用户名: 密码: 验证码:
冻土细菌新种和冰缘植物内生细菌新种的特征和多相分类学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冻土细菌是一类生活在低温、寡营养、液态水稀少和氧气稀缺环境中的极端微生物。它们的种类丰富多样,它们的代谢产物也可能是一类新资源,对于人类而言,蕴含着巨大的价值。这一切的前提就是得到更多的冻土细菌进行分门归类,并对它们与已有的种类进行比较后,从而找到其特殊的用途和特殊的代谢产物。
     植物内生细菌定殖于健康的植物宿主体内,与植物建立了和谐联合的关系,对于宿主的健康并无威胁,还对植物宿主的生命活动有着积极的作用,研究植物内生细菌对宿主的作用可能是未来生态型农业发展的一条新途径。为了发展新资源,人们必须从不同环境生长的植物中分离到更多的内生细菌,并进行分门归类。
     本工作主要针对从冻土微生物多样性研究和冰缘植物内生细菌多样性研究中得到的可能具有新分类地位的细菌菌株进行分类鉴定的工作,主要结果如下:
     1.对分离于天山一号冰川采集的冻土样品中细菌进行筛选后,得到两株可能是新种的细菌菌株,记为TSBY 57T和TSBY 67T;对分离于冰缘植物火绒草的内生细菌进行筛选后,得到一株可能是新种的细菌菌株,记为Enf 54T,三株细菌的纯培养物的得到为进一步的研究提供了素材,这是首次对天山冻土中分离的细菌进行分类鉴定,也是首次对冰缘植物火绒草的内生细菌进行分类鉴定。
     2. TSBY 57T的菌落呈黄色,细胞为杆状,大小为0.2-0.3μm×0.3-1.1μm; TSBY 67T的菌落呈橙黄色,Flexirubin-type色素反应为阳性,细胞为杆状,大小为0.3-0.5μm×0.6-1.6μm; Enf 54T的菌落呈淡黄色,细胞为短杆状,大小为0.3μm×0.9μm,它们的在形态方面的主要特征与各自所在属的特征基本相符,奠定了分类鉴定研究中形态学的基础。
     3.通过培养特性研究,TSBY 57T能在NaCl浓度为0-1.5%,pH范围为6-8,、温度范围为0-30℃时生长;TSBY 67T能在NaCl浓度为0-2%,pH范围为6-8,温度范围为4-37℃时生长;Enf 54T能在NaCl浓度为0-4%,能在pH范围为6.0-8.5,温度范围为4-30℃时生长。从它们的培养特性可以看出,它们都具有一定的耐冷性,这是它们在长年低温的环境中生长对冷适应的一种外在表现。
     4.通过生理生化特征的研究,发现TSBY 57T、TSBY 67T和Enf 54T的革兰氏染色、酶活、糖代谢、同化作用等方面都具有各自所在属的共性,与属内相近种的菌株进行细致比较后,发现它们与各自属已发表的种具有不同之处,为新种的分类鉴定提供了生理生化方面的证据。
     5.通过细胞化学组分分析后,得出结论TSBY 57T、TSBY 67T和Enf 54T在脂肪酸的种类上与各自属的所有种的脂肪酸种类是一致的,而平行实验的结果显示,它们有几类脂肪酸的丰度与已发表的新种有很大的区别,为这三株细菌是各自属的一个新种提供了有力的证据。
     6.通过分子生物学方法,对TSBY 57T、TSBY 67T和Enf 54T进行研究后,TSBY 57T、TSBY 67T和Enf 54T的G+C含量分别为34.1%,33.5%和66.8%,分别都在该属已报道的G+C含量的范围内,并且通过16S rRNA序列相似性比较,TSBY 57T与Epilithonimonas属的亲缘关系最近,TSBY 67T与Chryseobacterium属的亲缘关系最近,Enf 54T与Frondihabitans属的关系最近,进一步证明了它们分别是各自所在属的一个新种。
     综上所述,确定TSBY 57T是Epilithonimonas的一个新种,命名为Epilithonimonas xinjiangense sp. nov.;确定TSBY 67T是Chryseobacterium属的一个新种,命名为Chryseobacterium xinjiangense sp. nov。初步判定Enf 54T是Frondihabitans属的一个新种,命名为Frondihabitans xinjiangense sp. nov。
Bacteria from alpine frozen soils live in the environment with low temperature, oligotrophic system, and the absence of liquid water and O2. So Bacteria from alpine frozen soils are kinds of extreme microorganism. Bacteria from alpine frozen soils have lots of species. At the same time, their metabolites are new types resources and have great benefit to people. To develop new types resources, people must isolate more bacteria from alpine frozen soils, and classify and identify them.
     Endophytic bacteria residing within plant tissues without any harm to the plant play active roles in plant. It could be a new approach to explore ecosystem type agriculture. To develop new types resources, people must isolate more bacteria from plants living all kinds of environments, and classify and identify them.
     My paper mainly classify and identify strains isolating from alpine frozen soils and subnival plant-Leontopodium leontopodoides, and confirm their new taxonomic positions.
     1. Strain TSBY 57T and strain TSBY 67T were isolated from alpine permafrost. Strain Enf 54T was isolated from Leontopodium leontopodoides in Tianshan Mountains. Their pure cultures which we obtain provide good material of study. We have firstly performed systematic taxonomy of isolated strains from alpine permafrost and Leontopodium leontopodoides, in Tianshan Mountains.
     2. Cells of strain TSBY 57T are non-spore-forming, non-motile rods,0.2-0.3μm in diameter and 0.3-1.1μm in length. Colonies are yellow; Cells of strain TSBY 67T are non-spore-forming, non-motile rods,0.3-0.5μm in diameter and 0.6-1.6μm in length. Colonies are smooth and shiny, orange-yellow. Flexirubin type pigments are produced; Cells of strain Enf 54T are non-endospore-forming, non-motile, irregular-shaped rods,0.3μmin diameter and 0.9μm in length. Colonies are pale yellow. Therefore, their morphological features are respectively in accordance with morphological features of their respective genus. These results lay the foundation for classification and identification in the aspect of morphology.
     3. Strain TSBY 57T grew with 0-1.5% NaCl, at 0-30℃, and at pH 6-8; Strain TSBY 67T grew with 0-2% NaCl, at 4-37℃, and at pH 6-8; Strain Enf 54T grew with 0-4% NaCl, at 4-30℃, and at pH 6.0-8.5. As a conclusion, they have cold resistance to a certain extent. That is external expression that they adapt to low temperature all the year round.
     4. In light of the physiological and chemical tests, Strains TSBY 57T, TSBY 67T and Enf 54T are respectively considered to have generality of their respective genus and have obviously distinct from other closely related members of their respective genus.
     5. We conclude that the fatty acids'composition of TSBY 57T, TSBY 67T and Enf 54T were respectively consistent with those of the closest phylogenetic neighbours grown under the same conditions. However, the content of fatty acids differed from them by higher proportions by lower proportion. Hence, it is a powerful evidence to classify and identify.
     6. Studying by means of molecular biology, The DNA G+C content of strain TSBY57T, TSBY67T and Enf 54T were respectively 34.1mol%,33.5 mol% and 66.8mol%, lying within the range reported for members of their respective genus. On the basis of the sequence similarity of 16S rRNA gene, strain TSBY 57T was closely related to members of the genus Epilithonimonas, strain TSBY 67T was closely related to members of the genus Chryseobacterium and strain Enf 54T was closely related to members of the genus Frondihabitans.
     Therefore, based on polyphasic taxonomic analytical results, strain TSBY57T represents a novel species of the genus Epilithonimonas, which is named as Epilithonimonas xinjiangense sp. nov., strain TSBY 67T represents a novel species of the genus Chryseobacterium, which is named as Chryseobacterium xinjiangense sp. nov., and strain Enf 54T could be a novel species of the genus Frondihabitans, which is named as Frondihabitans xinjiangense sp. nov..
引文
Amann, R. I., Ludwig, W. & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59 (1):143-169.
    Avery, Oswald T.,Colin M. MacLeod, & Maclyn McCarty. (1944). Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. J Exp Med 79 (2): 137-158.
    Bai, Y., Yang, D.-Q, Wang, J.-H, Xu, S.-J, Wang, X.-X & An, L.-Z. (2006).Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 157:741-751.
    Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226:1209-1211.
    Barrow, G. I. & Feltham, R. K. A. (1993). Cowan and Steel's Manual for the Identification of Medical Bacteria,3rd edn. Cambridge:Cambridge University Press.
    Becker, F. E. & Volkmann, C. M. (1961). A preliminary report on the bacteriology of permafrost in the Fairbanks area. Proc. Alaskan Sci Conf 12:188.
    Behrendt, U., Ulrich, A., Sproer, C. & Schumann, P. (2007). Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57:1881-1885.
    Behrendt, U., Ulrich, A. & Schumann, P. (2008). Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int J Syst Evol Microbiol 58:1069-1074.
    Bernardet, J. F., Nakagawa, Y. & Holmes, B. (2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049-1070.
    Benmalek, Y., Cayol, J. L., Bouanane, N. A., Hacene, H., Fauque, G. & Fardeau, M. L. (2009). Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol.
    Boyd, W. L. & Boyd, J. W. (1964).The Presence of Bacteria in Permafrost of the Alaskan Arctic. Can J Microbiol 10:917-919.
    Buchanan R. G. & Gibbons N. E. (1984). Bergey's manual of determinative bacteriology,8th edn.
    Cameron, R. E.& Morelli, F. A. (1974). Viable microorganisms from ancient Ross Island and Taylor Valley drill core. Antarct J US 9:113-116.
    Campbell, S., Harada, R. M.& Li, Q. X. (2008). Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. Int J Syst Evol Microbiol 58:290-293.
    Chi Z.M. (1999). Microbiology Ecology. Shandong University Publishing House, China.
    Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259-2261.
    Collins, M. D. & Green, P. N. (1985). Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. Biochem Biophys Res Commun 133 (3):1125-1131.
    Cummins, C. S. & Harris, H. (1956). The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol 14 (3): 583-600.
    Cummins, C. S. & Harris, H. (1958). Studies on the cell-wall composition and taxonomy of Actinomycetales and related groups. J Gen Microbiol 18 (1):173-189.
    de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. (2005). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55:2149-2153.
    de Beer, H., Hugo, C. J., Jooste, P. J., Vancanneyt, M., Coenye, T.& Vandamme, P. (2006). Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56:1317-1322.
    De Ley, J., Cattoir, H.& Reynaerts, A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 (1):133-142.
    Fitch, W. M. (1971). Toward defining the course of evolution:minimum change for a specific tree topology. Syst Zool 20:406-416.
    Friedmann, E.I. (1994).Permafrost as microbial habitat. In:Gilinchisky DA (ed) Viable microorganisms in permafrost. Institute of Soil Science and Photosynthesis, Russian Academy of Science Pushchino, pp 21-26.
    Gallego, V., Garcia, M.T.& Ventosa, A. (2006). Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56: 1589-1592.
    Gehrke, C. W., Kuo, K. C., McCune, R. A., Gerhardt, K. O. & Agris, P. F. (1982). Quantitative enzymatic hydrolysis of tRNAs:reversed-phase high-performance liquid chromatography of tRNA nucleosides.J Chromatogr 230 (2):297-308.
    Gerhardt, P., Murray, R. G E., Wood, W. A.& Krieg, N. R. (1994). Methods for General and Molecular Bacteriology. Washington, DC:American Society for Microbiology.
    Hantsis-Zacharov, E.& Halpern, M. (2007). Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 57:2344-2348.
    Hantsis-Zacharov, E., Senderovich, Y. & Halpern, M. (2008a). Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 58:1024-1028.
    Hantsis-Zacharov, E., Shaked, T., Senderovich, Y. & Halpern, M. (2008b). Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow's milk. Int J Syst Evol Microbiol 58:2635-2639.
    Herzog, P., Winkler, I., Wolking, D., Kampfer, P. & Lipski, A. (2008). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58:26-33.
    Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R.,&Zamir, A. (1965). Structure of a Ribonucleic Acid. Science 147:1462-1465
    Horowitz, N. H., Cameron, R. E.& Hubbard, J. S. (1972). Microbiology of the Dry Valleys of Antarctica. Science 176 (4032):242-245.
    Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K. (2003). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771-777.
    Ilardi. P., Fernandez. J. & Avendano-Herrera. R. (2009). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59:3001-3005.
    Jacob, F. & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins.J Mol Biol 3:318-356.
    James, N., & Sutherland, M. L. (1942). Are there living bacteria in permanently frozen subsoil? Can J Res Sect C Bot Sci.20 (6):228-235.
    Jeffries, L., Cawthorne, M. A., Harris, M., Diplock, A. T., Green, J.& Price, S. A. (1967) Distribution of menaquinones in aerobic Micrococcaceae. Nature 215 (5098):257-259.
    Jukes, T. H.& Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol.3, pp.21-132. Edited by H. N. Munro. New York:Academic Press.
    Kampfer, P. & Kroppenstedt, R. M. (1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989-1005.
    Kampfer, P., Dreyer, U., Neef, A., Dott, W.& Busse, H. J. (2003). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93-97.
    Kampfer, P., Lodders, N., Vaneechoutte, M.& Wauters, G. (2009a). Transfer of Sejongia antarctica, Sejongia jeonii, and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov, Chryseobacterium jeonii comb. nov., and Chryseobacterium marinum comb. nov. Int J Syst Evol Microbiol 59:2238-2240.
    Kampfer, P., Vaneechoutte, M., Lodders, N., De Baere, T., Avesani, V., Janssens, M., Busse, H.-J.,& Wauters, G. (2009b). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 59:2421-2428.
    Kampfer, P., Arun, A. B., Young, C. C., Chen, W. M., Sridhar, K. R.& Rekha, P. D. (2009c). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of pill millipede Arthrosphaera magna Attems from India. Int J Syst Evol Microbiol.
    Kampfer, P., Chandel, K., Prasad, G. P., Shouche, Y. S.& Veer, V. (2009d). Chryseobacterium culicis sp. nov., isolated from the midgut of Culex quinquefasciatus Say, a mosquito from India. Int J Syst Evol Microbiol.
    Keswani, J.& Whitman, W. B. (2001). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667-678.
    Khorana, H. G.(1968). Synthetic nucleic acids and the genetic code. JAMA 206:1978-1982.
    Kim, K. K., Bae, H. S., Schumann, P.& Lee, S. T. (2005a). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133-138.
    Kim, K.-K., Kim, M.-K., Lim, J. H., Park, H. Y.& Lee, S. T. (2005b). Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287-1293.
    Kim, K.-K., Lee, K.-C., Oh, H.-M.& Lee, J.-S. (2008). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58:533-537.
    Krivushin, K. V., Shcherbakova, V. A., Petrovskaya, L. E.& Rivkina, E. M. (2010). Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60:455-459.
    Kunte, H. J., Truper, H.& Stan-Lotter, H. (2002). Halophilic microorganisms. In:Horneck G, Baumstark-Khan C. (eds). Astrobiology, the Quest for the Conditions of Life. Berlin, New York: Springer Verlag 185-200.
    Lee, S. D. (2009). Frondihabitans peucedani sp. nov., a novel actinobacterium isolated from rhizosphere soil and emended description of the genus Frondihabitans Greene et al.2009. Int J Syst Evol Microbiol.
    Leuchtmann, A. (1992). Systematics, distribution, and host specificity of grass endophytes. Nat Toxins 1 (3):150-162.
    Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X., Kobayashi, K. & Ezaki, T. (2003). Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. SystAppl Microbiol 26:523-528.
    Mesbah, M. W.& Whitman, W. B. (1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479 (2):297-306.
    Monod, J.& F. Jacob (1961). Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389-401.
    Niederberger, T. D., Steven, B., Charvet, S., Barbier, B.& Whyte, L. G. (2009). Virgibacillus arcticus sp. nov., a moderately halophilic, endospore-forming bacterium from permafrost in the Canadian high Arctic. Int J Syst Evol Microbiol 59:2219-2225.
    Nirenberg, M.& Leder, P. (1964). RNA Codewords and Protein Synthesis. The Effect of Trinucleotides Upon the Binding of sRNA to Ribosomes. Science 145:1399-1407.
    O'Sullivan, L. A., Rinna, J., Humphreys, G., Weightman, A. J.& Fry, J. C. (2006). Culturable phylogenetic diversity of the phylum 'Bacteroidetes' from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae:Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 56: 169-180.
    Omelyansky, V. L. (1911). Bakteriologicheskoe issledovanie Sanga mamonta Prilegayushchei pochvy Bacteriological investigation of the Sanga mammoth and surrounding soil. Arkhiv Biologicheskikh Nauk 16:335-340.
    Quan, Z. X., Kim, K. K., Kim, M. K., Jin, L. & Lee, S. T. (2007). Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57:141-145.
    Park, M.S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B. & Bae, K. S. (2006). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433-438.
    Park, S.C., Kim, M. S., Baik, K. S., Kim, E. M., Rhee, M. S. & Seong, C. N. (2008). Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 58:607-611.
    Pires, C., Carvalho, M. F., De Marco, P., Magan, N. & Castro, P. M. (2009). Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 60:402-407.
    Rotllan, P., Liras, A. & Llorente, P. (1986). A set of procedures for resolving purine compounds by reversed-phase high performance liquid chromatography:application to the study of purine nucleotide and nucleic acid metabolism. Anal Biochem 159 (2):377-385.
    Saitou, N. & Nei, M. (1987). The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.
    Shaked, T., Hantsis-Zacharov, E.,& Halpern, M. (2010). Epilithonimonas lactis sp. nov., isolated from raw cow'smilk. Int J Syst Evol Microbiol 60:675-679.
    Shen, F. T., Kampfer, P., Young, C. C., Lai, W. A. & Arun, A. B. (2005). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55:1301-1304.
    Shimomura, K., Kajiand. S., & Hiraishi, A. (2005). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55:1902-1906.
    Sneath, P. H. (1957). The application of computers to taxonomy. J Gen Microbiol 17 (1): 201-226.
    Stackebrandt, E. & Goebel, B. M. (1994). Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846-849.
    Stetter, K.O., Fischer, F., Zillig, W.,& Schreiber, G.(1983). Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301 (5900):511-513.
    Steven, B., Leveille, R., Pollard, W.& Whyte, L. G. (2006). Microbial ecology and biodiversity in permafrost. Extremophiles 10:259-267.
    Stone J.K., Bacon C.E.& White J.F. (2000).An overview of endophytic microbes: endophytism defined. In:Bacon CE, White JF Jr. (eds.) Microbial endophytes. Marcel Dekker, New York.3-29.
    Szoboszlay, S., Atzel, B., Kukolya, J., Toth, E. M., Marialigeti, K., Schumann, P.& Kriszt, B. (2008). Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58:2748-2754.
    Tai, C. J., Kuo, H. P., Lee, F. L., Chen, H. K., Yokota, A.& Lo, C. C. (2006). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56: 1771-1776.
    Tamaoka, J. & Komagata, K. (1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125-128.
    Tamura, K., Dudley, J., Nei, M.& Kumar, S. (2007). MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
    Temin, H. M. & Mizutani, S. (1970). RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211-1213.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882.
    Yassin, A. F., Hupfer, H., Siering, C. & Busse, H. J. (2009). Chryseobacterium treverense sp. nov., isolated from human clinical source. Int J Syst Evol Microbiol.
    Yoon, J. H., Kang, S. J. & Oh, T. K. (2007). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 57:1355-1339.
    Young, C. C., Kampfer, P., Shen, F. T., Lai, W. A. & Arun, A. B. (2005). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423-426.
    Vandamme, P., Bernardet, J.-F., Segers, P., Kersterd, K., & Holmes, B. (1994). New Perspectives in the Classification of the Flavobacteria:Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Evol Microbiol 44:827-831.
    Vaneechoutte, M., Kampfer, P., De Baere, T., Avesani. V., Janssens, M. & Wauters, G. (2007). Chryseobacterium hominis sp. nov., to accommodate clinical isolates bio chemically similar to CDC1 groups Ⅱ-h and Ⅱ-c. Int J Syst Evol Microbiol 57:2623-2628.
    Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D. & Tiedje, J. M. (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4 (3):165-173.
    Watson, J. & Crick, F. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737-738.
    Weon, H. Y., Kim, B. Y., Yoo, S. H., Kwon, S. W., Cho, Y. H., Go, S. J. & Stackebrandt, E. (2006). Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:1501-1504.
    Weon, H. Y., Kim, B. Y., Yoo, S. H., Kwon, S. W., Stackebrandt, E. & Go, S. J. (2008). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58:470-473.
    Whittaker, R. H. (1969). New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163(863): 150-160.
    Whittaker, R. H. & Margulis, L. (1978). Protist classification and the kingdoms of organisms. Biosystems 10 (1-2):3-18.
    Winslow, C. E., Broadhurst, J., Buchanan, R. E., Krumwiede, C., Rogers, L. A. & Smith, G. H. (1920). The Families and Genera of the Bacteria:Final Report of the Committee of the Society of American Bacteriologists on Characterization and Classification of Bacterial Types. J Bacteriol 5 (3):191-229.
    Woese, C. (1970). Molecular mechanics of translation:a reciprocating ratchet mechanism. Nature 226 (5248):817-820.
    Zhang, G, Niu, E, Busse, H. J., Ma, X., Liu, W., Dong, M., Feng, H., An, L. & Cheng, G (2008). Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai--Tibet Plateau permafrost region. Int J Syst Evol Microbiol 58:1215-1220.
    Zhang, L., Xu, Z.& Patel, B. K. (2007). Frondicola australicus gen. nov., sp. nov., isolated from decaying leaf litter from a pine forest. Int J Syst Evol Microbiol 57:1177-1182.
    Zhou, Y., Dong, J., Wang, X., Huang, X., Zhang, K. Y., Zhang, Y. Q., Guo, Y. F., Lai, R. & Li, W. J. (2007). Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57:1765-1769.
    褚以文.微生物培养基优化方法及其OPTI优化软件[J].国外医药抗生素分册,1999,20(2):58-66.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京,科学出版社,2001.
    邓爱华,王宁,易霞,等.反相高效液相色谱法测定Bacillus claussi的DNA G+C mol%[J].生物技术,2006,16(4):42-45.
    谷海瀛.形态学检查方法的标准化及其在细菌鉴定中的作用[J].中华检验医学杂志,2006,29(10):951-953.
    郭俊涛.微生物的鉴别与图谱[M].北京:人民卫生出版社,2007.
    郝士海.现代细菌学培养基和生化试验手册[M].北京:中国科学技术出版社,1992.
    李越中,胡玮,张禹清,等.HPLC技术对细菌基因组DNA碱基组成的精确测定[J].化学学报,2001,59(9):1464-1470.
    林稚兰,黄秀梨.现代微生物学与实验技术[M].北京:科学技术出版社,2000.
    盛红梅(2006)博士论文:乌鲁木齐河源区冰缘植物内生细菌多样性及其空间分布特征研究。兰州大学
    沈萍.微生物学[M].北京:高等教育出版社,2000.
    王效义.高效液相色谱法(HPLC)在微生物分析鉴定中的应用[J].微生物学免疫学进展,2003,31(3):56-61.
    吴芸,李惠芝,马永平,等.反相高效液相色谱法测定一株新分离的两歧双歧杆菌DNA G+C摩尔百分含量[J].西南师范大学学报(自然科学版),2005,30(1):96-100.
    向仲朝,邓明林,岳蕴瑶,等.细菌细胞DNA中碱基成分的高效液相色谱测定法的研究[J].中华医学研究杂志,2005,5(1):41-42.
    许化溪,王胜军,黄锡垒,等.高效液相色谱与荧光法测定细菌染色体碱基组成的比较[J].中华检验医学杂志,2000,23(4):237-240.
    张纪忠.微生物分类学[M].上海:复旦大学出版社,1980.
    张建丽,张娟,宋飞.诺卡氏菌型放线菌细胞中脂肪酸的气相色谱分析[J].微生物学通报,2008,35 (8):1219-1223.
    张卓然,倪语星,李向阳,等.临床微生物学和微生物检验[M].北京:人民卫生出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700