用户名: 密码: 验证码:
水下重力辅助惯性导航的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对水下重力无源导航系统的特点,研究无源重力辅助惯性导航的基本理论与方法,利用各种重力特征传感器获取信息,进行重力图重构、数据预处理、匹配算法分析、性能评估,然后进行智能化数据融合,进而完成水下无源导航模块化的仿真设计,以便能有效地修正惯性导航误差,从而获得较高的定位精度,为真实海洋环境下水下潜器的精确导航提供可靠的技术依据。作者在文中所作的主要工作和创新点概括如下:
     1.归纳总结了水下重力无源辅助惯性导航系统的基本构架;论述了平台式惯性导航系统的相关基本理论;给出了卫星测高的基本原理以及基于卫星测高数据建立海洋重力异常图的理论与方法;介绍了重力与重力梯度传感器测量系统;综述了各种经典匹配算法的工作原理及其特点。
     2.在现有海洋2′×2′重力图数据的水平下,提出了基于孔斯曲面的海洋重力异常图重构方法,建立了双一次和双三次孔斯曲面重力异常模型,较之于移动曲面拟合,精度均得到了有效提高;研究了基于30"×30"海深信息构建高精度、高分辨率重力基准图的方法。
     3.研究了水下实时重力测量的可行性及其基于INS输出的重力扰动改正的实现途径,分析了水下重力传感器测量误差的物理特性并通过相应的数学模型探讨了其量级大小;研究探讨了重力传感器数据的预处理、延拓归算及数学转换问题。
     4.研究分析了海洋重力场统计特征对重力无源匹配导航精度的影响;基于利用重力信息对惯性系统进行修正主要取决于重力异常空间属性变化特征的思想,进行了局部重力场特征参数的统计计算分析;通过不同海域的重力仿真匹配实验,探讨了重力适配区的问题。
     5.针对辅助导航明确的研究对象-惯性导航系统,研究探讨了惯性导航陀螺漂移、加速度零位误差、初始校准误差等主要误差源的噪声传播特性;建立了符合惯性导航特点的航线误差仿真模型;根据东向位置误差的无界性特点,提出了匹配结果应更关注东向位置修正精度的建议。
     6.为了削弱重力测量中厄特弗斯效应、正常重力等计算受惯导误差的影响,研究提出了以相邻观测重力异常之差组成新的观测序列进行相关匹配的差分降相关极值算法;提出了由于受重力测量、重力图、惯导等随机干扰误差影响导致源于正确位置出现多个有效位置的概率数据关联滤波算法,提高了匹配算法的可用性与鲁棒性。
     7.研究了基于费波纳奇数列调优的ICCP匹配算法;针对ICCP匹配算法的局限性,提出了先基于序列相关极值匹配算法将惯导航迹修正到真实航迹附近,然后将得到的匹配航迹作为惯导航迹再进行ICCP匹配,从而将获得的最优航迹作为最终匹配结果的融合算法。
     8.在SITAN算法的基础上,研究了双二次曲面的重力异常随机线性化技术;通过对重力异常量测方程各项量级的探讨,建立了优化的量测方程;研究了并行卡尔曼滤波技术;从卡尔曼滤波稳定性的角度探讨了为满足可观性矩阵可逆的采样周期的选取问题。
     9.研究设计了将基于惯性导航力学编排方程的扰动重力与垂线偏差的开环补偿与重力信息匹配以修正惯性导航随机误差的闭环补偿的集成重力梯度辅助惯性导航系统的工作模式;初步探讨了无图模式下多种重力场元联合匹配的方法。
     10.研究推导了扰动重力矢量对惯性导航系统位置与速度的误差传播模型,分析了扰动重力矢量引起的惯性导航系统位置与速度误差量级的大小及特性,定量、定性地验证了重力开环补偿的必要性。
     11.通过实验计算证明了重力梯度的频域化延拓既能满足精度要求,又不损失实时性,能满足水下重力梯度匹配导航实时性的需求;通过对梯度数据量级及其变化统计特征的分析研究,提出了利用主对角独立的两个特征变化明显的张量Tx x、T yy作为观测量的卡尔曼滤波匹配算法。
     12.设计了水下重力无源辅助导航的数据总体处理流程,构建了面向对象应用的水下重力无源导航系统仿真实验集成平台。
Aiming at the characteristics of the automatic underwater gravity navigation system, the fundamental theories and methods are mainly studied in this dissertation. Gravity map reconstruction, data preprocessing, analysis of matching algorithms and capability evaluation are made with the information obtained by various gravitational sensors. Then, the intelligentized data is syncretized, and the simulation design of the automatic underwater navigation modules is completed so as to correct the inertial navigation errors and improve the positioning precision. Thus, it could be a reliable technology for the precise navigation of underwater carriers in the ocean. The main works and innovative ideas are listed as follows:
     1. The basic skeleton of the automatic underwater gravity aided inertial navigation system is summarized in this thesis, while the correlative fundamental theories are discussed, the basic principle of the Satellite Altimetry and the oceanic gravity anomaly map based on satellite altimetry data are given. The gravity and gravity gradient sensor surveying systems are introduced. What’s more, the principles and characteristics of the classical matching algorithms are summed up as well.
     2. With the oceanic gravity map data at the level of 2′×2′, the reconstruction method of oceanic gravity anomaly map based on coons curved surface is put forward. Besides, the gravity anomaly model of double one order or three orders coons curved surface are established. The precision are much better than that of the mobile curve surface interpolation. The method of establishing high precision and high resolution gravity datum map based on the depth of the ocean at the level of 30"×30" is studied.
     3. The feasibility of the real time underwater gravity measurement and the implement method of gravity disturbing correction based on the output of INS are studied. Then, the physical characteristics of the underwater gravity sensor measurement errors are analyzed and the magnitude is discussed by corresponding mathematical models. Also, the pre-process, continuation reduction as well as the mathematical transformation of the gravity sensor measurement data are discussed.
     4. The influence of the statistical characteristics of the oceanic gravity field to the precision of automatic gravity navigation is analyzed. Based on the thought that the correction of the navigation system mostly determined by the variable characteristics of space properties, statistical calculation analysis of local gravity field characteristic parameters is made. The gravity matching zone is discussed by simulation gravity experiments of different sea areas.
     5. Aimed at the inertial navigation system, which is the study object of the noise transmission characteristics of the main error sources such as gyroscopes drift in inertial navigation, zero position errors of the acceleration, initial adjustment errors and so on are discussed. A simulated model of sailing path errors that fulfilling the characteristics of inertial navigation is established. Furthermore, a suggestion that the eastern correction precision should be paid more attention to in the matching result is put forward when considering the unbounded characteristic of the eastern position errors.
     6. In order to eliminate the influence of the inertial errors in the calculation of E?tv?s effect and the normal gravity in gravity measurement, differential descending correlative extremum matching algorithm is put forward with new observational series comprised of the differential adjacent gravity anomaly observations. Probabilistic data association filtering algorithm is put forward with the fact that multi-available positions are resulted from the disturbing errors of the real position, and the reliability and robustness of the matching algorithm is improved.
     7. The ICCP matching algorithm based on Fibonacci number series is studied. As for its localization, the following strategy is taken in this thesis. With serial relevant extremum matching algorithm, the inertial flight path is corrected to close to the real one before the ICCP is taken to the matched path to obtain the best sailing path.
     8. With the help of SITAN, the random linearization technology of the double two orders curved surface of gravity anomaly is discussed. Optimized gravity anomaly measurement functions are constructed by the discussion of all the items magnitude. Parallel Kalman filtering technology is studied, and how to determine the sampling period for the inverse of the visible matrix is considered to ensure the stability of the Kalman filtering.
     9. A compositive gravity gradient aided inertial navigation system working mode is designed, which is based on the thought that the close-loop compensation of the random inertial navigation errors is corrected through the matching of gravity information and the open loop compensation of the disturbing gravity and the deflection of the vertical arranged by the inertial navigation mechanic functions. In addition, the method of variable gravity cells matching method without gravity map is discussed preliminarily.
     10. The error transmission model of the position and velocity in the inertial navigation system by the disturbing gravity vector is studied, of which the magnitude and characteristics are analyzed to validate the necessity of the gravity open loop compensation qualitatively and quantitatively.
     11. Experiments present that the frequency domain continuation of the gravity gradient could satisfy the precision as well as the real time requirements of the underwater gravity gradient matching navigation. Kalman filtering matching algorithm with independent diagonal element Txx and Tyy, which both have obvious characteristics variance, is put forward based on the magnitude and variance statistical characteristics analysis of the gradient data.
     12. The data processing flow of the automatic underwater gravity aided navigation is designed, of which the object-oriented compositive simulation experiments platform is established.
引文
[1]海斯卡涅W A,莫里兹H.物理大地测量学[M].北京:测绘出版社,1984.
    [2]黄谟涛,翟国君,管铮,欧阳永忠,刘雁春.海洋重力场测定及其应用[M].北京:测绘出版社,2005.
    [3] Wolfgang Torge著,徐菊生,刘序俨等译.重力测量学[M].北京:地震出版社,1993.
    [4]熊介.椭球大地测量学[M].北京:解放军出版社,1988.
    [5]李跃,邱致和等.导航与定位-信息化战争的北斗星[M].北京:国防工业出版社,2008.
    [6]吴宗敏.散乱数据拟合的模型、方法和理论[M].北京:科学出版社,2008.
    [7]胡鹏,杨传勇,吴艳兰、胡海.新数字高程模型[M].北京:测绘出版社,2007.
    [8]克拉索夫斯基A A(苏),任思聪译.相关极值导航系统理论[M].北京:航空工业出版社,1986.
    [9]韦特A D(英),王得石等译.实用声纳工程[M].北京:电子工业出版社,2004.
    [10] Chapfield B,中船重工集团707所译.高精度惯性导航基础[M].北京:国防工业出版社,2002.
    [11]陆仲连,吴晓平.人造地球卫星与地球重力场[M].北京:测绘出版社,1994.
    [12]陆仲连.地球重力场理论与方法[M].北京:解放军出版社,1996.
    [13]陆仲连.球谐函数[M].北京:解放军出版社,1988.
    [14]陆仲连,吴晓平等.弹道导弹重力学[M].北京:八一出版社,1993.
    [15]王谦身.重力学[M].北京:地震出版社,2003.
    [16]祝勇刚,徐正扬.惯性测量系统的理论与应用[M].北京:测绘出版社,1989.
    [17]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992.
    [18]武凤德.水下导航技术的最新发展[J].舰船导航,2001,6:1-8.
    [19]田坦.水下定位与导航技术[M].北京:国防工业出版社,2006.
    [20]李建成,陈俊勇,宁津生,晁定波.联合Topex/Poseidon、ERS2和GEOSat卫星测高资料确定中国南海重力异常[J].测绘学报,2001,30(3):197-201.
    [21]李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2002.
    [22]翟国君.卫星测高数据处理的理论与方法[D].1998,武汉:武汉测绘科技大学.
    [23]黄谟涛,翟国君,管铮,欧阳永忠,陆秀平,吴中鼎.利用卫星测高数据反演海洋重力异常研究[J].测绘学报,2001,30(2):179-184.
    [24]王广运,王海瑛等.卫星测高原理[M].北京:科学出版社,1995.
    [25]姜卫平.卫星测高技术在大地测量学中的应用[D].武汉:武汉大学,2001.
    [26]王耀革.DEM建模与不确定性分析[D].郑州:信息工程大学,2009.
    [27]王耀革,朱长青,王宗伟.基于Coons曲面的规则格网DEM表面模型[J].测绘学报,2008,37(2):217-222.
    [28]朱长青.数值计算方法在测绘中的应用.北京:测绘出版社,1997,37-68.
    [29]陈辉,张彩明.用边界曲线构造C1 Coons曲面确定扭矢的方法[J].高校应用数学学报,1998年,13(A辑增刊):79-85.
    [30]陆洋.利用卫星测高数据改善地球重力场模型的研究[D].武汉:中国科学院测量与地球物理研究所,1997.
    [31]孙中苗.航空重力测量理论、方法和应用研究[D].郑州:信息工程大学,2004.
    [32]彭富清.海洋重力辅助导航方法及应用[D].郑州:信息工程大学,2009.
    [33]吴星.卫星重力梯度数据处理理论与方法[D].郑州:信息工程大学,2009.
    [34]张子占.卫星测高/重力数据同化理论、方法及应用[D].武汉:中国科学院测量与地球物理研究所,2008.
    [35]罗志才.利用卫星重力梯度数据确定地球重力场的理论与方法[D].武汉测绘科技大学,1996.
    [36]王海瑛.中国近海卫星测高数据处理与应用研究[D].武汉:中国科学院测量与地球物理研究所,1999.
    [37]冯浩,晏磊,葛远声,等.水下潜器基于惯性导航的重力数据实时修正[J].武汉大学学报,2004,37(3):135-138.
    [38]宁津生,罗志才,晁定波.卫星重力梯度测量的研究现状及其在物理大地测量中的应用前景[J].武汉大学学报·信息科学版,1996,21(4):309-314.
    [39]吴晓平,李姗姗,张传定.扰动重力边值问题与实际数据处理的研究[J].武汉大学学报,2003,28(5):73-78.
    [40]吴晓平,陆仲连.卫星重力梯度向下延拓的最佳积分核谱组合解[J].测绘学报,1992,21(2):123-133.
    [41]李姗姗,吴晓平等.重力归算的垂直梯度计算[J].测绘科学,2008,33(2):10-13.
    [42]李姗姗,吴晓平等.GAINS中重力传感器信息的扰动改正[J].测绘科学技术学报,2007,24(4):270-274.
    [43]李姗姗,吴晓平.水下重力无源导航系统组合模式的研究与设计,《中国测绘学会九届4次理事会暨2008年学术年会论文集》.
    [44]辛廷慧.水下地形辅助导航研究[D].西安:西北工业大学,2004.
    [45]赵凤治.数值优化中的二次逼近法[M].北京:科学出版社,2000.
    [46]魏东.重力匹配定位方法研究[D].哈尔滨:哈尔滨工程大学,2003.
    [47]《数学手册》编写组.数学手册[M].北京:人民教育出版社,1979.
    [48]苏康,关世义,柳健,等.在不同地形条件下的地形辅助导航系统定位精度评估[J].宇航学报,1998,19(1):84-89.
    [49]程力,蔡体菁.重力辅助惯性导航系统中的一种新的相关匹配算法[J].仪器仪表学报,2006,27(6):2235-2236.
    [50]程力,张雅杰,蔡体菁.重力辅助导航匹配区域选择准则[J].中国惯性技术学报,2007,15(5):559-563.
    [51]冯浩,邓中亮.低速潜器在参考地图上的定位研究[J].北京邮电大学学报,2005,28(3):52-54.
    [52]王可东,陈锶.水下地形匹配等值线算法研究[J].宇航学报,2006,27(5):995-999.
    [53]郭有光,钟斌,边少锋.地球重力场确定与重力场匹配导航[J].海洋测绘,2003,23(15).
    [54]边少锋,张赤军.地形起伏对重力垂直梯度影响的计算[J].物探化探计算技术,1999,21(2):133-140.
    [55]许大欣.利用重力异常匹配技术实现潜艇导航[J].地球物理学报,2005,48(4):812-816.
    [56]董绪荣,张守信,华中春.GPS/惯性导航组合导航定位及其应用[M].长沙:国防科技大学出版社,1998.
    [57]许丽佳,陈阳舟,崔平远.GPS/惯性导航组合导航系统中的信息融合算法研究[J].计算机仿真,2004,21(5):20-23.
    [58]朱迎春,朱建军,陈正阳.动态定位中测量噪声时间相关的Kalman滤波[J].测绘学报,2006,35(11):328-331.
    [59]冯浩.未来水下重力辅助惯性导航微系统中的理论、模型和仿真研究[D].北京:北京邮电大学自动化学院,2004.
    [60]冯浩,晏磊,邓中亮.基于辅助惯性导航的数据地图特征分析[J].北京邮电大学学报,2004,27(4):23-27.
    [61]蔡体菁,周白令.重力梯度仪的现状和前景[J].中国惯性技术学报,1999,7(1):39-42.
    [62]孟嘉春,蔡喜楣.卫星重力梯度测量及其应用前景[J].地球物理学报,1991,34(3):369-376.
    [63]孟嘉春,刘尚余.卫星重力梯度测量与地球引力场的精度研究[J].地球物理学报,1993,36(6): 725-739.
    [64]熊正南,蔡开仕,武凤德,高宏伟.21世纪美国战略潜艇导航技术发展综述[J].舰船科学技术,2002,24(3):30-37.
    [65]方剑.中国海及邻域重力场特征及其构造解释[J].地球物理学进展,2002,(3):42-49.
    [66]吴太旗,边少锋,蒋勃,等.重力场对惯性导航定位误差影响研究与仿真[J].测绘科学技术学报,2006,23(5):341~344.
    [67]孙南.重力辅助惯性导航的匹配算法研究研究[D].郑州:信息工程大学测绘学院,2006.
    [68]曾华霖.重力梯度测量的现状及复兴[J].物探与化探,1999,1.
    [69]张赤军.用地形数据确定重力异常垂直梯度[J].科学通报,1999,3.
    [70]张永明,张贵宾,盛军.航空重力梯度测量及应用[J].工程地球物理学报,2006,10.
    [71]吴宣志.富立叶变换和位场谱分析方法及其应用[M].北京:测绘出版社,1987.
    [72]张明.地形匹配相关算法融合处理[J].上海航天,2005(1):35-38.
    [73]吴崇试.数学物理方法[M].北京:北京大学出版社,2003.
    [74]党诵诗.物理大地测量的数学基础[M].北京:测绘出版社,1988.
    [75]邓字立.卡尔曼滤波与维纳滤波[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [76]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [77]郭俊义.物理大地测量学基础[M].武汉:武汉测绘大学出版社,1994.
    [78]魏萌.傅立叶变换及其应用[M].郑州:解放军测绘学院,1998.
    [79]胡广书.数字信号处理[M] .北京.:清华大学出版社,2006.
    [80]罗志才,宁津生,晁定波.卫星重力梯度向下延拓的谱方法[J].测绘学报,1997,26(2):168-175.
    [81]冯庆堂,沈林成,常文森.基于概率数据关联的地形辅助导航算法[J].宇航学报,2003,24(5):439-443.
    [82]冯庆堂,沈林成,常文森.基于衰减记忆的地形辅助导航算法[J].国防科技大学学报,2003,25(4):89-92.
    [83]冯庆堂.地形匹配新方法及其环境适应性研究[D].长沙:国防科技大学,2004.
    [84]吴尔辉.地形匹配辅助导航系统中的地形可导航性分析方法研究[D].长沙:国防科技大学,1998.
    [85]张天光,王秀萍,王丽霞等译.捷联惯性导航技术[M].北京:国防工业出版社,2007.
    [86]夏冰,王浩.相关极值的重力匹配辅助导航[J].光学精密工程,2009,17(4):832-838.
    [87]刘承香.水下潜器的地形匹配辅助定位技术研究[D].哈尔滨:哈尔滨工业大学,2003.
    [88]刘承香,阮双深,刘繁明,张敏.基于迭代最近点的地形匹配算法可靠性分析[J].深圳大学学报理工版,2005,22(1):22-26.
    [89]王建,白世彪,陈晔.Surfer8地理信息制图[M].北京:中国地图出版社,2004.
    [90]张皞.快速逼近弹道扰动引力的算法研究[D].郑州:信息工程大学测绘学院,2007.
    [91]束蝉方.高精度惯导系统的重力补偿系统研究[D].武汉:武汉大学,2005.
    [92]阚瑷珂,朱利东,张瑞军,等.基于数据融合的SRTM数据空洞填补方法[J].地理空间信息,2007,5(3):62-64.
    [93]耿延睿,崔中兴.组合导航系统卡尔曼滤波衰减因子自适应估计算法研究[J].中国惯性技术学报,2001,9(4):8-10,27.
    [94]王正明,刘明.精通MATLAB 7[M].北京:电子工业出版社,2007.
    [95] Moritz H . Advanced physical geodesy[M] . Abacus Press, AbacusHouse, SpeldhurstRoad, TunbridgeWells, KentTN4 OHU, England, 1980.
    [96] Hwang C,Kao EC, Parsons B.Global derivation of marine gravity anomalies from Seasat、Geosat、ERS-1 and TOPEX/Poseidon altimeter data[J].Geophsical Journal International, 1998, 134(2): 449-459.
    [97] Hwang C, Hsu H Y, Jang R J. Global mean sea surface and marine gravity anomaly from multi- satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formula[J]. Journal of Geodesy, 2002, 76: 407-418.
    [98] Hwang C. Inverse Vening Meinesz formula and deflection-geoid formula :applications to the predictionsof gravity and geiod over the South China Sea. Journal of Geodesy, 1998, 72: 304-312.
    [99] Hwang C, Kao EC, Parsons B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophys J Int, 1998, 134: 449~459.
    [100] Andersen O. and Knudsen P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry[J]. J. Geophys. Res., 1998, 103(C4): 8219-8317.
    [101] Anderson O,Knudsen P.Improved recovery of the global marine gravity field from the Geosat and ERS-1 geodetic mission[A].IAG Symposia 117,Gravity Geoid and Marine[C].Berlin Heidelberg:Springer-Verlag,1997: 461-469.
    [102] Sandwell D,Smith W.Marine gravity anomaly from Geosat and ERS-1 satellite altimetry[J].J Geophys Res,1997,102(D10): 10039-10054.
    [103] Coons S A.Surfaces for computer aided design of space forms[R].Cambridge: MIT,1967.
    [104] Farin G.Curves and surfaces for computer aided geometric Design[M].New York:A Practical Guide,Academic Press, 1988.
    [105] THiromi F, Koizumi K C, Masaharu Watanabe, Atsusi Oshida, Toshion Furuta, Naoya Takamura, Tamaki Ura.TTUnderwater gravinleter on board the R-One robot[R].TTUnderwater Technology,Proceedings of the 2000 International Symposium on, 2000: 297~300.
    [106] Valliant H D.The LaCoste & Romberg Air/Sea gravity meter:An Overview CRC Handbook of Geophysical Exploration at Sea[M].2nd Edition. Hydrocarbons:CRC press, 1992: 115-127.
    [107] Jircitano A, Dosch D.Gravity aided inertial navigation system [A].ION 47 Annual Meeting Proceedings[C], June, 199l: 21-229.
    [108] Rice H, Mendelsohn L, Robert Aarons R, Mazzola D. Next generation marine precision navigation system[A].IEEE:Position Location and Navigation Symposium[C], 2000: 200-205.
    [109] Behzad K P, Behrooz K P. Vehicle location on gravity maps[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3693: 182-191.
    [110] Bishop G C. Gravitational field maps and navigational errors[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 726 -737.
    [111] Hollowell J. Heli/SITAN: A terrain referenced navigation algorithm for helicopters[J].IEEE Position, Location, and Navigation Symposium 1990(PLANS’90), Las Vegas, NV, USA, March 20-23,1990,616:625.
    [112] BIAN S. Some cubature formulas for singular integrals in physical geodesy[J]. Journal of Geodesy,1997,71: 443-453.
    [113] Clive A A, Albert J. Passive gravity gradiometer navigation system. IEEE, 1990: 60-66.
    [114] Hugh R, Louis M, Robert A, et al. Next generation marine precision navigation system[A]. Position Location and Navigation Symposium, IEEE[C]. 2000: 200-206.
    [115] Cooley J W, Tukey J W. An algorithm for the machine computation of the complex fourier series,mathematics of computation, Vol. 19, April 1965, pp. 297-301.
    [116] Duhamel P, Vetterli M. Fast Fourier Transforms: A tutorial review and a state of the Art, Signal Processing, Vol. 19, April 1990, pp. 259-299.
    [117] FFTW (http://www.fftw.org)
    [118] Frigo M,Johnson S G. FFTW: An adaptive software architecture for the FFT, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp. 1381-1384.
    [119] Oppenheim A V,Schafer R. W Discrete-time signal processing, Prentice-Hall, 1989:611-619.
    [120] Rader C M. Discrete fourier transforms when the Number of data samples Is prime, Proceedings of the IEEE, Vol. 56, June 1968, pp. 1107-1108.
    [121] Franklin G F, Powell J D,Workman, M L. Digital control of dynamic systems, Second Edition, Addison-Wesley, 1990.
    [122] Larry D. Hostetler, Andreas R D. Nonlinear kalman filtering techniques for Terrain-Aided Navigation. IEEE Transactions on Automatic Control,1983, 28(37): 315-323.
    [123] BAR-Shalom Y, Jaffer A G. Adaptive nonlinear filtering for tracking with measurement of uncertain. Proceedings of the 11th IEEE conference on decision and Control., 1972:243-247.
    [124] Dezret J. Improvement of strapdown inertial navigation using PDAF. IEEE transactions on Aerospace and electronic system, 35, 4(JULY 1999): 835-856.
    [125] David H, Titterton, John L. Weston. Strapdown inertial navigation technology(2nd editon)[M]. pubisheded by the IEEE: The insitution of electrical engineers all rights reserved, 2004.
    [126] Albert J, Dosch H, Daniel E H. Gravity aided Inertial Navigation System (GAINS)[A]. Proceedings of the Annual Meeting-Institute of navigation, 1991, 221-229.
    [127] Olgiati A, Balmino G, Sarrailh M, Green CM. Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical. Manuscripta geodaetica, 1995,69: 252-260.
    [128] Mcadoo D C, Marks K M. Gravity Fields of the Southern Ocean from Geosat Altimetry. J Geophys Res, 1992, 97(B3): 3 247-3 260.
    [129] Kwon J H, Jekeli C. Gravity Requirements for Compensation of Ultra-Precise Inertial Navigation[J]. The Journal of Navigation, 2005, 58: 479-492.
    [130] Jay Hyoun Kwon. Gravity compensation methods for precision INS[C].ION 60th annual meeting/U.S. Air Force Institute of Technology & The U.S. Air Force Research Laboratory, Sensors Directorate, Dayton, OH, 7-9 June 2004, 483-490.
    [131] Grejner-Brzezinska D, Yi Y., Toth T, Anderson R., Davenport J., Kopcha D. and Salman R. Enhanced Gravity Compensation for Improved Inertial Navigation Accuracy[R]. ION GPS, September 9-12, CD-ROM.
    [132] Grejner-Brzezinska D, Toth C, Yi Y. On improving navigation accuracy of GPS/INS systems[J].Photogrammetric Engineering & Remote Sensing, 2005, 71(4): 377-389.
    [133] Grejner-Brzezinska D A. Airborne Integrated Mapping System: Positioning Component[A]. In: Proceedings of 53rd ION Annual Meeting, Albuquerque, 1997:225-235.
    [134] Jordan S K, Moonan P J, Weiss J D. State-Space Models of Gravity Disturbance Gradients[J]. IEEE Transactions of Aerospace and Electronic Systems, 1981, Vol. AES-17(5):610-618.
    [135] Jordan S K. Effects of Geodetic Uncertainties on a Damped Inertial Navigation Systems [J]. IEEE TRANSACTIONS ON AEROSPCE AND ELECTRONIC SYSTEMS, 1973, 9(5): 741-752.
    [136] Moryl J. Advanced submarine navigation systems[J]. Sea Technology,1996,37(11): 33~39.
    [137] Behad Kamgar-Parsi, Behrooz Kamgar-Parsi. Registration algorithms for geophysical maps. U.S. Government work: pp974-980.
    [138] Horn B., Hilden H, Negahdaripour S. Closed-Form solution of Absolute Orientation Using Orthonormal Matrices: JOSAA, vol.5(7),1988.
    [139] Simon D. Fast and accurate shape-based registration[D]. Robotics Institute, Carnegie Mellon Univ., 1996.
    [140] Byung-Uk Lee, Chul-Min Kim, Rae-Hong Park. An orientation reliability matrix for the iterative closest point algorithm[J]. IEEE Transactions on pattern Analysis and Machine Intelligence, 2000, 22(10):1205-1208.
    [141] yung-U k Lee, Chul-Min Kim, Rae-Hong Park. Error sensitivity of rotation angles in the ICP algorithm[J]. Proc. Of SPIE, Three-Dimensional Image Capture and Applications II, 1999, 3640, 146-156.
    [142] Bergman N.,Ljun L,Gustafsson F. Terrain navigation using Bayesian statistics. Control Systems Magazine, IEEE ,Volume: 19 ,Issue: 3 ,June 1999Pages: 33-40.
    [143] Strauss O, Comby F , Aldon.M J. Mutibeam Sonar Image Matching for Terrain-nased Underwater Navigation[C] Ocean’99 MTS/IEEE. Conference of Riding the Crest into the 21st Century,1999.Pages: 882-887.
    [144] Baird C.A.;Snyder F.B.;Beierle M.; Terrain-aided altitude computations on the AFTI/F-16 Position Location and Navigation Symposium, 1990. Record. 'The 1990's - A Decade of Excellence in the Navigation Sciences'. IEEE PLANS '90., IEEE。,20-23 March 1990 Pages: 474–481.
    [145] Moryl J.;Rice H.;Shinners, S.;The universal gravity module for enhanced submarine navigation Position Location and Navigation Symposium, IEEE 1998 ,20-23 April 1998 Pages:324–331.
    [146] Jircitano A.; White J.; Dosch D.; Gravity based navigation of AUVs Autonomous Underwater Vehicle Technology, 1990. AUV '90., Proceedings of the (1990) Symposium on,5-6June1990 Pages:177–180.
    [147] Baker W,Clem R.Terrain Contour Matching [TERCOM] Primer Technical Report ASP–TR–77–61 [R].Aeronautical Systems Division,Wright Patterson AFB,Aug,1977.
    [148] Andress R D,Hostetler L D,Bechmann R C.Continuous Kalman Updating of an Inertial NavigationSystem UsingTerrain Measurement[C].In Proceedings of National Aerospace and Electronics Conference,1978:1263-1270.
    [149] Bergman N.Bayesian Approach to Terrain-aided Navigation[C].In Proc.of SYSID’97,11th IFAC Symposium on System Identification,IFAC,1997,1531-1536.
    [150] Gray R A.In-flight Detection of Errors for Enhanced Aircraft Flight Safety and Vertical Accuracy Improvemem Using Digital Terrain Elevation Data with an Inertial Navigation System,Global Positioning System and Radar Altimeter[D].Ph.D.Dissertation,Ohio University,Athens,0hio.June 1999.
    [151] John J, Lenard, Andrew A, Bennett, Christopher M, Smith, Hans Jacob S, Feder. Autonomous underwater vehicle navigation[R]. MIT:Dept. of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, 1998.
    [152] Hugh R, Louis M, Robert A, Daniel M. Next generation marine precision navigation system[A]. IEEE PLANS: Position Location and Navigation Symposium[C], 2000, 200~206.
    [153] John HTUMorylUTH. Advanced submarine navigation systems[J]. Sea Technology, 1996, 37(11):33 -39.
    [154] Jekeli C. The effect earth’s gravity on precise, Short-Term, 3-D Free-Inertial Navigation [J]. Navigation, 1997, 44(3):347-357.
    [155] Jekeli C., J.H. Kwon. Analysis and processing of svalbard airborne INS/GPS data for vector gravimetry [R]. NIMA contract NMA 202-98-1-1110, OSU Project 736145.
    [156] Jekeli C. Precision free-Inertial Navigation with gravity compensation by an onboard gradiometer[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 704-713.
    [157] Eugene M. Wells. A priori and real time use of a gravity gradiometer to improve inertial navigation[D]. Stanford University, 1982.
    [158] Self M, Cheeseman P. A stochastic map for uncertain spatial relationships[A]. Proceedings of the 1987 International Symposium on Robotics Research[C].1987, 467~474.
    [159] Paul Michael Newman. On the structure and solution of the simultaneous localization and map building problem[D]. PhD thesis, Australian Center for Field Robotics, the University of Sydne.
    [160] Feder H J S. Simulataneous Stochastic Mapping and Localization [D]. PhD Tehsis, MIT, USA, 1999.
    [161] Albert J, Dosch H, Daniel E H. Gravity aided Inertial Navigation System (GAINS)[A]. Proceedings of the Annual Meeting-Institute of navigation, 1991, 221-229.
    [162] Warren G H. Gradiometer-Aided Inertial Navigation[M]. Analytic Sciences Corporation, 1975.
    [163] Wells E M, Breakwell J V. A study to determine the best utilization of gravity gradiometer information to improve inertial navigation system(INS) accuracy[J]. AIAA, 1980:72-79.
    [164] Prokhorov Y G. Observability of gravimeter-aided inertial navigation systems[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1416-1419.
    [165] Murray S G, John J B. Precision Gravity Gradiometer/AUV System[J]. IEEE: Autonomous Underwater vehicles, 1998: 167-174.
    [166] Jordan S K, Center J L. Establishing Requirements for Gravity Surveys for Very Accurate Inertial Navigation[J]. Navigation, 1986, 33(2): 90-108.
    [167] Peter Domian Kopcha. NGA gravity support for inertial navigation[R]. ION 60th Annual Meeting/U.S. Air Force Institute of Technology & The U.S. Air Force Research Laboratory, Sensors Directorate, 7-9 June, 2004, 497-504.
    [168] May M, Lowrey J A. Aikawa M. VERDICT-a plan for gravity compensation of inertial navigation systems[A]. In: Position Location and Navigation Symposium. IEEE PLANS[C]. 1988, 280-287.
    [169] Grejner-Brzezinska D A, Yi Y, Toth C, Anderson R, Davenport J, Kopcha D, Salman R. Enhanced Gravity Compensation for Improved Inertial Navigation Accuracy[A]. Proceedings of the 16th International Meeting of the Satellite Division of the Institute of Navigation ION GPS/GNSS, Orgon convention Center Portland, Oregon, 2003, 2879-2909.
    [170] Richeson A. Gravity gradiometer aided inertial navigation within non-GNSS environments[D]. Ph.D. thesis, the University of Maryland, 2008.
    [171] Jekeli C. Inertial Navigation Systems with Geodetic Applications[M]. Berlin: Walter deGruyter, 2000.
    [172] Yang Y, Xu T. An adaptive Kalman filter based on Sage windowing weights and variance components [J]. Journal of Navigation, 56:231~240, 2003.
    [173] Yang Y, He H and Xu G. Adaptively Robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy, 2001, 75, 09-116.
    [174] Gelb A. Applied Optimal Estimation[M]. Cambridge: MIT Press, 1974, 39-45.
    [175] Smith R. Selfm, Cheeaeman P. Estimating uncertain spatial relationships in Robotics[M]. Autonomous Robot Vehicles. London: Springer Verlag, 1990: 167-193.
    [176] Jekeli C. Airborne Vector Gravimetry Using Precise, Position-Aided Inertial Measurement Units[J]. Bulletin Geodesique, 1994, 69:1-11.
    [177] Jekeli C. Airborne Gradiometry Error Analysis[J]. Surveys in Geophysics, 2006, 27: 257-275.
    [178] Cheney RE, Douglas BC, Agreen RW, Miller L and Doyle NS. The NOAA Geosat Geophysical Data Records-User Handbook[R], NOAA TM NOS NGS-46, Rockwille, MD: NOAA, 1987.
    [179] Hanes BJ, Et al. Precise Orbits Computation for the Geosat Exact Repeat Mission[J]. 1990, J. Geophys. Res., 95(C3), 2871-2885.
    [180] AVISO User Handbook: Merged TOPEX/POSEIDON Products AVI-NI-02-100-CN [M]. Edition 3, 1996.
    [181] Fu L L., et al. TOPEX/POSEIDON Mission Overview[J]. J. Geophys. Res., 1994, 99(C12): 369-382.
    [182] Balmino G. Orbit Choice and the Theory of Radial Orbit Error for Altimetry[A]. In: Lecture Notes in Earth Sciences. Satellite Altimetry in Geodesy and Oceanography[C]. New York: Springer-Verlag, 1993:244-317.
    [183] Mara M, Yale, David T, Sandwell et al. Comparison of along track resolution of stacked Geosat, ERS-1, and TOPEX satellite altimeters[J]. JGR, 1995,100(B8): 1517-1512.
    [184] Gysen H et al. Analysis of Collinear Passes of Satellite Altimeter Data[J]. J. Geophys. Res., 1992, 97(C2): 2265-2277.
    [185] Wagner C A. Accuracy estimate of geoid an ocean topography recovered Jointed from satellite altimetry[J]. J.Geophys. Res., 1986: (B1): 3027-3036.
    [186] Rummel R. Principle of Satellite Altimetry and Elimination of Radial Orbit Errors[A]. In: Lecture Notes in Earth Sciences. Satellite Altimetry in Geodesy and Oceanography[C]. New York: Springer-Verlag, 1993: 190-243.
    [187] Schrama E J O. The Role of Orbit Errors in Processing of Satellite Altimeter Data [ Ph. D. thesis] . Delft: Delft university, 1989.
    [188] Colombo O L. Altimetry, orbits and tides[R]. Greonbelt: NASA Technical Memorandum 86180, 1984
    [189] William M. Kaula. Theory of Satellite Geodesy, Blaidsel, Waltham, Mass., 1969.
    [190] Engelis T. Radial Orbit Error Reduction and Sea Surface Topography Determination Using Satellite Altimetry[R]. Dept. Of Geodetic Science and Surveying, the Ohio State University, Rep. Columbus, Ohio, 1987, No.377.
    [191] Olgiati A, Balmino G, Sarrailh M, Green CM. Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical. Manuscripta geodaetica, 1995,69: 252-260.
    [192] Yu J, Jekeli C, Zhu M. The analytical solutions of the geodetic boundary value problems with ellipsoidal boundary[J]. The Journal of Geodesy, 2002, 76(11):653-667.
    [193] Mcadoo D C, Marks K M. Gravity Fields of the Southern Ocean from Geosat Altimetry. J Geophys Res, 1992, 97(B3): 3 247-3 260.
    [194] Dorota A. Grejner-Brzezinska and Jin Wang. Gravity Modeling for High-Accuracy GPS/INS Integration[J]. Navigation, 1998, 45(3): 209-220.
    [195] S.A. Levine, A. Gelb. Effect of deflections of the vertical on the performance of a terrestrial inertial navigation system[J]. J.Spacecraft, 1969, 6(9):978-984.
    [196] Gelb A. Applied Optimal Estimation[M]. MIT Press, Cambridge, MA, 1974, 39-45.
    [197] Clive A A, Albert J. Passive gravity gradiometer navigation system [A]. IEEE PLANS’90: Position Location and Navigation Symposium[C], 1990: 60~66.
    [198] Diane E.Di Massa. Terrain-relative Navigation for Autonomous Underwater Vehicles[D]. Massachusetts Institute of Technolgy, 1997.
    [199] Touhy S T, Leonard J J, J.G. Bellingham, N.M. Patrikalakis, and C.Chryssostomidis. Map based navigation for autonomous underwater vehicles[R]. MIT Dept. of Ocean Engineering, 1995.
    [200] Berthold K.P. Horn. Closed-form solution of absolute orientation using unit quaternion[J]. Optical Society of America, 1987, 4(4): 629-642.
    [201] Behzad Kamgar, Behrooz Kamgar-Parsi. Matching Sets of 3D Line Segments with Application to Polygonal Arc Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10):1090-1099.
    [202] W.Stasior. Autonomous localization for underwater vehicles. Master’s thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, December 1990.
    [203] Paul J. Besl, Neil D. Mckay. A method for registration of 3-D Shapes[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256.
    [204] Brian Steven Bingham. Precision autonomous underwater navigation[D].Massachusetts Institute of Technology, 2003.
    [205] Simon D. Fast and accurate shape-based registration[D]. Robotics Institute, Carnegie Mellon Univ., 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700