用户名: 密码: 验证码:
半潜式平台运动性能与活动垂荡板减振系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南海油气资源储量丰富,约占中国石油总储量的三分之一。近年来,随着能源需求的增加,海洋石油的开采日益受到人们的重视。但由于我国深水油气开采能力较差,目前国内的海洋石油开发,仅局限于渤海和北部湾等浅海海域,南海深水区域的油气开发接近空白。由于水深的增加导致固定式平台成本的大幅增加而不宜用于深水油气的开发,适用于深水油气开发的浮式平台已成为研究的热点。
     深水浮式平台的研究和应用始于上个世纪60年代,经过几十年的发展,在发达国家已经形成了完备的技术。而我国深水浮式平台起步较晚,缺乏自主的关键技术。平台技术的落后不仅严重制约了我国深海油气资源的开发,同时也阻碍了我国参与国外深海油气开发。因此,深水浮式平台的研究对我国海洋工业的发展有着重要的意义。本文以半潜式平台为例,对平台在风浪联合作用下平台运动性能,以及平台垂荡响应的控制方案进行了研究。
     本文的主要研究内容如下:
     首先,归纳了浮式平台的主要结构型式(包括张力腿平台、Spar平台、FPSO和半潜式平台等),阐述了各平台结构型式的力学特点及其发展过程,并对一些新型的平台结构型式进行了简要介绍。同时,对浮式平台的研究现状进行了综述。
     第二,对半潜式平台的风荷载及表面风压进行了数值和实验研究。数值研究中基于N-S方程,选择剪切应力运输湍流模型、二阶迎风格式离散方法和三维稳态隐式解法,进行了平台风荷载和表面风压的数值计算。制作了1:100和1:150的实验模型,分别用于测压和测力的风洞实验,并通过风洞实验对研究内容进行了测量。通过对数值和实验结果的分析,得到了各风向角作用下平台的风力系数和风压分布规律,并分析了平台倾角对其风荷载的影响。
     第三,对半潜式平台在风浪联合作用下的水平运动响应进行了数值和实验研究。数值研究中平台的风荷载采用第二章所得结果,波浪荷载由边界元方法计算确定,锚泊系统的拉力采用分段外推校正法计算确定,在此基础上进行了平台水平响应的数值计算,得到了研究结果。制作了1:100的实验模型,通过风洞浪槽实验对风浪联合作用下平台的水平响应进行了测量。通过数值和实验结果的分析,得到了各种海况条件下平台的水平运动响应时程曲线,并分析了风对平台水平运动响应的影响。
     第四,对半潜式平台的气隙响应进行了数值和实验研究。数值研究中采用了时域格林函数方法,计算了平台的运动响应及波面时程,并由二者计算得出了平台甲板下表面的气隙响应。采用第三章的实验模型,进行了平台甲板下表面波浪砰击实验。通过数值和实验结果的分析,得到了平台甲板下表面各点的气隙响应时程曲线,确定了平台甲板下表面易受波浪砰击的区域。
     第五,根据调频质量阻尼器(TMD)的原理,设计了带有活动垂荡板的半潜式(MHS)平台结构型式,提出了这种平台垂荡响应RAO的数值计算方法,优化了平台主体和垂荡板的连接刚度,并通过增大主体下浮体体积的方法,对平台主体的偏转性能进行了改进。
     最后,参考Truss-spar平台的结构特点,设计了适用于承载风机的Truss-spar-buoy浮式平台结构。通过数值方法,研究了风机对平台的影响,并对平台运动响应进行了频域和时域分析。同时,为了进一步减小平台的运动响应,提出了双锚泊系统的设计方案,对平台的锚泊定位系统进行了改进。
The South China Sea is enriched with abundant oil and gas resource, which is over 33% of the total in China. As the demand of oil and gas increase, the exploitation of them in oceans has attracted much attention in the recent years. However, as the lack of the technology, the exploitation of ocean oil and gas in our country only is limited to the Bohai Sea and Beibu Gulf, but can not reach the South China Sea. Because of the great water depth, the fixed platform can’t be economically constructed. The concept of the compliant platform has been introduced, and has become a research focus.
     The study and application of compliant platform started in the 1960s, and has formed a comprehensive technology in the advanced countries. However, in our country, the development of compliant platform techonology is still in its infancy, which hampers the oil and gas exploitation in deep water. Consequently, study on the compliant platform is very important for the development of China ocean industry, which will produce the enormous economic benefits and social benefit.
     In this dissertation, the motion performance of the semi-submersible platform subject to wind and wave has been studied, and the methods to decrease the heave motion of the platform have been discussed.
     The main contents of this dissertation can be demonstrated as follows:
     Firstly, the main types of the compliant platform used for ocean oil and gas exploitation, such as TLP, Spar, FPSO and semi-submersible platform, have been summarized, their structure feathers and developmental process have been demonstrated, and several new types of the compliant platform have been presented. Meanwhile, the studies on the compliant platform have been reviewed.
     Secondly, the wind loads and wind pressures acting on the semi-submersible platform have been studied by numerical and experimental simulation. In the numerical simulation, the N-S equation, 3-D steady implicit solver, 2nd order upwind discretization and sst k-ωturbulence model have been chosen for the calculation. Meanwhile, in the experimental simulation, two models, with the scale of 1:100 and 1:150, have been measured for wind loads and wind pressure distribution in wind tunnel respectively. By comparing the numerical and experimental results, the shape factors and wind pressure distribution of the platform have been studied, and the influence of platform pitch (roll) motion on the wind loads has been analysised.
     Thirdly, the motion performance of the semi-submersible platform subject to wind and waves has been studied by numerical and experimental simulation. In the numerical simulation, the wind loads are got from the results in the second chapter, the wave force is calculated by boundary element method, and the mooring force is calculated by piecewise extrapolating method. In the experimental simulation, the model with the scale of 1:100 has been used in the joint laboratory of wind tunnel and wave flume. By comparing the numerical and experimental results, the horizontal motion of the platform under different conditions has been studied, and the influence of wind loads on platform horizontal motions has been analysised.
     Fourthly, the air gap response of the semi-submersible platform has been studied by numerical and experimental simulation. In the numerical simulation, the platform motion and wave surface function have been calculated by boundary element method in time domain, and the air gap response of the points on deck downward surface have been calculated. In the experimental simulation, the model and laboratory are the same as them used in the third chapter. By comparing the numerical and experimental results, the air gap response of the points on the deck down surface have been studied, and the deck downward surface, where is possibly slapped by waves, has been analysised.
     Fifthly, based on the TMD concept, the conceptual design of a moveable heave-plate semi-submersible (MHS) platform has been put forward. The heave motion RAO of MHS platform has been calculated by iteration method, the connect stiffness between MHS hull and heave-plate has been optimized, and the platform pitch (or roll) motion has been decreased by enlarging the pontoon volumn.
     Lastly, based on the structure feature of Truss-spar platform, the conceptual design of Truss-spar-buoy platform used for wind tubine has been put forward. By numerical simulation, the influence of wind loads on platform has been studied, and the motion performance of the platform has been analysised in time and frequent domain respectively. Meanwile, to decrease the platform motion response, a position system with two groups of mooring line has been put forward.
引文
[1] Donald B. The Static Offset in Waves of TLPs[C]//Offshore Technology Conference Proceedings. Houston: OTC, 1981, No. 4070.
    [2] Cenap O. Overall Dynamic Characteristics of TLPs[C]//Offshore Technology Conference Proceedings. Houston: OTC, 1983, No.4640.
    [3] Datta T K, Jain A K. Nonlinear Surge Response of a Tension Leg Platform to Random Wave Forces[J]. Engineering Structures, 1988, 10(3): 204-210.
    [4]董艳秋.深海采油平台波浪荷载及响应[M].天津:天津大学出版社,2005: 1~20.
    [5] Erling H. Third and Higher Order Content of TLP Springing Excitation[C] //Offshore Technology Conference Proceedings. Houston: OTC, 1995, No.7813-MS.
    [6] Tao W, Jun Z. Hydrodynamics in Deepwater TLP Tendon Design[J]. J. of Hydrodynamics, 2006, 18(3): 386-393.
    [7] Chen X B, Molin B. Numerical Evaluation of the Springing Loads on Tension Leg Platforms[J]. Marine Structures, 1995, 8(5): 501-524.
    [8] John G, Morten H. Higher-harmonic Wave Forces and Ringing of Vertical Cylinders[J]. Applied Ocean Research, 2002, 24(4): 203-214.
    [9] Kwon S H. Analysis of Ringing by Continuous Wavelet Transform[J]. Practical Design of Ships and Other Floating Structures. 2001: 587-592.
    [10] Tan S. The Wave Induced Motions of a TLP in Deep Water[C]//Offshore Technology Conference Proceedings. Houston: OTC, 1981, No. 4074.
    [11] Bhattacharyya S K. Coupled Dynamics of SeaStar Mini Tension Leg Platform[J]. Ocean Engineering, 2003, 30(6): 709-737.
    [12] John C. ETLP-The Proven Deep Water Hull Form for West Africa[R]. IBC Conference-TLPs in West Africa, 2002.
    [13]张智,董艳秋,芮光六.一种新型的深海采油平台Spar[J].中国海洋平台, 2004, 19(6): 29-35.
    [14] Irani M, Perryman S. Vortex Induced Motions of the Horn Mountain Truss Spar[C] //Proceeding of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril: OMAE. 2008: 967-973.
    [15] Irani M, Finn L. Improved Strake Design for Vortex Induced Motions of Spar Platform[C]//Proceeding of the 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki: OMAE, 2005: 767-773.
    [16] Dunbar C, Cotton J, Sirena D. Truss Spar Design for East Central Gulf ofMexico[C]// Proceeding of Marine Technology for Our Future: Global and Local Challenges, Oceans. Biloxi: 2009, No.5422408.
    [17] Theckumpurath B, Ding Y. Numerical simulation of the truss-spar‘Horn Mountain’[C]//Proceeding of the 16th International Offshore and Polar Engineering Conference. San Francisco: ISOPE, 2006: 203-209.
    [18] Liu T, Chen X. Global Performance and Mooring Analysis of a Truss Spar[C]//Proceeding of the 13th International Offshore and Polar Engineering Conference. Hawaii: ISOPE, 2003: 256-263.
    [19] Wang J, Luo Y H. Truss Spar Structural Design for West Africa environment[C] //Proceeding of the 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo: OMAE, 2002, 489-496.
    [20] Xu G, Ma Q W. Numerical Investigations on Truss Spar Motion in Waves[C] //Proceeding of the 20th International Offshore and Polar Engineering COnference. ShangHai: ISOPE, 2010: 508-513.
    [21] John B. Red Hawk Showcases First Cell Spar[OL]. Marine Technology, 2002.
    [22] Cassidy P. FPSO Fabrication: Pitfalls in Risk Assignment, Project Component Execution[J]. Offshore, 2001, 61(7):82,145.
    [23]刘志刚,何炎平. FPSO转塔系泊系统的技术特征及发展趋势[J].中国海洋平台, 2006, 21(5): 1-6.
    [24] Srinivasan N, Chakarabarti S. Response Analysis of a Truss-pontoon Semisubmersible with Heave-plates[J]. Journal of Offshore Mechanics and artic engineering, 2006, 128: 100-107.
    [25] Gemathinayagqm S, Vendhan C P. Dynamic Effects of Wind Loads on Offshore Deck Structures-A Critical Evaluation of Provisions and Practices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 84(3): 345-367.
    [26] Norton D J, Wolff C V. Mobile Offshore Platform Wind Loads[C]//Offshore Technology Conference Proceedings. Houston: OTC, 1981: 77-88.
    [27] Yuck R, Hong S Y. Estimation of Current Loads on Offshore Vessels[C] //Proceeding of the 15th International Offshore and Polar Engineering Conference. Seoul: ISOPE, 2005: 338-342.
    [28] Yuck R H , Park M K. Estimation of Current Loads on Side-by-side Moored Two Vessels[C]//Proceeding of the 17th International Offshore and Polar Engineering Conference. Lisbon: ISOPE, 2007: 218-222.
    [29] Ji C. Analysis and Research of Ice Loads Acting on Offshore Structures[J]. China Ocean Engineering, 1993, 7(2): 167-176.
    [30] Bekker A, Sabodash O. Estimation of Limit Ice Loads on Engineering Offshore Structures in the Sea of Okhotsk[C]//Proceeding of the 19th International Offshoreand Polar Engineering Conference. Osaka: ISOPE, 2009: 574-579.
    [31] Hess J L, Smith A M O. Calculation of Non-lifting Potential Flow about Arbitrary Three-dimensional Bodies[J]. J. Ship Res., 1964, 8(2): 22-44.
    [32] Garrison C J. Hydrodynamic Loading on Large Offshore Structures: Three-Dimensional Source Distribution Method[R]. Numerical Methods in Offshore Engineering, 1978.
    [33] Mei C C. Numerical Methods in Water Wave Diffraction and Radiation[J]. Ann. Rev. Fluid Mech., 1978, 10: 393-416.
    [34] Mei C C. The Applied Dynamics of Ocean Surface Wave[M]. John Wiley and Sons, Inc. New York, 1983: 57-94.
    [35] John F. On the Motions of Floating Bodies: I[J]. Comm. Pure Appl. Math., 1949, 2: 13-57.
    [36] John F. On the Motions of Floating Bodies: II[J]. Comm. Pure Appl. Math., 1950, 3: 45-101.
    [37] Wehausen J V. The Motion of Floating Bodies[J]. Ann. Rev. Fluid Mech., 1971, 3: 237-268.
    [38] Newman J N. The Approximation of Free-surface Green Functions[M]. Cambridge University Press, 1992: 107-135.
    [39] Teng B, Taylor R E. New Higher-order Boundary Element Methods for Wave Diffraction/Radiation[J]. Applied Ocean Res., 1995, 17(2):71-77.
    [40] Teng B, Taylor R E. Application of a Higher Order BEM in the Calculation of Wave Run-up on Bodies in a Weak Current[C]//Proceeding of the 5th International Offshore and Polar Engineering Conference. Hague: ISOPE, 1995, 5(3): 219-224.
    [41] Liu Y H. Comparison of Higher-order Boundary Element and Constant Panel Methods for Hydrodynamic Loadings[C]//Proceeding of the 1st International Offshore and Polar Engineering Conference. Edinburgh: ISOPE, 1991, 1(1): 8-17.
    [42] Li H B. A New Method for Evaluating Singular Integrals in Stress Analysis of Solids by the Direct Boundary Element Method[J]. Int. J. Num. Meth. In Eng. , 1985, 211: 2071-2075
    [43]滕斌,李玉成,董国海.双色入射波下二阶波浪力响应函数[J].海洋学报,1999, 21(2): 115-123.
    [44] Taylor E R. On Second Order Wave Loading and Response in Irregular Seas[J]. Advances in coastal and ocean engineering, World scientific, 1999, 5: 155-212.
    [45] Faltinsen O M. Sea Loads on Ships and Offshore Structures[M]. Cambridge University Press, 1990, 105-144.
    [46] Kato S. Statistical Theory of Total Second Order Responses of Moored Vessels in Random seas[J]. App. Ocean Res., 1990, 12(1): 2-13.
    [47] Cummins W E. The Impluse Response Function and Ship Motions[C], DTMB Report 1661. Washington D.C., 1962.
    [48] Isaacson M. Time-domain Second-order Wave Diffraction in Three Dimension[J]. J. waterway, port, coastal and ocean eng., ASCE, 1992, 118(5): 496-516.
    [49] Beck F R. Time-domain Computations for Floating Bodies[J]. Applied Ocean Research, 1994, 16: 267-282.
    [50] Lin E M. Numerical Solutions for Large-amplitude Ship Motions in the Time Domain[R]. In: 18th symp. On Naval Hydrodynamics, 1990:41-66.
    [51]刘刚. BINGO9000半潜式钻井平台疲劳强度分析[J].船舶力学, 2002, 6(2): 54-63.
    [52]张育民.悬索理论及其应用[M].北京:中国林业出版社,1992: 41-64.
    [53]滕斌,郝春玲,韩凌. Chebyshev多项式在锚链分析中的应用[J].中国工程科学,2005,7(1): 21-26.
    [54]肖越,王言英.浮体锚泊系统计算分析[J].大连理工大学学报, 2005, 45(5): 682-686.
    [55]肖越,王言英.三维锚泊系统时域计算分析[J].船舶力学,2005, 9(5): 8-16.
    [56]乔东生,欧进萍.深水悬链锚泊线粘性阻尼计算[J].海洋工程,2009, 27(4): 16-22.
    [57]范菊,黄祥鹿.锚泊线的动力分析[J].中国造船, 1999, 144: 13-20.
    [58]刘应中,缪国平,李宜乐.系泊系统动力分析的时域方法[J].上海交通大学学报,1997, 31: 7-12.
    [59]张火明,杨建民,肖龙飞.等效水深截断的深海平台混合模型实验方法研究[J].海洋工程, 2006, 24(4):1-7.
    [60]张火明,杨建民,肖龙飞.考虑静力特性相似的等效水深截断系统的优化设计[J].中国造船, 2007, 48(2):25-36.
    [61]张火明,杨建民,肖龙飞.深海平台混合模型实验方法应用技术研究[J].中国海洋平台, 2006, 21(1):16-19.
    [62]王国荣,徐兆亮.数值分析导论(第3版)[M].北京:人民邮电出版社,2009: 303-365.
    [63] Pol D, Spanos. Coupled Analysis of a Spar Structure: Monte Carlo and Statistical Linearization Solutions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127: 11-16.
    [64] Garrett D L. Coupled Analysis of Floating Production Systems[J]. Ocean Engineering, 2005, 32: 802-816.
    [65] Ran Z. Coupled Dynamic Analysis of a Moored Spar in Random Waves andCurrents Time-domain Versus Frequency-domain Analysis[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121: 194-200.
    [66] Ran Z, Kim M H. Hull/Mooring/Riser coupled Spar motion analysis with buoyancy-can effect[C]//Proceeding of the 12th International Offshore and Polar Engineering Conference. Kitakyushu: ISOPE, 2002: 223-230.
    [67] Ye W, Shanks J. Effects of Fully Coupled and Quasi-Static Semi Submersible Vessel Motions on Steel Catenary Riser’s Wave Loading Fatigue[C]//Offshore Technology Conference Proceedings.Houston: OTC, 2003, No. 15105.
    [68] Knapp A, Stahl B. Offshore Platform Fatigue Cracking Probability[J]. Journal of Structural Engineering, 1985, 111(8): 1647-1660.
    [69]张春茂,龙媛媛.海洋平台腐蚀检测与延寿评估方案设计[J].石油化工腐蚀与防护, 2009, 26(6): 62-64.
    [70]许亮斌,陈国明.考虑断裂和腐蚀失效的海洋平台动态可靠性研究[J].石油学报, 2009, 30(1): 132-135.
    [71]唐国强,滕斌.深海柔性立管涡激振动经验模型建立和应用[J].中国海洋平台, 2010, 25(3): 12-16.
    [72]宋吉宁,吕林.三根附属控制杆对海洋立管涡激振动抑制作用实验研究[J].海洋工程, 2009, 27(3): 23-29.
    [73] Guo H, Lou M. Experimental Study on Ccoupled Cross-flow and In-line Vortex-induced Vibration of Flexible Risers[J]. China Ocean Engineering, 2008, 22(1): 123-129.
    [74] Constantinides Y, Holmes S. Analysis of Turbulent Flows and VIV of Truss Spar Risers[C]//Proceeding of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: OMAE, 2006, No.92674.
    [75]李润培,陈伟刚.船舶与海洋平台碰撞的动力响应分析[J].上海交通大学学报, 1996, 30(3): 40-47.
    [76] Bai Y, Peterson. Elastic-plastic Behaviour of Offshore Steel Structures under Impact Loads[J]. International Journal of Impact Engineering, 1993, 13(1): 99-115.
    [77] Iskender S. A Survey on Semisubmersible Wind Loads[J]. Ocean Engineering 1985, 12(3): 253-261.
    [78] Gomathinayagam S. Dynamic Effects of Wind Loads on Offshore Deck Structures—A Critical Evaluation of Provisions and Practices[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2000, 84(3): 345-367.
    [79] Davenport A G, Hambly E C. Turbulent Wind Loading and Dynamic Response of Jack-up Platform[C]//Offshore Technology Conference Proceedings. Houston: OTC, 1984, No:4824.
    [80] Subrata C. Handbook of Offshore Engineering[M]. Elsevier, 2005:427-437.
    [81]韩占忠,王敬,兰小平. FLUENT-流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004: 1-26.
    [82] Bouffanais R, Leriche E, Deville M O. Large-eddy Simulation of Incompressible Viscous Flud Flow by the Spectral Element Method[R]. Conference on Turbulence and Interactions, Porquerolles, France, 2006.
    [83] Brandt T T. Usability of Explicit Filtering in Large Eddy Simulation with a Low-order Numerical Scheme and Different Subgrid-scale Models[J]. International Journal for Numerical Methods in Fluids, 2008, 57(7): 905-928.
    [84] Grigoriadis D G, Brtzis J G. Efficient Treatment of Complex Geometries for Large Eddy Simulations of Turbulent Flows[J]. Computers and Fluid, 2004, 33(2): 201-222.
    [85] Zhang Y, Yang C. Large Eddy Simulation of the Gas-liquid Flow in a Stirred Tank[J]. AICHE JOURNAL, 2008, 54(8): 1963-1974.
    [86]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社, 1999 :251-254.
    [87]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004:113-142.
    [88]温正,石良辰,任毅如. FLUENT流体计算应用教程.北京:清华大学出版社, 2009: 51-75.
    [89] Menter F R. Ten Years of Industrial Experience with the SST Turbulence Model[R]. Turbulence, Heat and Mass Transfer 4, 2003.
    [90]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社, 2007: 33-44.
    [91] Lee T S, Low H T. Wind Effects on Offshore Platforms: A Wind Tunnel Model Study[C] //Proceeding of the 13th International Offshore and Polar Engineering Conference. Singapore: ISOPE, 1993: 466-470.
    [92] Chen Q, Gu Z F, Sun T. Wind Environment over the Helideck of an Offshore Platform[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55:621-631.
    [93] Chen Q, Gu Z F, Sun T F. A Wind-tunnel Study of Wind Loads on Offshore Platform[C]//Proc. 5th Nat. Symp. on Wind Effect on Structures. Fuzhou, 1993: 7-11.
    [94]伍荣林,王振羽.风洞设计原理[M].北京:北京航空学院出版社,1985: 21-45.
    [95]黄本才,汪丛军.结构抗风分析原理及应用[M].上海:同济大学出版社,2000: 77-95.
    [96]中国船级社.海上移动平台入级与建造规范[M].北京:人民交通出版社,2005: 65-84.
    [97]苏国,陈水福.复杂体型高层建筑表面风压及周围风环境的数值模拟[J].工程力学, 2006, 23(8): 144-150.
    [98] Wu S. The Motions and Internal Forces of a Moored Semi-Submersible In Regular Waves[J]. Ocean Engineering, 1997, 24(7): 593-603.
    [99] Muhittin S. Motion Response Simulation of a Twin-hulled Semi-submersible[J]. Ocean Engineering, 1998, 25(4/5): 359-383.
    [100]王世圣. 3000米深水半潜式钻井平台运动性能研究[J].中国海上油气,2007, 19(4): 277-280,284.
    [101]杨立军,肖龙飞,杨建民.半潜式平台水动力性能研究[J].中国海洋平台,2009, 24(1): 1-9.
    [102]张威.深海半潜式钻井平台水动力性能分析[D].上海交通大学硕士研究生学位论文, 2006: 85-97.
    [103]陈新权.深海半潜式平台初步设计中的若干关键问题研究[D].上海交通大学博士研究生学位论文, 2007: 51-74.
    [104] Vanoortmerssen G. The Motions of a Moored Ship in Waves[M]. NSMB Pub-510, 1979: 131-142.
    [105]李玉成,滕斌.波浪对海上建筑物的作用(第二版)[M].北京:海洋出版社, 2002: 54-73.
    [106]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实践与应用[M].天津:天津大学出版社, 2002: 83-94.
    [107]韩丽华,姜萌.港口、海岸工程水力模型实验教程[M].大连:大连理工大学出版社, 2007: 25-43.
    [108] Bert S, Steven R, Winterstein. Airgap Prediction: Use of Second-order Diffraction and Multi-column Models[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Stavanger: ISOPE, 2001.
    [109] Bert S, Steven R, Winterstein. Non-gaussian Air Gap Response Models for Floating Structures[J]. J. Engrg. Mech., 2003, 129(3): 302-309.
    [110] Lance M, Bert S, Steven R. Analytical Predictions of the Airgap Response of Floating Structures[J]. J. Offshore Mech. Arct. Eng., 2001, 123(3): 112-118.
    [111]吕海宁,杨建民. FPSO甲板上浪研究现状[J].海洋工程, 2005, 23(3): 119-124.
    [112]陶晶晶.半潜式平台气隙响应的计算研究[D].大连理工大学硕士研究生学位论文, 2008: 59-65.
    [113]马巍巍.桁架式Spar平台气隙响应研究[J].中国海上油气, 2006, 18(5):353-356.
    [114] Isaacson M. Time-domain Second-order Wave Diffraction in Three Dimension[J]. J.Waterwar, Port, Coastal and Ocean Eng., ASCE, 1992, 118(5):496-516.
    [115] Bai W, Teng B. Second-order Wave Diffraction around 3-D Bodies by a Time-domain Method[J].China ocean eng., 2001, 15(1): 73-85.
    [116] David K, Louise W. Air Gap Model Tests on a MOB Module[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Stavanger: ISOPE, 2001: 17-22.
    [117] Longuet H. On the Statistical Distribution of the Heights of sea Waves[J]. Joumal of Marine Researeh, 1952, 11(3):245-266.
    [118] Stansberg, Carl T. Nonlinear Air-gap System Identification from Model Tests[C]//Proceeding of the 9th International Offshore and Polar Engineering Conference. Brest: ISOPE, 1999: 519-526.
    [119] Simos A, Fujarra A. Experimental Evaluation of the Dynamic Air Gap of Large-volume Semi-submersible Platform[C] //Proceeding of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: OMAE, 2006, No.92352.
    [120] Krebel D, Wallendorf L. Air Gap Model Test on a MOB Module[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Stavanger: ISOPE, 2001: 286-293.
    [121] Faltinsen O M, Greco M. Green Water Loading on a FPSO[C]//Proceeding of the 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo: OMAE, 2002: 97-103.
    [122] Carlos G S, Ricardo P. Experimental Study of the Probablility Distributions of Green Water on the Bow of Floating Production Platforms[C]//Proceeding of the 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo: OMAE, 2002, No.28628.
    [123] Ersdal G, Kvitrud A. Green Water on Norwegian Production Ships[C] //Proceeding of the 10th International Offshore and Polar Engineering Conference. Seattle: ISOPE, 2000: 211-218.
    [124] Hooft J P. A Mathematical Method of Determining Hydrodynamic Induced Forces on a Semi-submersible[J]. Transactions-Society of Naval Architects and Marine Engineers, 1971, 79: 28-70.
    [125] Haslum K. Design: Trosvik Bingo 3000[R]. The Naval Architect, 1981.
    [126] Penney P W, Riiser R M. Preliminary Design of Semi-Submersibles[R]. North East Coast Institute of Engineers&Shipbuilders, 1984.
    [127] Cermelli C A, Roddier D G, Busso C C. MINIFLOAT: A Novel Concept of Minimal Floating Platform for Marginal Field Development[C]//Proceeding of the 14th International Offshore and Polar Engineering Conference. Toulon: ISOPE, 2004: 538-545.
    [128] Murray J, Tahar A, Yang C K. Hydrodynamics of Dry Tree semi-submersibles[C] //Proceeding of the 17th International Offshore and Polar Engineering Conference. Lisbon: ISOPE, 2007, No. JSC-491.
    [129] Bindingsb?. Deep draft semi-submersible[C]//Proceeding of the 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo: OMAE, 2002, No.28369.
    [130] Halkyard J. A Deep Draft Semisubmersible with a Retractable Heave Plate[C]//Offshore Technology Conference Proceedings. Houston: OTC, 2002, No.14304.
    [131]李彬彬,欧进萍. Truss Spar平台垂荡响应频域分析[J].海洋工程,2009.27(1): 8-16.
    [132]胡宗武.工程振动分析基础(修订版)[M].上海:上海交通大学出版社,1999:44-50.
    [133] Holmes S, Bhat S. Heave Plate Design with Computational Fluid Dynamics[J]. Journal of Offshore Mechanics and Artic Engineering, 2001, 123(1): 22-28.
    [134] Prslin I, Blevins R D. Viscous Damping and Added Mass of Solid Square Plates[C] //Proceeding of the 17th International Conference on Offshore Mechanics and Arctic Engineering. Lisbon: OMAE, 1998, No.0316.
    [135]纪亨腾,黄国梁,范菊.垂荡阻尼板的强迫振动实验[J].上海交通大学学报, 2003, 37(7): 977-980.
    [136] Troesch A W, Perlin M. Hydrodynamics of thin plates[R]. Joint Industry Report, 2002.
    [137] Ormndroyd J, DenHartog J P. The Theory of the Dynamic Vibration. Transactions[J], ASME, 1928: 9-22.
    [138] McNamara R J. Tuned Mass Dampers for Buildings. Journal of Structural Division[J], ASCE, 1977, 103(9): 1785-1789.
    [139] Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M], Wiley, New York, 1997: 85-93.
    [140]欧进萍,王永富.设置TMD、TLD控制系统的高层建筑风振分析与设计方法[J].地震工程与工程振动, 1994, 14(2): 60-74.
    [141]吴波,李惠.建筑结构被动控制的理论与应用[M].哈尔滨:哈尔滨工业大学出版社, 1997: 54-75.
    [142] Davenport A G.Note on the Distribution of the Largest Value of a Random Function with Application to Gust Loading [J]. Proc.Inst.Civil Eng., 196l, 28(2): 187-196.
    [143]赵洪杰,马春宁.风力发电的发展状况与发展趋势[J].水利科技与经济,2006, 12(9): 619-622.
    [144] Karimirad M. Dynamic Response of Floating Wind Turbine[J]. Mechanical Engineering, 2010, 17(2): 146-456.
    [145] Pham V, Takeshi I. A Study on the Dynamic Response of a Semi-submersible Floating Offshore Wind Turbine System Part 2: Numerical Simulation[C]// Proceeding of 12th International Conference on Wind Engineering. Cairns: Icwe12, 2007: 959-966.
    [146] Takeshi I, Pham V. A Study on the Dynamic Response of a Semi-Submersible Floating Offshore Wind Turbine System Part 1: A Water Tank Test[C]//Proceeding of 12th International Conference on Wind Engineering. Cairns: Icwe12, 2007: 2511-2518.
    [147] Jonkman J, Butterfield S, Musial W. Definition of a 5-mw Reference Wind Turbine for Offshore System Development[R]. Nrel/tp-500-38060 national renewable energy laboratory, 2009.
    [148] Jonkman J. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine[R]. Technical Report Nrel/tp-500-41958, 2007.
    [149]林勇刚.大型风力机变桨距控制技术研究[D],浙江大学博士研究生学位论文,2005: 48-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700