用户名: 密码: 验证码:
甚低频矢量水听器潜标探测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量水听器是由无指向性的声压水听器和具有偶极子指向性的质点振速传感器复合而成,其矢量通道的指向性与频率无关,在低频和甚低频声场参数获取、远距离目标探测与定位中具有广阔的应用前景。矢量水听器同步、共点测量声场空间一点处的声压和质点振速的三个正交分量,相比较声压水听器,增加了信息量,为后续的信号处理提供了更广阔的选择空间。同时也对安装平台提出了新的要求,安装平台的选择和设计是确保矢量水听器应用的基本前提之一,尤其在低频和甚低频段。随着研究的深入,矢量水听器技术必将更广泛的应用在水声领域。
     本文在回顾了矢量水听器的低频校准技术、海洋浮标技术和被动目标方位跟踪技术的基础上,以甚低频矢量水听器潜标探测系统为背景,对低频和甚低频矢量水听器校准技术、低频和甚低频声场矢量观测系统和单矢量水听器目标方位跟踪技术进行了理论和试验研究。
     首先,论文针对低频和甚低频动圈式矢量水听器校准困难的问题,对水池中低频和甚低频矢量水听器校准技术进行了研究。借鉴空气声学相关原理,分析了矩形水池中低频声源辐射连续简谐波时的声场。在靠近声源的位置,声场中以直达声为主,并呈球面扩展规律。基于水池声场的这一特性,论文中提出了低频和甚低频矢量水听器的水池校准方法。水池中矢量水听器的校准是在球面波声场中进行的,为获得等效平面波声场中的结果,需要对测量的原始结果进行球面修正,文中给出了等效的校准方法。论文介绍了利用该校准方法在水池中对动圈式矢量水听器进行校准的工作,校准结果验证了该方法的可行性。
     其次,论文中进行了声场矢量观测系统的研究。针对矢量水听器工作时对安装平台姿态有一定要求的特点,设计了基于潜标的安装平台。潜标体的受力分析和海上试验结果都证明了潜标体在水下姿态平稳,满足矢量水听器工作要求。设计了低噪声数据采集单元,使观测系统能够正确的采集声场信息。设计了自容式存储单元和无线通讯网络,采集的数据可以自容式存储或实时上传至主站。多次海上试验表明,声场矢量观测系统中的潜标在水下姿态稳定,采集单元能够正确记录声场信息。该系统能够完低频和甚低频声场矢量信息的记录,是低频和甚低频声场矢量分析、远距离目标探测与定位技术研究的重要手段。
     再者,针对单矢量水听器的被动目标方位跟踪问题,在利用互谱声强法对目标方位进行预估计的基础上,提出了采用概率数据关联算法对在跟踪波门内的方位值进行关联,更准确的估计目标方位。目标的方位跟踪属于非线性跟踪范畴,方位角随时间的变化并非线性,论文引入了输入估计法来估计方位角的加速度值,改进了概率数据关联算法,对目标的方位角进行跟踪。针对多个目标存在时目标方位角轨迹可能存在交叉的情况,采用联合概率数据关联算法可以对目标进行分离跟踪。最优联合概率数据关联算法计算量大,论文中提出了一种新的近似解耦联合概率数据关联算法对目标方位角进行跟踪,减小了计算量。
     论文最后对全文进行了总结,并对下一步的工作进行了展望。
Vector sensor is combined by sound pressure hydrophone and particle velocity sensor with dipole directivity, the directivity of vector channel is independent of frequency. Vector sensor has broad application prospects in acoustic field parameters acquisition and long range target detection at low and very low frequency. Compared with sound pressure hydrophone, vector sensor can synchronously measure sound pressure and three orthogonal components of particle velocity at the same location in acoustic field. It can provide more information and more choice for signal processing. The design of installation platform is one of the basic premise for vector sensor application, especially in low and very low frequency band. With a detailed study, vector sensor technology will be more widely used in underwater acoustic domain.
     In the thesis, vector sensor calibration technology, sea buoy technology and inactive target bearing tracking technology are reviewed. Based on subsurface buoy detection system with very low frequency vector sensor, the theoretical and experimental research is presented about vector sensor calibration technology in low and very low frequency band, vector acquisition system of acoustic field in low and very low frequency band and target bearing tracking algorithm with single vector sensor.
     Firstly, for the problem that moving-coil vector sensor calibration in low and very low frequency band is difficult, the vector sensor calibration method in tank is studied in low and very low frequency band. The relevant principles of air-acoustic are used for reference and acoustic field in rectangular tank is analyzed when low frequency sound source produces continuous harmonic wave. The direct sound of sound field is dominant near sound source and propagates by spherical expansion. Based on the character of sound field in tank, vector sensor calibration method in low and very low frequency band in tank is presented. When vector sensor is calibrated in spherical wave sound field in tank, for equivalent result of plane wave sound field, the raw measurement is spherically corrected and correction method is provided for calibration. In the thesis, the process of moving-coil vector sensor calibration in tank is introduced, results reveal that the calibration method is feasible.
     Secondly, vector acquisition system of acoustic field is studied in the thesis. For the character that there are some demands of vector sensor to installation platform, the installation platform is designed. The posture of subsurface buoy in sea water is proved stably by stress analysis of subsurface buoy and the results of sea trial and the installation platform is suitable for vector sensor. Low-noise data acquisition unit is designed for correct information acquisition of sound field. The self-contained storage unit and wireless communication net are designed and acquisition data can be self-stored in subsurface buoy or transmitted to main station in real time. Several sea trials show that the posture of vector acquisition system of acoustic field is stable and the system can correctly record information of acoustic field. The system can record vector information of acoustic field and is an important means of acoustic field vector analysis and long range detection in low and very low frequency band.
     Thirdly, for the problem of inactive target bearing tracking by single vector sensor, base on pre-estimation of target bearing by cross-spectral sound intensity method, the algorithm that the target bearings in validation gate are associated by probabilistic data association is presented and the estimation is more accurate. Target bearing tracking is non-linear problem and azimuth angle change with time is non-linear, so input estimation algorithm is used to enhance the performance of probabilistic data association for target bearing tracking. When there is bearing cross by multi-targets, joint probabilistic data association algorithm is used to track recognition. The computation quantity of optimal joint probabilistic data association algorithm is large, for reducing computation quantity, a new approximate decoupling joint probabilistic data association algorithm is presented and computation quantity is reduced.
     A summary of full thesis and the future prospects of research are in the final.
引文
[1] Nehorai A,Paldi,E.Acoustic vector-sensor processing.IEEE Transactions on Signal Procssing.1994,42(9):2481-2491
    [2] Hochwald B,Nehorai A.Identifiability in array processing models with vector-sensor applications.IEEE Transactions on Signal Processing.1996,44(1):83-95
    [3] Shchurov V A,Iyichev V I,et al.The interaction of energy flows of underwater ambient noise and a local source.J.Acoust.Soc. Am. 1991,90(2):1002-1004P
    [4] Smitha K B.Effects of shear waves on boundary-coupled vector sensors.J.Acoust.Soc.Am.,2008,124(6):3464–3470P
    [5] Zou N,Nehorai A. Circular acoustic vector-sensor array for mode beamforming.IEEE transactions on signal processing.2009,57(9): 3041-3052P
    [6]时胜国,杨德森,洪连进.同振球型矢量水听器声波接收理论研究.声学学报.2009,34(1):30-38页
    [7]李敏,孙贵青,李启虎.分布式浮标阵水下高速运动声源三维被动定位.声学学报.2009,34(4):289-295页
    [8]贾志富.三维同振球型矢量水听器的特性及结构设计.应用声学.2001,20(4):15-20页
    [9] Leslie C B, Kendall J M, Jones J L.Hydrophone for measuring particle velocity.J.Acoust.Soc.Am.1956,28(4):711-715P
    [10] Gordienko V A, Ilichex V I, Zakharov L N. Vector-phase methods in acoustics.Moscow:Nauka.1989
    [11] Berliner M J,Lindberg J F.Acoustic particle velocity sensor: design,performance and application.Woodbury,NY:AIP Press.1996.
    [12] Shipps J C, Deng K.A miniature vector sensor for line array applications.IEEE Oceans 2003 Proceedings,2003,(5):2367-2370P
    [13]许欣然,葛辉良,孟洪.基于双压电晶片的矢量水听器加速度特性研究.声学与电子工程.2009,93:37-46页
    [14]张振宇,周江涛,倪明等.光纤矢量水听器指向性测试及锐化技术.应用声学.2009,28(5):350-355页
    [15]国防科工委科技与质量司.声学计量.北京:原子能出版社,2002:169-177页
    [16]费腾,徐平.矢量水听器的低频相位校准方法.声学与电子工程.2006,49:85-86页
    [17] Schloss F, Strasberg M.Hydrophone calibration in a vibration column of liquid.J.Acoust.Soc.Am.1962,34(7):958-960P
    [18] Bauer B B, Abbragnaro L A, Schumann J.Wide-range calibration system for pressure-gradiengt Hydrophones.J.Acoust.Soc. Am.1971,25(5):1715-1717P
    [19]莫喜平,王文芝,郑士杰.偶极子接收换能器的驻波场校准系统的研究.应用声学.1998,17(6):158-160页
    [20]陈洪娟,赵鹏涛.10~100Hz矢量水听器校准系统研究.声学技术.2008,27(5):526-527页
    [21] Carpentera R,Silviab M,Craya B A.The design of a broadband ocean acoustic laboratory:detailed examination of vector sensor performance.Proc.of SPIE.2006,6231:1-12P
    [22]李春旭.声压、振速联合信息处理.哈尔滨工程大学博士学位论文.2000
    [23] Wax N.Signal-to-Noise improvement and the statistics of tracking populations.J.of applied physics.1955,26:586-595P
    [24] Sittler R W.An optimal data association problem in surveillance theory.IEEE trans.1964,8(2):125-139P
    [25] Pulford G W. Taxonomy of multiple target tracking methods. IEE proc.-radar sonar navig.2005,152(5):291-304P
    [26] Singer R A,Sea R G, Ousewright K B.Derivation and evaluation of improved tracking filters for use in dense multitarget environments.IEEE trans.inform.theory.1974,20:423-432P
    [27] Singer R A, Sea R G.A new filter for optimal trackong in dense multi-target environments.Proc.Ninth Allerton Conf.Circuit and System Theory,Urbana,Iuinions.1977:202-211P
    [28] Smith P, Buechler G.A branching algorithm for discriminating and tracking multiple objects.IEEE transactions on automatic control.1975,22(2):101-104P
    [29] Musieki D , Evans R.Joint integrated probabilistic data association:JIPDA.IEEE Trans on AES.2004,40(3):1093-1099P
    [30] Reid D B.An algorithm for tracking multiple targets.IEEE transaction on automatic control.1979,24(6):843-854P
    [31] Singh R, Bailey W H.Fuzzy logic applications to multisensor multitarget correlation.IEEE transactions on aerospace and electronic systems.1997,33(3):752–769P
    [32] Rickard K, Gustafsson G.Monte-Carlo data association for multiple target tracking.Target Tracking: Algorithms and Applications.IEE,2001,1(13):1-5P
    [33] Schulz D, Burgard W, Fox D,et al.Tracking multiple moving targets with a mobile robot using particle filters and statistical data association.Proceedings 2001 ICRA.IEEE International Conference on Robotics and Automation.2001,2:1665-1670P
    [34] Vermaak J, Godsill S J, Perez P.Monte Carlo filtering for multi-target tracking and data association.IEEE Transactions on aerospace and electronic systems.2005,41(1):309-332P
    [35]洪连进,陈红娟.二位振柱形组合矢量水听器.应用声学.2005,24(2):119-121页
    [36] Bar-shalom Y. Multitarge-multisensor tracking: principles and techniques.Storrs,CT:YBS Publishing,1995
    [37]乔向东.信息融合系统中的目标跟踪技术研究.西安电子科技大学博士学位论文,2003
    [38]潘泉,等.信息融合理论的基本方法与进展.自动化学报.2003,29(4):601-605页
    [39]韩红,智建纬,焦李成,陈兆平.杂波环境下基于meanshift的多目标数据关联.系统仿真学报.2009,21(11):3351-3355页
    [40]王杰贵,罗景青,靳学明.无源跟踪中基于灰关联信息融合的概率数据关联算法.电子学报,2006,34(3):392-296页
    [41]党建武.水下制导多目标跟踪关健技术研究.西北工业大学博士学位论文,2004
    [42]李良群.信息融合系统中的目标跟踪及数据关联技术研究.西安电子科技大学博士学位论文,2007
    [43]胡友峰.非机动水下三维被动目标运动分析研究.西北工业大学博士学位论文,2002
    [44]莫世奇.矢量水听器的数据融合.哈尔滨工程大学博士学位论文,2006
    [45]方尔正,崔凯.时间方位历程目标跟踪方法.应用声学.2005,24(5):311-316页
    [46]郑援,胡成军,李启虎,孙长瑜.一种多目标方位历程实时提取方法.声学学报.2005,30(1):83-88页
    [47]杨坤汉.试论潜标系统在我国海洋事业中的地位和作用.海洋技术.1989,8(1):77-88页
    [48]褚同金,曹恒永,王军成,胡翔.中国海洋资料浮标.北京:海洋出版社,2001
    [49]毛祖松.海洋潜标技术的应用和发展.海洋测绘.2001,4:57-58页
    [50] http://www.pmel.noaa.gov/tao/proj_over/taohis.html
    [51] Dickey T, Chang G.The Bermuda testbed mooring and HALE-ALOHA mooring programs:innovative deep-sea global observatories [EB/OL]. http://www.opl.ucsb.edu,2006
    [52] http://www.argo.org.cn/about_argo/intro03.html
    [53]刘仁清,许建平. Argo——成功的十年.中国基础科学.2009:15-21页
    [54]凌国民,王泽民.声呐浮标技术及其发展方向.声学与电子工程.2007,87:1-5页
    [55] Ultra Electronics Ltd. An overview of ASW sonobuoy types andtrends[EB/OL]. http://www.ultra-scs.com,2006
    [56]张双荣,陈耀明,等.潜标式水下噪声测量系统.专利申请号:91101407.1,1991
    [57]冯钧国.海洋环境噪声测量系统.专利申请号:01157687.4,2002
    [58]唐长寿.被动定向声呐浮标偶极子方向性测量.声学与电子工程.1996,42:29-32页
    [59]马捷,杜乐乐,倪园芳.变深度声纳浮标探测阵列.专利申请号:200610147652.3,2006
    [60]张光普,梁国龙,刘友永,刘洋.无线电遥控水声监测浮标.声学技术.2007,26(5):806-810页
    [61]白强,李忠君,等.一种潜标系留装置.专利申请号:2008IO139948.X,2008
    [62]郑士杰,袁文俊,缪荣兴,薛耀全编著.水声计量测试技术.哈尔滨:哈尔滨工程大学出版社,1995
    [63]时胜国,杨德森.矢量水听器的源定向理论及其定向误差分析.哈尔滨工程大学学报.2003,24(2):132-136页
    [64]惠俊英,李春旭,梁国龙,刘宏.声压和振速联合信号处理抗相干干扰.声学学报.2000,25(5):389-394页
    [65]惠俊英,刘宏,余华兵,范敏毅.声压振速联合信息处理及其物理基础初探.声学学报.2000,25(4):303-307页
    [66]方世良,魏占海.声矢量传感器目标方位估计.东南大学学报.2002,32(5):688-691页
    [67] Gordienko V A.Absoulte pressure calibration of acoustic receivers in a vibrating column of liquid.Acoustical Physics,1994,40(2):243-246P
    [68] Sensonics Ltd.VEL/G series velocity transducers[EB/OL]. http://www.sensonics.co.uk,2008
    [69]马大猷.论室内声场.声学学报.2003,28(2):97-101页
    [70]毛卫宁,方世良,陆佶人.矩形水池中声能的衰变.声学技术,1995,4:165-167页
    [71] Cristini P. A short guide to Krakenz. Technical Report 150, Publications du LMA. Mai.1998
    [72]何祚镛,赵玉芳,编.声学理论基础.北京:国防工业出版社,1981
    [73]刘忠,周丰,石松章,薛锋,编著.纯方位目标运动分析.北京:国防工业出版社,2009
    [74]周士弘.分层介质波导中的声矢量场传播.哈尔滨工程大学学报.2004, 25(1):38-42页
    [75]惠俊英,孙国仓,赵安邦.Pekeris波导中简正波声强流及其互谱信号处理.声学学报.2008,33(4):300-304页
    [76]孙贵青.矢量水听器检测技术研究.哈尔滨工程大学博士学位论文, 2001
    [77] Hawkes M, Nehora A. Acoustic vector sensor beamforming and capon direction estimation.IEEE Trans signal processing.1998,46(9): 2291-304P
    [78]姚直象.单矢量水听器信号处理研究.哈尔滨工程大学硕士学位论文,2005
    [79]杨士莪.单矢量传感器多目标分辨的一种方法.哈尔滨工程大学学报2003,24(6):591-595页
    [80]程彬彬.二维压差式矢量水听器多目标方位估计方法研究.西北工业大学博士学位论文,2007
    [81]权太范,著.目标跟踪新理论与技术.北京:国防工业出版社,2009
    [82]杨秀庭,孙贵青,陈新华,李启虎.一种改进的WSF算法在单矢量水听器多目标方位估计中的应用.声学技术.2007,26(2):165-168页
    [83]王德俊,李风华.基于单个矢量水听器和子空间旋转的宽容宽带双目标分辨与跟踪方法.声学学报.2007,32(5):404-410页
    [84]孙贵青,杨德森,张揽月.基于矢量水听器的水下目标低频辐射噪声测量方法研究.声学学报.2002,27(5):430-435
    [85] Kirubarajan T , Bar-Shalom Y.Probabilistic data association techniques for target tracking in clutter.Proceeding of the IEEE. 2004,29(3): 536-557P
    [86] Bar-Shalom Y, Tse E.Tracking in a cluttered environment with probabilistic data association.Automation.1975,11(9):451-460P
    [87] Bar-Shalom Y, Kirubarajan T, Lin X.Probabilistic data association techniques for target tracking with applications to sonar, radar and EO sensors.IEEE A&E systems magazine.2005, 20(8):37-56P
    [88] Fortmann T E, Bar-Shalom Y, Scheffe M.Multi-target tracking using joint probabilistic data association.In proceeding of the IEEE conference on decision and control.1980,9(2):807-812P
    [89] Fortmann T E, Bar-Shalom Y, Scheffe M.Sonar tracking of multiple targets using joint probabilistic data association.IEEE journal of oceanic research.1983,8(3):173-184P
    [90] Chang K C, Bar-shalom Y.Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers.IEEE Transactions of Automatic Control.1984,29(7): 585-594P
    [91]王艳,姜亚浩,陆玲兰.一种组合二维矢量水听器.中国声学学会2002年全国声学学术会议论文集.2002,515-516页
    [92] Aoki E H, Kienitz K H.Suboptimal JPDA for tracking in the presence of clutter and missed detections.12th international conference on information fusion.2009:818-825P
    [93] Bar-shalom Y.Multitarget-multisensor tracking advanced applications Vol 1.Norwood,MA:Artech house,1990
    [94] Roecker J A, Phillis G L.Suboptimal joint probabilistic data association.IEEE Transaction on Aerospace and Electronic Systems.1993,29(2):510-517P
    [95] Ding Z, Leung H, Hong L.Decoupling joint probabilistic data association algorithm for multiple target tracking. IEE Proceedings of Radar,Sonar and Navigation.1999,146(5):251-254P
    [96] Chan Y T, Plant J B, Bottmley J R T.A Kalman tracker with a simpleinput estimator.IEEE Transaction on Aerospace and Electronic Systems.1982,18(2):235-241P
    [97] Chan Y T, Hu A G C, Plant J B.A Kalman filter based tracking scheme with input estimation.IEEE Transaction on Aerospace and Electronic Systems.1979,12(2):237-244P
    [98] Ramji S,Latha G.Ambient noise data buoy for time series measurements and characterization of noise field. OCEANS 2006 - Asia Pacific.2006:1-5p
    [99] Tattersall M J.The acoustic transient recording buoy(ATRB): system description and Initial Measurement Results.IEEE Journal of Oceanic Engineering.1992,17(3):227-238P
    [100]王树新,王延辉,等.一种海洋监测用潜标.专利申请号:200910067984.4,2009
    [101]李飞权,张选明,张鹏,沈高山.海洋潜标系统的设计和应用.海洋技术.2004,23(1):17-21页
    [102]凌青,杨丽,蔡志明.双(多)基地声纳浮标系统在反潜中的应用研究.海军工程大学学报.2006,18(2):47-52页
    [103] Waugh,H J R.A buoy supported acoustical data acquisition system. IEEE Transactions on Goscience Electronics.1969,7(4):226-234P
    [104] Sekino H. A near real-time buoy telemetry system for observation of marine earthquake/crustal deformation in Japan. Scientific Use of Submarine Cables and Related Technologies,2003.The 3rd International Workshop on.2003,266-271P
    [105] Akyildiz I F,Pompili D,Melodia T.Underwater acoustic sensor networks:research challenges. Ad Hoc Networks.2005,3(3): 257-79P
    [106]孙岩松.低功耗无线网络通信潜标设计应用.哈尔滨工程大学硕士学位论文,2006
    [107]尤立克R J著,洪申,译.水声原理[第三版].哈尔滨:哈尔滨船舶工程学院出版社,1990
    [108]田忠仁,陈斌,张椿.三维同振型矢量水听器设计.声学与电子工程.2009,4:5-7页
    [109]黎长荣,刘乃安,郭峰.无线网桥软件的设计与实现.通信学报.2000,21(1):84-90页
    [110]武涛.数据采集与显示控制系统设计.哈尔滨工程大学硕士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700