth of HepG2 cells through upregulationof N-cadherin. Cancer Res, 2007, 67(8):3574-3582.
    70. Ohgi T, Masaki T, Nakai S, Morishita A, Yukimasa S, Nagai M, Miyauchi Y,Funaki T, Kurokohchi K, Watanabe S, Kuriyama S. Expression of p33(ING1) inhepatocellular carcinoma: relationships to tumour differentiation and cyclin Ekinase activity. Scand J Gastroenterol, 2002, 37(12):1440-1448.
    71. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, anovel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res, 2000, 60(8):2140-2145.
    72. Paige AJ, Taylor KJ, Taylor C, Hillier SG, Farrington S, Scott D, Porteous DJ,Smyth JF, Gabra H, Watson JE. WWOX: a candidate tumor suppressor geneinvolved in multiple tumor types. Proc Natl Acad Sci U S A, 2001, 98(20):11417-11422.
    73. Chang NS, Pratt N, Heath J, Schultz L, Sleve D, Carey GB, Zevotek N.Hyaluronidase induction of a WW domain-containing oxidoreductase thatenhances tumor necrosis factor cytotoxicity. J Biol Chem, 2001, 276(5):3361-3370.
    74. Nunez MI, Ludes-Meyers J, Abba MC, Kil H, Abbey NW, Page RE, Sahin A,Klein-Szanto AJ, Aldaz CM. Frequent loss of WWOX expression in breast cancer:correlation with estrogen receptor status. Breast Cancer Res Treat, 2005, 89(2):99-105.
    75. Ried K, Finnis M, Hobson L, Mangelsdorf M, Dayan S, Nancarrow JK, WoollattE, Kremmidiotis G, Gardner A, Venter D, Baker E, Richards RI. Commonchromosomal fragile site FRA16D sequence: identification of the FOR genespanning FRA16D and homozygous deletions and translocation breakpoints incancer cells. Hum Mol Genet, 2000, 9(11):1651-1663.
    76. Gourley C, Paige AJ, Taylor KJ, Scott D, Francis NJ, Rush R, Aldaz CM, SmythJF, Gabra H. WWOX mRNA expression profile in epithelial ovarian cancersupports the role of WWOX variant 1 as a tumour suppressor, although the role ofvariant 4 remains unclear. Int J Oncol, 2005, 26(6):1681-1689.
    77. Watanabe A, Hippo Y, Taniguchi H, Iwanari H, Yashiro M, Hirakawa K, KodamaT, Aburatani H. An opposing view on WWOX protein function as a tumorsuppressor. Cancer Res, 2003, 63(24):8629-8633.
    78. Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, KiguchiK, Brenner AJ, Aldaz CM. WWOX, the FRA16D gene, behaves as a suppressor oftumor growth. Cancer Res, 2001, 61(22):8068-8073.
    79. Yakicier MC, Legoix P, Vaury C, Gressin L, Tubacher E, Capron F, Bayer J,Degott C, Balabaud C, Zucman-Rossi J. Identification of homozygous deletions atchromosome 16q23 in aflatoxin B1 exposed hepatocellular carcinoma. Oncogene,2001, 20(37):5232-5238.
    80. Park SW, Ludes-Meyers J, Zimonjic DB, Durkin ME, Popescu NC, Aldaz CM.Frequent downregulation and loss of WWOX gene expression in humanhepatocellular carcinoma. Br J Cancer, 2004, 91(4):753-759.
    81. Herath NI, Kew MC, Whitehall VL, Walsh MD, Jass JR, Khanna KK, Young J,Powell LW, Leggett BA, Macdonald GA. p73 is up-regulated in a subset ofhepatocellular carcinomas. Hepatology, 2000, 31(3):601-605.
    82. Zemel R, Koren C, Bachmatove L, Avigad S, Kaganovsky E, Okon E, Ben-Ari Z,Grief F, Ben-Yehoyada M, Shaul Y, Tur-Kaspa R. p73 overexpression and nuclearaccumulation in hepatitis C virus-associated hepatocellular carcinoma. Dig DisSci, 2002, 47(4):716-722.
    83. Aqeilan RI, Pekarsky Y, Herrero JJ, Palamarchuk A, Letofsky J, Druck T,Trapasso F, Han SY, Melino G, Huebner K, Croce CM. Functional associationbetween Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl AcadSci U S A, 2004, 101(13):4401-4406.
    84. Iida M, Anna CH, Holliday WM, Collins JB, Cunningham ML, Sills RC,Devereux TR. Unique patterns of gene expression changes in liver after treatmentof mice for 2 weeks with different known carcinogens and non-carcinogens.Carcinogenesis, 2005, 26(3):689-699.
    85. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, Hauck WW, McCue P, HuebnerK. The fragile genes FHIT and WWOX are inactivated coordinately in invasivebreast carcinoma. Cancer, 2004, 100(8):1605-1614.
    86. Iliopoulos D, Fabbri M, Druck T, Qin HR, Han SY, Huebner K. Inhibition ofbreast cancer cell growth in vitro and in vivo: effect of restoration of Wwoxexpression. Clin Cancer Res, 2007, 13(1):268-274.
    87. Iliopoulos D, Guler G, Han SY, Druck T, Ottey M, McCorkell KA, Huebner K.Roles of FHIT and WWOX fragile genes in cancer. Cancer Lett, 2006, 232(1):27-36.
    88. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novelprotein tyrosine phosphatase regulated by transforming growth factor beta. CancerRes, 1997, 57(11):2124-2129.
    89. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C,Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B,Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosinephosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997, 275(5308):1943-1947.
    90. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA,Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH,Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, atchromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet,1997, 15(4):356-362.
    91. Hlobilkova A, Knillova J, Bartek J, Lukas J, Kolar Z. The mechanism of action ofthe tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky OlomoucCzech Repub, 2003, 147(1):19-25.
    92. Das S, Dixon JE, Cho W. Membrane-binding and activation mechanism of PTEN.Proc Natl Acad Sci U S A, 2003, 100(13):7491-7496.
    93. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE,Pandolfi P, Pavletich NP. Crystal structure of the PTEN tumor suppressor:implications for its phosphoinositide phosphatase activity and membraneassociation. Cell, 1999, 99(3):323-334.
    94. Chung TW, Lee YC, Ko JH, Kim CH. Hepatitis B Virus X protein modulates theexpression of PTEN by inhibiting the function of p53, a transcriptional activatorin liver cells. Cancer Res, 2003, 63(13):3453-3458.
    95. Fujiwara Y, Hoon DS, Yamada T, Umeshita K, Gotoh M, Sakon M, Nishisho I,Monden M. PTEN / MMAC1 mutation and frequent loss of heterozygosityidentified in chromosome 10q in a subset of hepatocellular carcinomas. Jpn JCancer Res, 2000, 91(3):287-292.
    96. Ma DZ, Xu Z, Liang YL, Su JM, Li ZX, Zhang W, Wang LY, Zha XL. Downregulationof PTEN expression due to loss of promoter activity in humanhepatocellular carcinoma cell lines. World J Gastroenterol, 2005, 11(29):4472-4477.
    97. Wan XW, Jiang M, Cao HF, He YQ, Liu SQ, Qiu XH, Wu MC, Wang HY. Thealteration of PTEN tumor suppressor expression and its association with thehistopathological features of human primary hepatocellular carcinoma. J CancerRes Clin Oncol, 2003, 129(2):100-106.
    98. Zhang L, Yu Q, He J, Zha X. Study of the PTEN gene expression and FAKphosphorylation in human hepatocarcinoma tissues and cell lines. Mol CellBiochem, 2004, 262(1-2):25-33.
    99. Sieghart W, Fuereder T, Schmid K, Cejka D, Werzowa J, Wrba F, Wang X, GruberD, Rasoul-Rockenschaub S, Peck-Radosavljevic M, Wacheck V. Mammaliantarget of rapamycin pathway activity in hepatocellular carcinomas of patientsundergoing liver transplantation. Transplantation, 2007, 83(4):425-432.
    100. Wang L, Wang WL, Zhang Y, Guo SP, Zhang J, Li QL. Epigenetic and geneticalterations of PTEN in hepatocellular carcinoma. Hepatol Res, 2007, 37(5):389-396.
    101. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, LeeCM, Tai MH. Expression and prognostic role of tumor suppressor genePTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer, 2003, 97(8):1929-1940.
    102. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV,Stockert E, Day RS, 3rd, Johnson BE, Skolnick MH. A cell cycle regulatorpotentially involved in genesis of many tumor types. Science, 1994,264(5157):436-440.
    103. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle controlcausing specific inhibition of cyclin D/CDK4. Nature, 1993, 366(6456):704-707.
    104. Zhang YJ, Rossner P, Jr., Chen Y, Agrawal M, Wang Q, Wang L, Ahsan H, Yu MW,Lee PH, Santella RM. Aflatoxin B1 and polycyclic aromatic hydrocarbon adducts,p53 mutations and p16 methylation in liver tissue and plasma of hepatocellularcarcinoma patients. Int J Cancer, 2006, 119(5):985-991.
    105. Lin YW, Chen CH, Huang GT, Lee PH, Wang JT, Chen DS, Lu FJ, Sheu JC.Infrequent mutations and no methylation of CDKN2A (P16/MTS1) and CDKN2B(p15/MTS2) in hepatocellular carcinoma in Taiwan. Eur J Cancer, 1998,34(11):1789-1795.
    106. Moyer JH, Lee-Tischler MJ, Kwon HY, Schrick JJ, Avner ED, Sweeney WE,Godfrey VL, Cacheiro NL, Wilkinson JE, Woychik RP. Candidate gene associatedwith a mutation causing recessive polycystic kidney disease in mice. Science,1994, 264(5163):1329-1333.
    107. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, ColeDG. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney diseasegene tg737, are required for assembly of cilia and flagella. J Cell Biol, 2000,151(3):709-718.
    108. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL.Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particlescontain proteins required for ciliary assembly in Caenorhabditis elegans sensoryneurons. J Cell Biol, 1998, 141(4):993-1008.
    109. Pazour GJ, Sineshchekov OA, Witman GB. Mutational analysis of thephototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol, 1995,131(2):427-440.
    110. Pazour GJ, Dickert BL, Witman GB. The DHC1b (DHC2) isoform of cytoplasmicdynein is required for flagellar assembly. J Cell Biol, 1999, 144(3):473-481.
    111. Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediatingprotein-protein interactions. Bioessays, 1999, 21(11):932-939.
    112. Rosenbaum JL, Cole DG, Diener DR. Intraflagellar transport: the eyes have it. JCell Biol, 1999, 144(3):385-388.
    113. Murcia NS, Woychik RP, Avner ED. The molecular biology of polycystic kidneydisease. Pediatr Nephrol, 1998, 12(9):721-726.
    114. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ,Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH,Deltas CC, Peters DJ, Somlo S. PKD2, a gene for polycystic kidney disease thatencodes an integral membrane protein. Science, 1996, 272(5266):1339-1342.
    115. Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK. Disruption of IFTresults in both exocrine and endocrine abnormalities in the pancreas ofTg737(orpk) mutant mice. Lab Invest, 2005, 85(1):45-64.
    116. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD,Schwiebert EM, Yoder BK. Dysfunctional cilia lead to altered ependyma andchoroid plexus function, and result in the formation of hydrocephalus.Development, 2005, 132(23):5329-5339.
    117. Zhang Q, Murcia NS, Chittenden LR, Richards WG, Michaud EJ, Woychik RP,Yoder BK. Loss of the Tg737 protein results in skeletal patterning defects. DevDyn, 2003, 227(1):78-90.
    118. McGlashan SR, Jensen CG, Poole CA. Localization of extracellular matrixreceptors on the chondrocyte primary cilium. J Histochem Cytochem, 2006,54(9):1005-1014.
    119. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent proteinas a marker for gene expression. Science, 1994, 263(5148):802-805.
    120. Hertz S, Rothamel T, Skawran B, Giere C, Steinemann D, Flemming P, Becker T,Flik J, Wiese B, Soudah B, Kreipe H, Schlegelberger B, Wilkens L. Losses ofchromosome arms 4q, 8p, 13q and gain of 8q are correlated with increasingchromosomal instability in hepatocellular carcinoma. Pathobiology, 2008,75(5):312-322.
    121. Homayounfar K, Gunawan B, Cameron S, Haller F, Baumhoer D, Uecker S,Sander B, Ramadori G, Lorf T, Fuzesi L. Pattern of chromosomal aberrations inprimary liver cancers identified by comparative genomic hybridization. HumPathol, 2009, 40(6):834-842.
    122. Midorikawa Y, Yamamoto S, Ishikawa S, Kamimura N, Igarashi H, Sugimura H,Makuuchi M, Aburatani H. Molecular karyotyping of human hepatocellularcarcinoma using single-nucleotide polymorphism arrays. Oncogene, 2006,25(40):5581-5590.
    123. Patil MA, Gutgemann I, Zhang J, Ho C, Cheung ST, Ginzinger D, Li R, DykemaKJ, So S, Fan ST, Kakar S, Furge KA, Buttner R, Chen X. Array-basedcomparative genomic hybridization reveals recurrent chromosomal aberrationsand Jab1 as a potential target for 8q gain in hepatocellular carcinoma.Carcinogenesis, 2005, 26(12):2050-2057.
    124. Skawran B, Steinemann D, Becker T, Buurman R, Flik J, Wiese B, Flemming P,Kreipe H, Schlegelberger B, Wilkens L. Loss of 13q is associated with genesinvolved in cell cycle and proliferation in dedifferentiated hepatocellularcarcinoma. Mod Pathol, 2008, 21(12):1479-1489.
    125. Wong CM, Lee JM, Lau TC, Fan ST, Ng IO. Clinicopathological significance ofloss of heterozygosity on chromosome 13q in hepatocellular carcinoma. ClinCancer Res, 2002, 8(7):2266-2272.
    126. Bonura C, Paterlini-Brechot P, Brechot C. Structure and expression of Tg737, aputative tumor suppressor gene, in human hepatocellular carcinomas. Hepatology,1999, 30(3):677-681.
    127.樊菁.一、肝癌细胞来源的边群细胞的分化及抗凋亡能力的研究;二、人类Bcrp基因的克隆和Tg737基因在边群细胞中缺失突变情况的检测.第四军医大学博士学位论文, 2007(04).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700