用户名: 密码: 验证码:
安徽巢湖地区早三叠世和龙山组沉积环境变化及其生物学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽省巢湖地区位于下扬子地块北缘,保存有完整的早三叠世沉积记录,是华南地区下三叠统研究的经典地区之一。该地区下三叠统和龙山组相当于Olenekian阶Smithian亚阶的中上部,厚度在17.19-30.10m之间,根据岩性特征可划分为5段:第1段为中厚层泥质灰岩夹薄层钙质泥岩;第2段为条带灰岩与钙质泥岩互层,条带灰岩中微生物席发育;第三段为泥质灰岩、条带灰岩、钙质泥岩三种岩性互层;第四段与第三段的主要区别在于岩层内含丰富的黄铁矿颗粒;第五段岩性以钙质泥岩为主,下部含微生物席、叠层石薄层或透镜体,向上泥质灰岩层含量增加。其中微生物岩的发现为沉积古环境重建、环境变化与生物响应关系分析和早三叠世生物复苏时限、过程、机制等问题的探讨提供了重要材料。
     和龙山组以细粒沉积物主,发育波状层理、透镜状层理、脉状层理、侵蚀槽等流水成因沉积构造和微生物岩、微生物沉积构造(MISS)、遗迹化石等生物沉积构造,产出草莓状黄铁矿、石盐晶体和自生石英晶体。碳酸盐岩微相分析表明,和龙山组属浅水低能的开阔—局限台地相沉积,由下向上经历了由潮间—泻湖—潮间—浅水潮下的水体变浅然后又变深的环境变化过程。沉积特征与微相特征还显示,和龙山组第4段沉积期存在海洋水化学条件异常现象。
     通过光学显微镜与扫描电镜等实验手段,在和龙山组微生物岩中鉴别出蓝藻、绿藻、颗石藻和硫细菌等微体化石,结合和龙山组菊石、双壳、牙形石等生物类型的分布特征判断,巢湖地区在和龙山组沉积早期与晚期分别存在一次生物演化上的突变事件。和龙山组沉积早期的事件具有区域性,可能与火山喷发、沉积环境水体变浅有关,菊石、牙形石受影响较严重,双壳类则未受到太大影响,事件后巢湖地区微生物席发育(和龙山组第2段)。和龙山组沉积晚期的事件是全球性环境变化的结果,造成适合灾变期环境的双壳类生物的绝灭,菊石、牙形石等生物受影响较小,伴随着微生物席、叠层石等微生物岩的普遍发育(和龙山组第5段)。根据古生物发育特征和“生产力过剩假说”建立的微生物岩发育模型表明,和龙山组沉积晚期的生物演化突变事件是环境改善的结果,和龙山组沉积晚期的微生物岩普遍发育对生物复苏起促进作用,是生物开始复苏的标志。
     同位素地球化学与元素地球化学数据分析表明,和龙山组沉积于近陆局限浅水环境,沉积早期(第一、二、三段)海洋环境在在富氧与缺氧状态之间周期性变化,和龙山组沉积晚期存在一段明显的贫氧—厌氧期,直到和龙山组沉积末期才变为富氧环境。和龙山组沉积期从早到晚存在盐度逐渐升高的过程,早期海水受淡水影响盐度偏低,晚期回归正常水平。和龙山组顶部(Smithian\Spathian界线附近)碳同位素变化特征显示,和龙山组沉积末期存在海洋生产力与生物埋藏量的快速增加,这一结论有力支持了微生物岩发育模型的可靠性。
Located in Anhui Province, South China, the Northern margin of the Yangtze Block, Chaohu area is one classic area for Triassic researches because there developed unabridged Lower Triassic. The Helongshan Formation in this area, corresponding to mid-upper Smithian, is about 17.19-30.10 meters thick, can be subdivided into 5 parts according to lithologic features. Part 1 is mid-thick mud limestones intercalated with thin-layered calcareous mudstones; part 2 is banding limestones interbeded with calcareous mudstones, in which microbial mats developed; part 3 is mud limestones and banding limestones interbeded with calcareous mudstones; part 4 is realy like part 3 in lithology, but pyrite is rich in this part; part 5 is dominated by calcareous mudstones, microbial mats and stromatolite lenticles can be found in the lower part and mud limestones gradually increased in the upper part.
     The microbialites, which were found in the Helongshan Formation, are important materials for reconstructing paleoenvironments, analysising the relationship between environment changes and biological response, discovering the timelimit, process and mechanism of the early Triassic biotic recovery. Dominated by fine-grained sediments, current structures such as wavy beddings, lenticular beddings, flaser beddings, bimodal cross beddings and gutter-filling structures, organic structures such as microbialites, microbially induced sedimentary structures(MISS) and trace fossils, and special minerals such as framboidal pyrites together with minor halite crystals, authigenic quartz are preserved in the Helongshan Formation. Carbonate microfacies indicate that the Helongshan Formation was deposited in open-restricted platform with low energy. Chaohu area experienced intertidal, lagoon, intertidal and shallow subtidal environments successively during the depositional period of the Helongshan Formation. Sedimentary characteristics and microfacies characteristics also indicate that there was an abnormal change at the part 4 of Helongshan Formation.
     In this paper, many microfossils such as cyanobacteria, green-algae, coccolith and sulfar bacteria have been indentified in microbialites of the Helongshan Formation. The distribution of macro and micro fossils indicates that abrupt biotic variation events happened at the early and late Helongshan Formation depositional stages. On a regional scale, the earlier event might be related to volcanic eruption and/or marine regression, ammonites and conodonts were mauled heavily, but bivalves were not affected significantly, and microbialites bloomed after the event. On the contrary, the later event was corresponding to global change, which had serious effects on bivalves, but minor effects on ammonoids and conodonts, accompanied by Microbialites development. The microbialite development model, which constructed on the basis of paleontologic characteristics and "excessive productivity hypothesis", suggests that the microbialites developed in the late depositional stage of the Helongshan Formation might promote the biotic recovery and can be considered as a sign of the biotic recovery.
     Isotope geochemistry and element geochemistry analyses manifest that the Helongshan Formation was deposited in restricated shallow ocean near land, normoxic and hypoxic conditions changed rhythmically during the early Helongshan depositional period; it was hypoxic to anoxic during the late Helongshan depositional period till to the end. Salinity of seawater was lower in the. early period and back to normal level in the late period of the Helongshan Formation. The excursion ofδ13C near the top of Helongshan Formation (Smithian\Spathian) shows that a rapid increase of the marine productivity and abundant biotic deposits. This deduction supports the microbialite development model strongly.
引文
Algeo, T.J., Ellwood, B., Nguyen, T. et al., The permian-triassic boundary at nhi tao, vietnam: evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):304-327.
    Baud, A., Richoz, S., Pruss, S., The lower triassic anachronistic carbonate facies in space and time. GLOBAL AND PLANETARY CHANGE,2007,55(1-3):81-89.
    Brayard, A., Escarguel, G., Bucher, H. et al., Good genes and good luck:ammonoid diversity and the end-permian mass extinction. SCIENCE,2009,325(5944):1118-1121.
    Baud, A., Magaritz, M., Holser, W.T., Permian-triassic of the tethys:carbon isotope studies. International Journal of Earth Sciences,1989,78(2):649-677.
    Baud, A., Richoz, S., Cirilli, S. et al. Anachronistic facies after mass extinction:the basal triassic stromatolites and microbial mounds of western and central taurus area (south-west turkey). 2001.
    Besse, J., Torcq, F., Gallet, Y. et al., Late permian to late triassic palaeomagnetic data from iran: constraints on the migration of the iranian block through the tethyan ocean and initial destruction of pangaea. Geophysical Journal International,1998,135(1):77-92.
    Bose, S., Chafetz, H.S., Topographic control on distribution of modern microbially induced sedimentary structures (miss):a case study from texas coast. Sedimentary Geology,2009, 213(3-4):136-149.
    Brayard, A., Bucher, H., Escarguel, G. et al., The early triassic ammonoid recovery:paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006a,239(3-4):374-395.
    Brayard, A., Escarguel, G., Bucher, H. et al., Smithian and spathian (early triassic) ammonoid assemblages from terranes:paleoceanographic and paleogeographic implications. Journal of Asian Earth Sciences,2009,36(6):420-433.
    Erwin, D.H., Hua-Zhang, P., Recoveries and radiations:gastropods after the permo-triassic mass extinction. Geological Society London Special Publications,1996,102(1):223.
    Ezaki, Y., Liu, J., Adachi, N., Earliest triassic microbialite micro-to megastructures in the huaying area of sichuan province, south china:implications for the nature of oceanic conditions after the end-permian extinction. Palaios,2003,18(4-5):388.
    Falkowski, P.G., Oliver, M.J., Mix and match:how climate selects phytoplankton. Nature Reviews Microbiology,2007,5(10):813-819.
    Flugel, E. Microfacies of carbonate rocks:analysis, interpretation and application. Springer Verlag. 2004.
    Fraiser, M.L., Bottjer, D.J., The non-actualistic early triassic gastropod fauna:a case study of the lower triassic sinbadlimestone member. Palaios,2004,19(3):259.
    Galfetti, T., Bucher, H., Brayard, A. et al., Late early triassic climate change:insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,243(3):394-411.
    Galfetti, T., Bucher, H., Martini, R. et al., Evolution of early triassic outer platform paleoenvironments in the nanpanjiang basin (south china) and their significance for the biotic recovery. Sedimentary Geology,2008,204(1-2):36-60.
    Galfetti, T., Bucher, H., Ovtcharova, M. et al., Timing of the early triassic carbon cycle perturbations inferred from new u-pb ages and ammonoid biochronozones. Earth and Planetary Science Letters,2007,258(3-4):593-604.
    Galfetti, T., Hochuli, P.A., Brayard, A. et al., The smithian-spathian boundary event:evidence for global climatic change in the wake of the end-permian biotic crisis. GEOLOGY,2007,35(4): 291-294.
    Goel, R.K., Triassic conodonts from spiti (himachal pradesh), india. Journal of Paleontology,1977, 51(6):1085-1101.
    Haas, J., Demeny, A., Hips, K. et al., Biotic and environmental changes in the permian-triassic boundary interval recorded on a western tethyan ramp in the biikk mountains, hungary. Global and Planetary Change,2007,55(1-3):136-154.
    He, W., Feng, Q., Weldon, E.A. et al., A late permian to early triassic bivalve fauna from the dongpan section, southern guangxi, south china. Journal of Paleontology,2007,81(5):1009.
    Heydari, E., Hassandzadeh, J., Wade, W.J., Geochemistry of central tethyan upper permian and lower triassic strata, abadeh region, iran. Sedimentary Geology,2000,137(1-2):85-99.
    Hips, K., Haas, J., Calcimicrobial stromatolites at the permian-triassic boundary in a western tethyan section, bukk mountains, hungary. Sedimentary Geology,2006,185(3-4):239-253.
    Holser, W.T., Geochemical events documented in inorganic carbon isotopes. Palaeogeography Palaeoclimatology Palaeoecology,1997,132(1):173-182.
    Horacek, M., Brandner, R., Abart, R., Carbon isotope record of the p/t boundary and the lower triassic in the southern alps:evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(3):347-354.
    Horacek, M., Koike, T., Richoz, S., Lower triassic ?13c isotope curve from shallow-marine carbonates in japan, panthalassa realm:confirmation of the tethys ?13c curve. Journal of Asian Earth Sciences,2008,252:355-369.
    Horacek, M., Koike, T., Richoz, S., Lower triassic [delta]13c isotope curve from shallow-marine carbonates in japan, panthalassa realm:confirmation of the tethys [delta]13c curve. Journal of Asian Earth Sciences,2009,36(6):481-490.
    Horacek, M., Richoz, S., Brandner, R. et al., Evidence for recurrent changes in lower triassic oceanic circulation of the tethys:the delta c-13 record from marine sections in iran. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):355-369.
    Jiang, H.X., Wu, Y.S., Cai, C.F., Filamentous cyanobacteria fossils and their significance in the permian-triassic boundary section at laolongdong, chongqing. Chinese Science Bulletin,2008a, 53(12):1871-1879.
    Jinnan, T., Zakharov, Y.D., Lower triassic ammonoid zonation in chaohu, anhui province, china. Albertiana,2004,31:65-69.
    Kershaw, S., Comment--earliest triassic microbialite micro-to megastructures in the huaying area of sichuan province, south china:implications for the nature of oceanic conditions after the end-permian extinction (ezaki et al.,2003). Palaios,2004,19(4):414.
    Kershaw, S., Crasquin, S., Collin, P.Y. et al., Microbialites as disaster forms in anachronistic facies following the end-permian mass extinction:a discussion. Australian Journal of Earth Sciences, 2009,56(6):809-813.
    Kershaw, S., Guo, L., Swift, A. et al.,?microbialites in the permian-triassic boundary interval in central china:structure, age and distribution. Facies,2002,47(1):83-89.
    Kershaw, S., Li, Y., Crasquin-Soleau, S. et al., Earliest triassic microbialites in the south china block and other areas:controls on their growth and distribution. Facies,2007a,53(3):409-425.
    Kershaw, S., Li, Y., Crasquin-Soleau, S. et al., Earliest triassic microbialites in the south china block and other areas:controls on their growth and distribution. Facies,2007b,53(3): 409-425.
    Knoll, A.H., Bambach, R.K., Payne, J.L. et al., Paleophysiology and end-permian mass extinction. Earth and Planetary Science Letters,2007,256(3-4):295-313.
    Korte, C., Jasper, T., Kozur, H.W. et al., Delta o-18 and delta c-13 of permian brachiopods:a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,224(4):333-351.
    Korte, C., Jasper, T., Kozur, H.W. et al., Sr-87/sr-86 record of permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,240(1-2):89-107.
    Korte, C., Kozur, H.W., Veizer, J., Delta c-13 and delta o-18 values of triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,226(3-4):287-306.
    Krull, E.S., Lehrmann, D.J., Druke, D. et al., Stable carbon isotope stratigraphy across the permian-triassic boundary in shallow marine carbonate platforms, nanpanjiang basin, south china. Palaeogeography, Palaeoclimatology, Palaeoecology,2004a,204(3-4):297-315.
    Laishi, Z., Orchard, M.J., Jinnan, T. et al., Lower triassic conodont sequence in chaohu, anhui province, china and its global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):24-38.
    Lehrmann, D.J., Early triassic calcimicrobial mounds and biostromes of the nanpanjiang basin, south china. Geology,1999,27(4):359.
    Lehrmann, D.J., Enos, P., Payne, J.L. et al., Permian and triassic depositional history of the yangtze platform and great bank of guizhou in the nanpanjiang basin of guizhou and guangxi, south china. Albertiana,2005,33(1):147-166.
    Lehrmann, D.J., Payne, J.L., Felix, S.V. et al., Permian-triassic boundary sections from shallow-marine carbonate platforms of the nanpanjiang basin, south china:implications for oceanic conditions associated with the end-permian extinction and its aftermath. Palaios,2003, 18(2):138-152.
    Lehrmann, D.J., Payne, J.L., Pei, D. et al., Record of the end-permian extinction and triassic biotic recovery in the chongzuo-pingguo platform, southern nanpanjiang basin, guangxi, south china. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):200-217.
    Lehrmann, D.J., Wan, Y., Wei, J. et al., Lower triassic peritidal cyclic limestone:an example of anachronistic carbonate facies from the great bank of guizhou, nanpanjiang basin, guizhou province, south china. Palaeogeography,Palaeoclimatology,Palaeoecology,2001,173(3-4): 103-123.
    Mata, S.A., Bottjer, D.J., Development of lower triassic wrinkle structures:implications for the search for life on other planets. Astrobiology,2009,9(9).
    Metcalfe, I., Isozaki, Y., Current perspectives on the permian-triassic boundary and end-permian mass extinction:preface. Journal of Asian Earth Sciences,2009,36(6Sp. Iss. SI):407-412.
    Noffke, N., Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (lower arenigian, montagne noire, france). Sedimentary Geology,2000,136(3-4):207-215.
    Noffke, N., The criteria for the biogeneicity of microbially induced sedimentary structures (miss) in archean and younger, sandy deposits. Earth-Science Reviews,2009,96(3):173-180.
    Noffke, N., Eriksson, K.A., Hazen, R.M. et al., A new window into early archean life:microbial mats in earth's oldest siliciclastic tidal deposits (3.2 ga moodies group, south africa). Geology, 2006,34(4):253.
    Noffke, N., Gerdes, G., Klenke, T., Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth-Science Reviews,2003,62(1-2):163-176.
    Nutzel, A., Recovery of gastropods in the early triassic. Comptes Rendus Palevol,2005,4(6-7): 501-515.
    Orchard, M.J., Taxonomy and correlation of lower triassic (spathian) segminate conodonts from oman and revision of some species of neospathodus. Journal of Paleontology,1995,69(1): 110-122.
    Orchard, M.J., Conodont diversity and evolution through the latest permian and early triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):93-117.
    Payne, J.L., Lehrmann, D.J., Wei, J.Y. et al., Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science,2004,305(5683):506-509.
    Payne, J.L., Kump, L.R., Evidence for recurrent early triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters,2007, 256(1-2):264-277.
    Pruss, S., Fraiser, M., Bottjer, D.J., Proliferation of early triassic wrinkle structures:implications for environmental stress following the end-permian mass extinction. Geology,2004,32(5): 461.
    Pruss, S.B., Bottjer, D.J., Corsetti, F.A. et al., A global marine sedimentary response to the end-permian mass extinction:examples from southern turkey and the western united states. Earth Science Reviews,2006,78(3-4):193-206.
    Pruss, S.B., Corsetti, F.A., Bottjer, D.J., The unusual sedimentary rock record of the early triassic: a case study from the southwestern united states. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,222(1-2):33-52.
    Richoz, S., Krystyn, L., Baud, A. et al., Permian-triassic boundary interval in the middle east (Iran and n. Oman):progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences,2010.
    Riding, R., Stromatolite decline:a brief reassessment. Facies,1997,36(1):227-230.
    Rodland, D.L., Bottjer, D.J., Biotic recovery from the end-permian mass extinction:behavior of the inarticulate brachiopod lingula as a disaster taxon. Palaios,2001,16(1):95.
    Sanchez-Roman, M., Vasconcelos, C., Warthmann, R. et al., Microbial dolomite precipitation under aerobic conditions:results from brejo do espinho lagoon (brazil) and culture experiments. Perspectives in Sedimentary Geology:ATribute to the Career of Robert Nathan Ginsburg (Swart PK, Eberli GP & McKenzie JA, eds), IAS Spec Publ,2007,46.
    Sanders, D., Unterwurzacher, M., Ruf, B., Microbially induced calcium carbonate in tufas of the western eastern alps:a first overview. Geo Alp,2006,3:167-189.
    Scholle, P.A., Arthur, M.A., Carbon isotopic fluctuations in cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin,1980,64:67-87.
    Schubert, J.K., Bottjer, D.J., Early triassic stromatolites as post-mass extinction disaster forms. Geology,1992,20(10):883.
    Schubert, J.K., Bottjer, D.J., Aftermath of the permian-triassic mass extinction event:paleoecology of lower triassic carbonates in the western usa. Palaeogeography, Palaeoclimatology, Palaeoecology,1995,116(1):1-39.
    Seyed-Emami, K., Triassic in iran. Facies,2003,48(1):91-106.
    Solien, M.A., Conodont biostratigraphy of the lower triassic thaynes formation, utah. Journal of Paleontology,1979,53(2):276-306.
    Song, H., Tong, J., Zhang, K. et al., Foraminiferal survivors from the permian-triassic mass extinction in the meishan section, south china.2007,16(1-3):105-119.
    Stanley G D, J., Confessions of a displaced reefer. Palaios,1996,11(1):1-2.
    Szabo, F., Kheradpir, A., Permian and triassic stratigraphy, zagros basin, south-west iran. Journal of Petroleum Geology,1978,1(2):57-82.
    Takahashi, S., Oba, M., Kaiho, K. et al., Panthalassic oceanic anoxia at the end of the early triassic: a cause of delay in the recovery of life after the end-permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,274(3-4):185-195.
    Tong, J., Erwin, D.H., Jingxun, Z. et al., Lower triassic carbon isotope stratigraphy in chaohu, anhui:implication to biotic and ecological recovery. Albertiana,2005,33:75-76.
    Tong, J., Hansen, H.J., Zhao, L. et al., High-resolution induan-olenekian boundary sequence in chaohu, anhui province. Science in China Series D:Earth Sciences,2005a,48(3):291-297.
    Tong, J., Zakharov, Y.D., Orchard, M.J. et al., A candidate of the induan-olenekian boundary stratotype in the tethyan region. Science in China Series D:Earth Sciences,2003,46(11): 1182-1200.
    Tong, J., Zhou, X., Erwin, D.H. et al., Fossil fishes from the lower triassic of majiashan, chaohu, anhui province, china. Journal of Paleontology,2006a,80(1):146-161.
    Tong, J.N., Qiu, H.O., Zhao, L.S. et al., Lower triassic inorganic carbon isotope excursion in chaohu, anhui province. China. Journal of China University of Geosciences,2002,13(2): 98-106.
    Tong, J., Yin, H., Zhang J., et al., Proposed new lower triassic stages in south china. Science in China(Series D:Earth Sciences),2001(11):961-967.
    Tong, J.A., Zuo, J.X., Chen, Z.Q., Early triassic carbon isotope excursions from south china: proxies for devastation and restoration of marine ecosystems following the end-permian mass extinction. Geological Journal,2007,42(3-4):371-389.
    Vachard, D., Gaillot, J., Vaslet, D. et al., Foraminifers and algae from the khuff formation (late midle permian-early triassic) of central saudi arabia.2005.
    Wang, Y., Tong, J., Wang, J. et al., Calcimicrobialite after end-permian mass extinction in south china and its palaeoenvironmental significance. Chinese science bulletin,2005,50(7): 665-671.
    Wheeley, J.R., Twitchett, R.J., Palaeoecological significance of a new griesbachian (early triassic) gastropod assemblage from oman. Lethaia,2005,38(1):37-45.
    Wignall, P.B., Hallam, A., Anoxia as a cause of the permian/triassic mass extinction:facies evidence from northern italy and the western united states. Palaeogeography, Palaeoclimatology, Palaeoecology,1992,93(1-2):21-46.
    Wignall, P.B., Newton, R., Contrasting deep-water records from the upper permian and lower triassic of south tibet and british columbia:evidence for a diachronous mass extinction. Palaios,2003,18(2):153.
    Wignall, P.B., Twitchett, R.J., Unusual intraclastic limestones in lower triassic carbonates and their bearing on the aftermath of the end-permian mass extinction:sedimentology, v.46. CrossRef][ISI][GeoRef],1999:303-316.
    Woods, A.D., Baud, A., Anachronistic facies from a drowned lower triassic carbonate platform: lower member of the alwa formation (ba'id exotic), oman mountains. Sedimentary Geology, 2008,209(1-4):1-14.
    Woods, A.D., Bottjer, D.J., Mutti, M. et al., Lower triassic large sea-floor carbonate cements:their origin and a mechanism for the prolonged biotic recovery from the end-permian mass extinction. Geology,1999,27(7):645-648.
    Wu, Y.S., Jiang, H.X., Yang, W. et al., Microbialite of anoxic condition from permian-triassic transition in guizhou, china. Science in China Series D:Earth Sciences,2007,50(7): 1040-1051.
    Xie, S.C., Pancost, R.D., Huang, X.Y. et al., Molecular and isotopic evidence for episodic environmental change across the permo/triassic boundary at meishan in south china. GLOBAL AND PLANETARY CHANGE,2007,55(1-3):56-65.
    Yang, H., Zhang, S., Jiang, H. et al., Age and general characteristics of the calimicrobialite near the permian-triassic boundary in chongyang, hubei province. Journal of China University of Geosciences,2006,17(2):121-131.
    Zhao, L.S., Orchard, M.J., Jinnan, T. et al., Lower triassic conodont sequence in chaohu, anhui province, china and its global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):24-38.
    Zhao, L.S., Tong, J.N., Sun, Z.M. et al., A detailed lower triassic conodont biostratigraphy and its implications for the gssp candidate of the induan-olenekian boundary in chaohu, anhui province. Progress in Natural Science,2008,18(1):79-90.
    Zhao, X.M., Tong, J.N., Yao, H.Z. et al., Anachronistic facies in the lower triassic of south china and their implications to the ecosystems during the recovery time. Science in China Series D-Earth Sciences,2008,51(11):1646-1657.
    Zhao, L., Orchard, M.J., Tong, J., Lower triassic conodont biostratigraphy and speciation of neospathodus waageni around the induan-olenekian boundary of chaohu, anhui province, china. ALBE R IANA T,2004:41.
    Zhao, L., Tong, J., Sun, Z. et al., A detailed lower triassic conodont biostratigraphy and its implications for the gssp candidate of the induan-olenekian boundary in chaohu, anhui province. Progress in Natural Science,2008,18(1):79-90.
    Zhihua, Y., Origin of nodular limestone within daye formation of lower triassic in the middle yangtze region [j]. Geochimica,1998,27(3):276-282.
    Zuo, J.X., Tong, J.N., Qiu, H.O., Carbon and oxygen isotope stratigraphy of the lower triassic at the north pingdingshan section in chaohu. Anhui province. China, Journal of Stratigraphy (in Chinese with English abstract),2004,28(1):26-34.
    陈建强,周洪瑞,王训练.沉积学及古地理学教程.北京:地质出版社.2004.
    陈金华,曹美珍,Frankstiller中三叠世青岩生物群的群体古生态学初步研究.古生物学报,2001(02):262-268.
    陈金华,史蒂勒F.,小松俊文.二叠纪末大灭绝后双壳类新的辐射.科学技术与工程,2003(05):415-416.
    陈烈祖.安徽巢县早三叠世鱼龙化石.中国区域地质,1985(15):139-146.
    方宗杰.二叠纪-三叠纪之交生物大灭绝的型式、全球生态系统的巨变及其起因.合肥:中国科学技术大学出版社.2004a.785-928,1075-1076.
    方宗杰.从华南二叠纪-三叠纪礁生态系的演变探讨与灭绝-残存-复苏相关的几个问题[M].合肥:中国科学技术大学出版社.2004b.475-542,1063-1065.
    冯增昭,王英华,李尚武.下扬子地区中,下三叠统青龙群岩相古地理研究.昆明:云南科技出版社.1988.197.
    龚一鸣,徐冉,汤中道等.晚泥盆世F-F之交菌藻微生物繁荣与集群绝灭的关系:来自碳同位素和分子化石的启示.中国科学D辑,2005(02):140-148.
    郭福生.下扬子地区三迭系下统瘤状灰岩成因研究.华东地质学院学报,1989,12(004):17-22.
    郭福生,彭花明,潘家永等.浙江江山寒武系碳酸盐岩碳氧同位素特征及其古环境意义探讨.地层学杂志,2003,27(4):289-297.
    郭刚,童金南,张世红等.安徽巢湖早三叠世印度期旋回地层研究.中国科学:D辑,2007,37(12):1571-1578.
    郭佩霞.苏、皖早三叠世晚期菊石的发现.古生物学报,1982a(05):560-568.
    郭佩霞.安徽青龙群地层特征与菊石.中国地质科学院南京地质矿产研究所所刊,1982b,3(2):92-110.
    韩树菜.安徽沿长江地区下三叠统瘤状灰岩成因研究.地质科学,1983,3.
    郝维城,孙元林,江大勇等.盘县动物群研究进展.北京大学学报(自然科学版),2006(06):817-823.
    侯奎,陈镇东,陈延成等.中国元古代古生代的颗石藻.北京:海洋出版社.1999.
    胡艳霞,徐东来,童金南.贵州紫云四大寨早三叠世地层初步研究.地层学杂志,2006,30(2):177-182.
    黄思静.上扬子二叠系—三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件.地球化学,1994(01):60-68.
    黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究.地质学报,1997(01):45-53.
    季文婷,童金南,周士钦等.贵州青岩下、中三叠统牙形石序列及阶的划分.中国南京:2009.155.
    江大勇,Motani Ryosuke,李淳等.贵州三叠纪关岭生物群:二叠纪末期大绝灭后生物在古海洋中复苏的一个标志.地质学报,2005(06):41-47.
    姜红霞,吴亚生.江西修水二叠系-三叠系界线地层树枝状微生物岩状岩石成因初解.地质论评,2007b,53(003):323-328.
    姜红霞,吴亚生.重庆北碚二叠系-三叠系界线地层中的微生物化石及其形成的特殊构造.中国古生物学会第24届学术年会论文摘要集,2007c.
    姜红霞,吴亚生.重庆二叠系-三叠系界线地层微生物岩新认识.岩石学报,2007d,23(005):1189-1196.
    姜红霞,吴亚生,蔡春芳.重庆老龙洞二叠系-三叠系界线地层中的管状蓝细菌化石及其意义.科学通报,2008,53(007):807-814.
    姜红霞,吴亚生,袁生虎.重庆二叠—三叠系界线地层的干裂缝和侵蚀面及其意义.高校地质学报,2007,13(001):53-59.
    经雅丽,张克信,林启祥等.浙江长兴煤山下三叠统和龙山组、南陵湖组沉积地球化学特征与 古环境意义.地质科技情报,2005a(01):35-40.
    李尚武,吴胜和.安徽巢县中、下三叠统青龙群岩石特征及沉积环境分析.昆明:云南科技出版社.1988.82-91.
    李玉成.华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应.沉积学报,1998,16(3):52-57.
    李玉成.华南二叠/三叠纪过渡时期同位素旋回地层——碳酸盐岩地层对比及成因指标.合肥:中国科学技术大学出版社.2003.1-139.
    李玉成,周忠泽.华南二叠纪末缺氧海水中的有毒气体与生物集群绝灭.地质地球化学,2002,30(001):57-63.
    李振清,周洪瑞,陈建强.山东淄博地区上寒武统沉积地球化学特征及其层序地层学意义.现代地质,2001(04):377-382.
    梁汉东.二叠纪末期海洋硫酸化环境灾变事件:煤山剖面岩石矿物证据.科学通报,2002(10):784-788.
    刘建波,江崎洋一,杨守仁等.贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征.古地理学报,2007,9(5):473-486.
    刘英俊,曹励明,李兆麟等.元素地球化学.北京:科学出版社.1984.1-548.
    刘志礼.化石藻类学导论.高登教育出版社.1990.
    马永生主译.碳酸盐岩微相—分析、解释及应用.北京:地质出版社.2006.1-882.
    牟保磊.元素地球化学.北京:北京大学出版社.1999.1-227.
    彭元桥,殷鸿福.古-中生代之交的全球变化与生物效应.地学前缘,2002,9(3):85-93.
    钱迈平.中下扬子区海相三叠纪叠层石及其环境演变.古生物学报,1995,34(6):731-741.
    钱迈平,范洪源.无锡嵩山三叠系下统青龙组叠层石生物丘及其环境.江苏地质,1994,18(1):19-24.
    钱一雄,蔡习尧,刘忠宝等.塔里木盆地卡塔克南缘中2井良里塔格组碳酸盐岩沉积地球化学特征.现代地质,2009,23(004):631-637.
    戎嘉余,方宗杰,陈旭等.生物复苏——大绝灭后生物演化历史的第一幕.古生物学报,1996(03):259-271.
    邵龙义.碳酸盐岩氧、碳同位素与古温度等的关系.中国矿业大学学报,1994(01).
    沈文杰.二叠—三叠纪界线事件的矿物学,地球化学解译.2007.
    苏德造,黎作骢,A new triassic perleidid fish from hubei, china古脊椎动物学报,1983,21(1):9-16.
    汤新燕,黄俊华,王友贞等.重庆凉风垭剖面二叠-三叠系界线层碳同位素变化特征.地质科技情报,2007(04):42-46.
    童金南.华南古生代末大绝灭后的生态系复苏.地球科学——中国地质大学学报,1997,22(4):373-376.
    童金南,Hansen Hansj,赵来时等.印度阶-奥伦尼克阶界线层型候选剖面——安徽巢湖平顶山西剖面地层序列.地层学杂志,2005,29(2):205-214.
    童金南,Yuri D. Zakharov,吴顺宝.安徽巢湖地区早三叠世菊石序列(英文).古生物学报,2004(02):192-204.
    童金南,殷鸿福.黔中—黔南中三叠世环境地层学.地球科学:中国地质大学学报,1992,17(003):318.
    童金南,殷鸿福.早三叠世生物与环境研究进展.古生物学报,2009(3):497-508.
    童金南,赵来时,左景勋等.安徽巢湖地区下三叠统综合层序.地球科学:中国地质大学学报,2005,30(1):40-46.
    童金南,赵来时,左景勋.下三叠统殷坑阶和巢湖阶及其界线研究.地层学杂志,2005:548-564.
    汪贵翔.安徽海相三叠系.安徽科学技衍出版社.1984.
    汪凯明,罗顺社.碳酸盐岩地球化学特征与沉积环境判别意义——以冀北坳陷长城系高于庄组为例.石油与天然气地质,2009(03):343-349.
    汪品先,成鑫荣.东海底质中钙质超微化石的分布.海洋学报(中文版),1988(01):76-85.
    汪啸风,陈孝红,陈立德等.关岭生物群——世界上罕见的化石库.中国地质,2003(01):240-241.
    王国庆,夏文臣.贵州紫云剖面P/T界面附近碳氧同位素的变化及生物绝灭事件.地学前缘,2000(02):339-344.
    王念忠,金帆,王炜等.浙江和江西二叠/三叠系界线层上下的辐鳍鱼类化石与鱼类的绝灭,复苏和辐射.古脊椎动物学报,2007,45(004):307-329.
    王永标,童金南,王家生等.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义.科学通报,2005,50(6):552-558.
    王争鸣.缺氧沉积环境的地球化学标志.甘肃地质学报,2003(02):55-58.
    王正瑛,张锦泉,王文才等.沉积岩结构构造图册.北京:地质出版社.1988.1-428.
    吴亚生,范嘉松,姜红霞等.二叠纪末生物礁生态系绝灭的方式.科学通报,2007,52(002):207-214.
    吴亚生,姜红霞,Yangwan等.二叠纪-三叠纪之交缺氧环境的微生物和微生物岩.中国科学:D辑,2007,37(5):618-628.
    西德费吕格尔E.化石藻类.北京:科学出版社.1984.1-289.
    许靖华.沉积学讲座.成都:地质部成都地质矿产研究所.1980.1-234.
    严兆彬,郭福生,潘家永等.碳酸盐岩C,O, Sr同位素组成在古气候、古海洋环境研究中的应用.地质找矿论丛,2005,20(1):53-56,65.
    颜佳新.东特提斯地区二叠—三叠纪古气候特征及其古地理意义.地球科学,1999(01):23-33.
    杨浩.华南二叠纪末大绝灭后的钙质微生物岩及古环境研究.2006.
    杨浩,张素新,江海水等.湖北崇阳二叠纪-三叠纪之交钙质微生物岩的时代及基本特征.地球科学:中国地质大学学报,2006,31(2):165-170.
    殷鸿福.二叠系—三叠系研究的进展.地球科学进展,1994(02):1-10.
    殷鸿福,童金南.关于中国的海相三叠系建阶及下三叠统分阶界线.地球科学:中国地质大学学报,2002,27(005):490-497.
    殷鸿福,吴顺宝,杜远生等.华南是特提斯多岛洋体系的一部分.地球科学:中国地质大学学报,1999,24(001):1-12.
    余素玉.化石碳酸盐岩.北京:地质出版社.1981.
    袁志华.中扬子地区下三叠统大冶组较瘤状灰岩成因研究.地球化学,1998,27(003):276-282.
    张杰.下扬子地区早三叠世蠕虫状灰岩及其成因研究.硕士,2008.
    赵来时,童金南,Orchard等.安徽巢湖地区下三叠统牙形石生物地层分带及其全球对比.地球科学:中国地质大学学报,2005,30(5):623-634.
    赵来时,童金南,孙知明等.安徽巢湖平顶山西坡剖面印度阶与奥伦尼克阶界线层高分辨率牙形石生物地层.地球科学:中国地质大学学报,2007,32(3):291-302.
    赵来时,童金南,左景勋.安徽巢湖平顶山下三叠统牙形石生物地层序列.地球科学:中国地质大学学报,2003,28(4):414-418.
    赵丽君,卢立伍.浙江长兴早三叠世裂齿鱼类一新属.古生物学报,2007(02):238-243.
    左景勋,童金南,邱海鸥等.巢湖地区早三叠世碳氧同位素地层对比及其古生态环境意义.地质地球化学,2003,31(3):26-33.
    Pemberton, S.G.,周志澄,Maceachern, J. et al.,机会(r-选择)和均衡(k-选择)遗迹化石的现代生态学解释.古生物学报,2001,40(1).
    常华进,储雪蕾,冯连君et al.,氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评,2009,55(1).
    宋换新,肖天君,文志刚et al.,皖南巢县马家山地区油苗地球化学特征及油源.石油勘探与开发,2007,34(5).
    胡修棉,王成善,李祥辉.大洋缺氧事件的碳稳定同位素响应.成都理工学院学报,2001,28(1):1-6.
    梅冥相,高金汉,孟庆芬等.前寒武纪与微生物席相关的粉砂岩岩墙——以天津蓟县古元古界串岭沟组为例.古地理学报,2009,11(1):37-50.
    史晓颖,王新强,蒋干清等.贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识.地质论评,2008,54(5):577-586.
    史晓颖,张传恒,蒋干清等.华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力.现代地质,2008,22(5):669-682.
    王敏芳,黄传炎,徐志诚等.综述沉积环境中古盐度的恢复.新疆石油天然气,2006,2(1):9-12.
    郑元,吕洪波,章雨旭等.山西黎城中元古代砂岩层面多种痕迹特征及成因初析.地质论评,2009(1):1-9.
    王永标,童金南,王家生等.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义.科学通报,2005,50(6):552-558.
    王争鸣.缺氧沉积环境的地球化学标志.甘肃地质学报,2003(02):55-58.
    王正瑛,张锦泉,王文才等.沉积岩结构构造图册.北京:地质出版社.1988.1-428.
    吴亚生,范嘉松,姜红霞等.二叠纪末生物礁生态系绝灭的方式.科学通报,2007,52(002):207-214.
    吴亚生,姜红霞,Yangwan等.二叠纪一三叠纪之交缺氧环境的微生物和微生物岩.中国科学:D辑,2007,37(5):618-628.
    西德费吕格尔E.化石藻类.北京:科学出版社.1984.1-289.
    许靖华.沉积学讲座.成都:地质部成都地质矿产研究所.1980.1.234.
    严兆彬,郭福生,潘家永等.碳酸盐岩C,O,sr同位素组成在古气候、古海洋环境研究中的应用.地质找矿论丛,2005,20(1):53-56,65.
    颜佳新.东特提斯地区二叠—三叠纪古气候特征及其古地理意义.地球科学,l999(01):23-33.
    杨浩.华南二叠纪末大绝灭后的钙质微生物岩及古环境研究.2006.
    杨浩,张素新,江海水等.湖北崇阳二叠纪.三叠纪之交钙质微生物岩的时代及基本特征.地球科学:中国地质大学学报,2006,3l(2):165-170.
    殷鸿福.二叠系一三叠系研究的进展.地球科学进展,1994(02):l-10.
    殷鸿福,童金南.关于中国的海相三叠系建阶及下三叠统分阶界线.地球科学:中国地质大学学报,2002,27(005):490-497.
    殷鸿福,吴顺宝,杜远生等.华南是特提斯多岛洋体系的一部分.地球科学:中国地质大学学报,1999,24(001):l-12.
    余素玉.化石碳酸盐岩.北京:地质出版社.1981.
    袁志华.中扬子地区下三叠统大冶组较瘤状灰岩成因研究.地球化学,1998,27(003):276-282.
    张杰。下扬子地区早三叠世蠕虫状灰岩及其成因研究.硕士,2008.
    赵来时,童金南,Orchard等.安徽巢湖地区下三叠统牙形石生物地层分带及其全球对比.地球科学:中国地质大学学报,2005,30(5):623-634.
    赵来时,童金南,孙知明等.安徽巢湖平顶山西坡剖面印度阶与奥伦尼克阶界线层高分辨率牙形石生物地层.地球科学:中国地质大学学报,2007,32f3):291—302.
    赵来时,童金南,左景勋.安徽巢湖平顶山下三叠统牙形石生物地层序列.地球科学:中国地质大学学报,2003,28(4):414-418.
    赵丽君,卢立伍.浙江长兴早三叠世裂齿鱼类一新属.古生物学报,2007(02):238-243.
    左景勋,童金南,邱海鸥等.巢湖地区早三叠世碳氧同位素地层对比及其古生态环境意义.地质地球化学,2003,3l(3):26-33.
    Pembertort,S.G.,周志澄,Maceachern,J.etal.,机会(r_选择)和均衡(k-选择)遗迹化石的现代生态学解释.古生物学报,2001,40(1).
    常华进,储雪蕾,冯连君etal.,氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评,2009,55(1).
    宋换新,肖天君,文志刚etal.,皖南巢县马家山地区油苗地球化学特征及油源.石油勘探与开发,2007,34(5).
    胡修棉,王成善,李祥辉.大洋缺氧事件的碳稳定同位素响应.成都理工学院学报,2001,28(1):1—6.
    梅冥相,高金汉,孟庆芬等.前寒武纪与微生物席相关的粉砂岩岩墙——以天津蓟县古元古界串岭沟组为例.古地理学报,2009,11(1):37-50.
    史晓颖,王新强,蒋干清等.贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识.地质论评,2008,54(5):577-586.
    史晓颖,张传恒,蒋干清等.华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力.现代地质,2008,22(5):669-682.
    王敏芳,黄传炎,徐志诚等.综述沉积环境中古盐度的恢复.新疆石油天然气,2006,2(1):9.12.
    郑元,吕洪波,章雨旭等.山西黎城中元古代砂岩层面多种痕迹特征及成因初析.地质论评,2009(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700