用户名: 密码: 验证码:
高磷铁矿生物降磷反应器的制作及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铁矿资源的进一步减少和社会对钢铁需求量的进一步扩大,以往无法冶炼的高磷铁矿逐渐成为研究和开发的热点,越来越受到学术界和工程界的重视。本文以湖北某高磷铁矿为研究对象,以降低其磷含量为主要目的,系统地开展了从生物降磷反应器的设计与复氧性能测试、反应器曝气复氧数学模型的建立和两步法生物降磷浸矿实验,到两步法生物降磷工艺的设计与经济分析的理论与实验研究,提出一种可解决微生物浸矿时矿浆浓度过低,细菌产酸与浸矿过程无法独立进行的两步浸矿新方法。该方法将嗜酸氧化硫硫杆菌(At.t菌)产酸过程与其所产酸用于浸矿除磷分开进行,在产酸阶段为At.t菌提供温和的生存环境,减少外界对At.t菌生长过程的破坏;在浸矿阶段则利用产酸段产生的酸性菌液以较高的机械混合方式将矿石与菌液混合,达到使矿石分散悬浮于菌液中的目的,减少矿石在反应器底部的沉积,从而提高矿石中磷的去除率。本论文主要研究内容及取得的成果包括以下几个方面:
     1.生物反应器制作以5L玻璃烧杯为反应器主体,在其外部设置保温与加热装置,安置pH值测定仪,DO测定仪和温度自动设定与控制装置,采用内循环气动搅拌方式为主,通过空气泵向反应器曝气以提供微生物生长所需的氧气。反应器直径Dn=18cm,内部流体深度H=22cm,内置循环曝气筒直径dn在6.5cm-9.5cm内可调,高度h可调范围为10cm-20cm,内置循环曝气筒与反应器内壁间可用载体(如木屑、活性炭等)进行填充,载体填充高度用ht表示,以形成内置载体的内循环生物反应器。
     2.反应器复氧性能测试At.t菌的生长需消耗溶解氧,生物反应器能否为At.t菌提供充足的溶解氧是评价反应器性能好坏的重要指标,因此提高反应器对氧的利用率是降低反应器能耗的主要措施。当反应器内无生物载体时,研究了h/H, ht/H, dn/Dn的变化及曝气量QN对反应器复氧性能的影响。实验发现,当反应器内流体体积为4.0 L,实验温度T在11.5-17.2℃,曝气量QN=6.67×10-5m3/s,内置循环曝气筒的高度h从10cm逐渐增加到20cm,直径dn由6.5cm逐渐增加到9.5cm时,在344s-497s内均能使反应器内溶解氧达到稳定且接近饱和,溶入流体中的溶解氧的量为31.97mg-43.83mg,反应器在此时段内的平均复氧速率为22.01mg/m3.s-22.27mg/m3.s,复氧速率相对稳定,反应器不同层面上DO为10.5-11.3mg/L。对h=17.5cm、dn=9.5cm的内置曝气筒,随QN增大,反应器内最高溶解氧出现的时间明显缩短,但溶解氧总量不一定增加。当QN从1NL/min(1.66×10-5m3/s)增加到6NL/min(10×10-5m3/s)时(每次增加1NL/min),反应器的复氧速率分别为6.82mg/m3.s、16.42mg/m3.s、25.99 mg/m3.s、31.33mg/m3.s、31.57 mg/m3.s和35.76 mg/m3.s,QN在3-5 NL/min时反应器复氧速率相对理想。当反应器内填充木屑时,进一步研究了木屑填充高度ht对反应器复氧性能的影响,当ht分别为7cm、12cm和17cm,控制QN=4NL/min,温度从10.5~C上升到29.6℃时,反应器复氧速率由42.27mg/m3.s下降到31.82mg/m3.s,显然反应器内温度的上升不利于氧的吸收。当反应器内填充颗粒活性炭时,就反应器液面下2cm和10cm处的溶解氧进行了测定,结果表明当ht从7cm增加到17cm时,反应器的平均复氧速率由25.75 mg/m3.s增加至30.47 mg/m3.s,但反应器内溶解氧总量从38.68mg下降到34.56mg。ht为7cm及以下有利于氧的吸收,但反应器内填料过少不利于向At.t菌提供栖息的载体,也不利于At.t菌的产酸。
     3.反应器复氧数学模型的建立以Fick扩散定律,双膜理论和渗透理论为基础,通过四点基本假设,在实验结果的基础上,建立反应器的氧瞬时传质速率模型为:应用该数学模型就反应器对氧的利用效率进行了验证和计算。当反应器内无载体,QN=3NL/min,h=17.5cm和H=22cm时,反应器对氧的利用效率逐渐增加到1.62%,然后下降。加大曝气量反应器对氧的利用效率首先增加,然后减小,当QN=1NL/min时,反应器对氧的利用效率相对较低,基本维持在0.47%-0.59%。当QN在2NL/min至6NL/min时,反应器对氧利用效率的变化趋势基本相同,首先增加,然后随曝气时间延长逐渐减小,到后期基本趋于稳定。当QN=3NL/min, dn=9.5cm,h/H=0.80,温度为10.5℃时,反应器对氧的利用率可达2.5%,当实验温度上升到29.4℃时,反应器对氧的利用率下降为0.52%。反应器内添加木屑后,反应器对氧的利用效率变化不大,当ht/H从0.33上升到0.77时,反应器对氧的利用效率在1.55%-1.88%,但内设置木屑可为微生物的生长与栖息创造良好的条件,增加反应器内微生物密度。实验温度对氧传质速率模型有一定的影响,对反应器复氧数学模型进行温度影响的修正后,其模型的表达式为:氧的利用效率更加接近于反应器对氧的实际利用效率。经过温度修正后,反应器对氧的实际利用效率基本在1.0%-1.6%,而氧传质模型计算的氧理论利用效率为1.25%-1.88%,产生两者差距的主要原因是反应器内水深不够。当反应器水深达1.5m时,反应器对氧的利用效率可达10.23%,完全可达到目前空气扩散装置的氧转移效率6%-12%的水平。
     4.反应器产酸效果实验确定采用内置载体的内循环方式反应器进行产酸反应,产酸反应器基本物理参数为:内径Dn=18cm,液面高度H=22cm,内置曝气循环曝气筒h=17.5cm、内径dn=9.5cm,反应温度控制在29-30℃,当QN=4NL/min时,反应器复氧速率可达27.31 mg/m3.S。当At.t菌接种量由5%增加到20%时,在培养时间内反应器的平均产酸速率为从1.51mmol/L.d增加到5.81mmol/L.d,当ht/H从0逐渐增加到0.77,反应器产酸速率从1.57 mmol/L.d增加到4.23 mmol/L.d,但当ht/H大于0.55后,反应器产酸速率增加不很明显。曝气量QN从1NL/min增加6NL/min,反应器的产酸速率可从0.36 mmol/L.d增加到5.51 mmol/L.d,但在QN大于4NL/min后,反应器产酸速率增加幅度不明显。同时考察了菌液水力停留时间(HRT)对At.t菌产酸速率的影响,HRT为14d时,At.t菌产酸速率相对理想,在5.81-16.59mmol/L.d之间,但变化幅度较大。
     5.浸矿效果研究选取pH值为1.0左右的菌液,分别对原矿及精矿进行了浸矿实验。采用原矿作为实验矿石,当浸矿时间达到12h后,矿石中磷的含量为0.17%,铁的品位为44.64%,浸矿最佳效果出现在浸矿时间达到18h时,再继续延长浸矿时间,滤渣中磷的含量有上升的趋势。采用精矿作为实验矿石,当矿浆浓度从1%增加到4%时,铁的品位从58.41%下降了2.63%,浸矿渣中磷的含量从0.1%上升到0.35%;但当矿浆浓度低于3%时,滤渣中磷的含量最高为0.24%,低于0.25%。菌液中是否存在At.t菌对提高铁的品位和降低矿石中磷的含量影响不大,当矿浆浓度为2%,以原矿为对象用含At.t菌的菌液浸矿12h后,铁的品位为44.64%,浸矿渣中磷含量为0.17%,用不含At.t菌的菌液进行浸矿12h后,铁的品位为44.58%,浸矿渣中磷含量为0.18%。同时对硫粉及矿石进行XRD和SEM分析,硫粉通过At.t菌作用前后变化不大,这说明At.t菌只利用硫粉作为能源物质产生硫酸,而没有将硫粉转变为其它固体物质。SEM分析发现,通过At.t菌作用后硫粉的表面变得粗糙,10000倍SEM图片显示其表面有明显的浸蚀坑,类似于杆菌作用的效果。矿石XRD和SEM分析表明,磁选精矿的主要成份为磁铁矿、磁性赤铁矿(γ-Fe2O3)和石英,通过At.t菌作用后也未发现铁钒类沉淀产生,其主要成分仍然为磁铁矿、磁性赤铁矿和石英;原矿通过At.t菌作用后其成分仍然为赤铁矿和石英,未发现铁钒类沉淀产生。SEM分析结果表明,At.t菌作用精矿(原矿)除磷后出现了成片聚集成鱼鳞状,其原因可能是矿石中磷及其它杂质被At.t菌作用后含量下降,矿石品位上升后产生聚积所致。
     6.两步法生物降磷工艺按日产300L(pH=1.0)菌液计算,菌液中所含H2S04的量为15 mol,则每摩尔硫酸生产成本为1.64元。将lkg含磷量为1.1%的铁矿石中的磷降低到0.15%的成本为2.14元,成本相对较高,主要原因是矿浆浓度过低(4%)。若设计只将P降低至0.3%,则矿浆浓度可达8%,每日可浸出铁矿石为22.84kg,每浸出lkg矿石成本为1.07元,显然如何进一步提高生物选矿中矿浆浓度对降低生产成本至关重要。本文创新之处在于:
     A、利用At.t菌具有以低价态硫作为能源物质产生硫酸,然后利用硫酸将铁矿石中磷溶解浸出,提出两步法生物作用降低高磷铁矿石中磷的思路;
     B、设计了合理、高复氧速率的内循环生物反应器,对反应器内部结构与性能进行测试与评价,重点研究了复氧速率与反应器结构的关系,建立了反应器氧瞬时传质速率数学模型;
     C、反应器所产生的酸性菌液对铁矿石除磷效率达75%,精矿粉中残余磷含量最低可达0.1%,铁品位为58.41%,就反应过程及实验结论,设计了两步法生物降磷的清洁生产工艺,构建了相应的在线监控系统,为浸矿生物的生长过程提供了最佳的条件。
With the further reduction of iron ore resources and the wider demand for steel, the former un-smelted high-phosphorus iron ore has been becoming the study focus and initiating the interest of many researchers in academic circles and engineering fields. This paper systematically studied the bioleaching reactor for increasing the concentration of ore slurry and decreasing the phosphates in iron ore with some samples collected from an iron ore in western Hubei province, China. This study included the design and dissolved-oxygen-recovering rate (DORR) testing of two-stages bioleaching, the mathematical models and two-stages bioleaching experiments, followed by practical design and economical analysis of this two-stages bioleaching in engineering. A novel method was put forward for solving the problem of relative low concentration ore slurry in traditional bioleaching and separating the milling processes of acid-producing and leaching for dephosphorization. In the acid-producing process, a warm surroundings was provided for Acidithiobacillus Thiooxidans (At. t) in order to reduce destroy to At. t. Meanwhile, in the stage of mineral leaching process, fluid containing At.t bacteria was used to leach the high-phosphorus iron ore at high mechanical stirring speed to decrease the sedimentation of iron particles at the bottom of reactor, resulting in the increase of phosphate removal rate. The main contents of the research and its innovation were presented as follows.
     In the stage of reactor fabrication:A 5 liter glass beaker was employed as the main body with inner diameter (Dn) of 18 cm and efficient depth (H) of 22 cm, a heater was surrounding the beaker, pH meter, dissolved oxygen (DO) meter and auto-controlling temperature system were equipped. An air pump with max flow rate of 6NL/min was used as circulating aeration system for providing oxygen for At.t bacteria. The inner-set circulating aeration cannel (IsCAC) with a autocontrolling diameter (dn) of 6.5cm to 9.5cm, a height (h) of 10 cm to 20 cm. The interspace between beaker and IsCAC was filled with sawdust or particles of activated carbon (PACs) as carrier for At.t bacteria. The height of sawdust or PACs was denoted as ht.
     In the stage of DORR testing:The relationship between h/H, ht/H, dn/Dn and aeration flux (QN) with DORR of this bioreactor was studied when no carriers were employed. The results showed that the dissolved oxygen (DO) in this bioreactor could reach saturation in 344-497s when room temperature was 11.5-17.2℃, QN was 6.67x10-5 m3/s, the h increased from 10cm to 20 cm and dn increased to 9.5 cm from 6.5 cm. At the endpoint of experiment, the DO dissolved into this bioreactor was 31.97-43.83 mg; the DORR of this reactor was relatively stable, reaching 22.01mg/m3.s-22.27mg/m3.s. For IsCAC with h=17.5 cm and dn=9.5 cm, the time of max DO concentration appearance decreased obviously with the increase of QN, but the total amount of DO did not increase. When the QN increased from 1NL/min to 6NL/min with adjacent step of 1 NL/min, the DORR was 6.82 mg/m3.s,16.42 mg/m3.s,25.99 mg/m3.s,31.33 mg/m3.s,31.57 mg/m3.s and 35.76 mg/m3.s, respectively. The DORR of this bioreactor filled with sawdust was studied further at QN of 4 NL/min. When ht=7cm,12cm and 17cm,QN=4NL/min, the temperature rose from 10.5℃to 29.6℃, the DORR of reactor decreased from 42.27mg/m3.s to 31.82mg/m3.s. Obviously, the increasing of temperature had no benefits for oxygen transmitting and oxygen dissolving into water body. When the PACs was used as carrier, the DO concentration was measured under 2 cm and 10 cm of the surface. It indicated that the DORR of this bioreactor increased to 30.47 mg/m3.s from 25.75 mg/m3.s when ht increased to 17 cm from 7 cm, but, the total DO in water decreased to 34.56 mg from 38.68 mg. It is benefit for the DO adsorption when ht less than 7 cm, but not for providing more carriers for At.t bacteria, also, it is not good for the process of acid-producing.
     In the stage of mathematical model building:based on Fick Law, Double-film theory and penetration theory and four basic assumptions, the model of DORR for this bioreactor was built as follows: This mathematical model was used to calculate the efficiency of oxygen transmitting (EOT) when this bioreactor was filled with no carriers at 3NL/min,h=17.5cm and H=22cm. The EOT could reach 1.62%,and then decreased. The EOT was relative low, maintaining at 0.47%-0.59%, when QN=1NL/min. The tendency of EOT for QN=2-6NL/min was very similar, rising fisrtly, then decreasing and reaching equilibrium finally. The EOT could reach 2.5% when QN=3NL/min, dn=9.5cm, h/H=0.80 at temperature of 10.5℃, but it decrased to 0.52% at 29.4℃. The change of EOT was not obvious, maintaining at 1.55% to 1.88% when this bioreactor was filled with carrier and ht/H changed from 0.32 to 0.77. But the addition of sawdust provided favourable conditions for At.t bacteria, increasing the density of microorganisms. Experimental temperatue has obvious effets on EOT. This mathematical model could be revised as the consideration of water temperatue. The EOT calculated by this model was closer to the practical EOT. After the amendment, the EOT calculated by the model was 1.25%-1.88%, but the practical EOT was 1.0%-1.6%. The main reasons were the water depth of reactor was not enough. The EOT could reach up to 10.23% when the water depth of reactor increased to 1.5 m, which reached the normal standard of EOT, 6%-12%, for air diffusion equipments used in wastewater treatment engineering.
     In the stage of acid-producing:Be sure to use the IsCAC as the bioreactor for our study. The basic physical parameters fo IsCAC were dn of 18cm, H of 22cm, h of 17.5cm, dn of 9.5cm, temperature of 29-30℃, QN of 4NL/min. Under the above conditions, the DORR of this reactor reached up to 27.31 mg/m3.s. Increasing the inoculum concentration of At.t bacteria from 5% to 20%, the average acid-producing rate was 1.51mmol/L.d to 5.81 mmol/L.d. And the acid-producing rate increased from 1.57 mmol/L.d to 4.23mmol/L.d when ht/H increased to 0.77 from 0, but the acid-producing rate had no obvious rise when ht/H>0.55. And the acid-producing rate rose to 5.51 mmol/L.d from 0.36 mmol/L.d when the QN increased from 1 NL/min to 6 NL/min, but it also had no obvious variations when the QN>4 NL/min. Meanwhile, the relationship between hydrolic retention time (HRT) and acid-producing of At.t bacteria was also studied. From the continuous experimental data of 9 days, it showed that the acid-producing rate reached up to 5.81-16.59mmol/L.d when the HRT was 14 days.
     In the stage of leaching:Solution with ph=1.0 or so was chose, the leching experiments were made for raw ore and concentrate respectively. When raw ore used as experimental sample, the content of phosphate decreased to 0.17% and grade of ore reached 44.64% when leached for 12 h, the optimal experiment results appeared at the leaching time of 18 h. It seemed the content of phosphate in residue of mine rose with further increasing leaching time. The grade of ore decreased by 2.63% from 58.41% and the content of phosphate in mine residue increased to 0.35% from 0.1% when the contentration of mine increased from 1% to 4%. But the phosphate content was 0.24%, less than 0.25%, when the concentration of mine was less than 3%. It had obvious effects to the enhancement of mine grade when the acid solution contained some At.t bacteria, but it had no obvious effects to the degradation of phosphate in the residue. The grade of mine reached up to 46.64% when solution contained some At.t bacteria at concentration of 2%, but the mine grade was only 45.2% when it was leached for 18% with no At.t bacteria solution. It showed that the existence of At.t bacteria had some obvious effects to raise the mine grade and decrease the content of phosphate in the residue. Meanwhile, the SEM and XRD were used for analyzing the sulphate powder after being leached by solution contained At.t bacteria, but the effects were no obvious. It indicated that the At.t bacteria only used the sulphur powder as energy materials and produce sulphuric acid, no making the sulphuric powder into other matters, which was the result expected in our experiments. The SEM results showed that the surface of sulphuric powder become coarse and hydrophilic seemed from the outside of this powder. The pattern of SEM witht 10000 time showed that the surface of sulpharuic powder had some obvious etched hole which seemed as the results affected by At.t bacillus. At the same time, The XRD and SEM were also used to analysis the raw ore, concentrate and some samples of them treated by At.t bacillus. The main ingredients of magnetic concentrate were magnetite, hematite (γ-Fe2O3) and quartz. The ingredients of raw ore did not change, still were hematite (γ-Fe2O3) and quartz, after it was leached by At.t bacillus, and no ferrovanadium sediment were found in this products. This phenomenon also occurred in the concentrate when it was leached by At.t bacillus, the main ingredients of concentrate were magnetite, hematite (γ-Fe2O3) and quartz still. The results of SEM patterns showed that the raw ore and concentrates gathered into scaly, the reason maybe the relative single element and iron gathered after the phosphate and some other impurities were eliminated by At.t bacillus in the bioleaching process.
     Process concept for two-stage bioleaching dephosphorization:On the scale of 300 liter acid solution containing At.t bacteria for one day, the solution contained 15 mol H2SO4, each additional H2SO4 costs 1.64 Yuan. The costs for decreasing phosphate from 1.1%to 0.15% for 1 kg raw ore was 2.14 Yuan, which was relative higher than the chemical dephosphorization. The main reason was the concentration of ore slurry was too low (4%). If we only expected to reduce phosphate to 0.3% in the raw ore, the concentration of ore slurry could rise to 8%,22.84 kg ore could be dephosphorized for one day, causing the costs decrease to 1.07 Yuan for one kg raw ore.
     The innovation of this paper was as follows:
     A Ultilizing At. t bacteria has characteristics of utilizing low valent sulphur as energy matters to produce sulphur acid, then sulphuric acid was used to leach phosphate from iron ore with high content of phosphate. Two-steps bioleaching process was put forward to reduce the phosphorus content in iron ores.
     B Design a reasonable, high efficient inner cycle bioleaching rector, the inside structure and DORR function were tested and valued, main points were on the charge for the efficiency and structure of the reactor.
     C. The phosphoric bioleaching rate was reached up to 75%, the residue phosphorus in the treated ore was only 0.15%, and the iron grade was 56.49%. Based on the results of this experiment, the cleaner craft was presented, also the on-line monitoring system was established which provided a fine growth surroundings for At.t bacteria.
引文
[1]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,34(3):11-13.
    [2]崔吉让,卢寿慈.高磷铁矿石脱磷工艺研究现状及发展方向[J].矿产综合利用,1998,18(6):20-24.
    [3]何良菊.梅山高磷铁矿矿石性质及微生物脱磷的可行性[J].黄金学报,2000,2(1):26-29.
    [4]郑少奎,杨敏,关晓辉等.矿石之微生物脱磷机理的初步研究[J].高校地质学报,2000,6(2):345-348.
    [5]何良菊,胡芳仁.梅山高磷铁矿石微生物脱磷研究[J].矿冶,2000,9(1):30-35.
    [6]沈慧庭,黄晓燕.2000-2004年铁矿选矿技术进展评述[J].矿冶工程,2005,25(6):26-30.
    [7]支全.铁矿石选矿新技术的研究与应用概况[J].矿业快报,2006,22(7):13-15.
    [8]顾兰松,陈 平.姑山铁矿磷矿物的赋存状态及铁精矿降磷研究[J].矿业快报,2006,22(7):61-62.
    [9]吴世强.降低梅山铁精矿含磷量的探讨[J].梅山科技,1992,2(1):26-28.
    [10]松全元,朱秦生.梅山铁矿铁精矿降磷研究[J].金属矿山,1993,29(8):43-46.
    [11]卢尚文,张邦家.宁乡式胶磷铁矿用解胶浸矿法降磷的研究[J].金属矿山,1994,30(8):30-33.
    [12]孙克已,李逸群.弱磁性铁矿石脱磷选矿试验研究[J].中国矿业,1999,8(6):61-64.
    [13]卢尚文.乌山铁矿酸式浸矿脱磷研究及其意义[J].江西冶金,1993,23(4):17-20.
    [14]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001.7(3):7-11.
    [15]张永奎,王安,陈茂春等.细菌分解磷矿石探索性研究[J].矿产综合利用,2000,2(6):32-35.
    [16]肖春桥,高洪,张娴等.两株芽孢杆菌对磷矿粉中磷的浸出能力研究[J].武汉化工学院学报,2004,26(4):1-4.
    [17]熊英,胡建平,林滨兰等.氧化亚铁硫杆菌的驯化与诱变选育[J].矿产综合利用,2001,3(12):27-30.
    [18]张在海,王淀佐,邱冠周等.氧化亚铁硫杆菌亚铁氧化活性诱变育种理论探讨[J].铜业工程,2001,2(1):12-15.
    [19]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005,41(4):25-28.
    [20]赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003,23(3):5-7.
    [21]林启美,王华,赵小蓉等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报,2001,28(2):26-30.
    [22]刘晶,张灼,韩秀芳.硫杆菌(Thiobacillus)的分离培养及其生长特性的研究[J].云南大学学报(自然科学版),1996,18(2):118-121.
    [23]胡岳华,康自珍.氧化亚铁硫杆菌的细菌学描述[J].湿法冶金,1996,11(4):36-40.
    [24]傅建华,邱冠周,胡岳华等.浸矿细菌的超微结构及其特性[J].中南大学学报(自然科学版),2004,35(4):562-567.
    [25]王炜铭,王英刚,王林芳等.氧化亚铁硫杆菌最佳生长条件的初步探索[J].有色矿冶,2004,20(5):54-56.
    [26]Jaworska M., Urbanek A. Water leaching of titanium from ore flotation residue [J]. Waste Managemet,2003,33(3):339-344.
    [27]张冬艳.氧化亚铁硫杆菌C-1菌株的分离及特性研究[J].内蒙古工业大学学报,1995,14(1):27-30.
    [28]张俊,范伟平,方苹等.底物对亚铁硫杆菌生物氧化过程的影响[J].南京化工大学学报,2001,23(6):37-41.
    [29]龙中儿,黄运红,蔡昭铃等.耐低pH的氧化亚铁硫杆菌选育及其氧化硫酸亚铁的初步研究[J].过程工程学报,2002,2(5):415-420.
    [30]Jaworska M, Malecki JG, Kruszynski R. Synthesis, molecular, crystal and electronic structure of [RuCl3(NO)(PPh3)(HPz)]. Polyhedron,2005,22(9):359-368.
    [31]Gavin W. L., Graeme E., Murray D.E.. The influence of aging on the plasma concentration and renal clearance of homovanillic acid [J]. Psychoneuroendocrinology,1994,19(1): 33-41.
    [32]Aftab A., Ansari R., Coppel R., Mackay D., et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis [J]. Journal of Autoimmunity,2006.27(1):7-16
    [33]邱冠周,柳建设,王淀佐等.氧化亚铁硫杆菌生长过程铁的行为[J].中南工业大学学报,1998,29(3):226-228.
    [34]周峨.耐高浓度铁离子的菌种驯化及其浸矿实验研究[D].昆明:昆明理工大学,2002.
    [35]路殿坤,刘大星.氧化亚铁硫杆菌氧化Fe2+ 的机理分析[J].有色金属,2000.2:12-15
    [36]刘晓燕,王向东,蒋文举等.氧化亚铁硫杆菌对亚铁离子的氧化及其动力学研究[J].环境污染与防治,2005,7:244-246.
    [37]Chen B.Y, Liu X.L, Zheng Y. C, etal, Dose-response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BCI [J]. Process Biochemistry,2004,39:735-745.
    [38]Claudio C., Martin S., Charles B., et al. System analysis of endocytosis by functional genomics and quantitative multi-parametric image analysis [J]. New Biotechnology,2010, 27(Supplement 1):22-29.
    [39]Sasaki K, Tsunekawa M, Tanaka S, et al. Suppression of microbially mediated dissolution of pyrite by originally isolated fulvic acids and related compounds [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,119(2-3):241-253.
    [40]黄剑聆,杨云妹,谢珙.溶磷剂与硫杆菌协同对铁矿石脱磷的研究[J].南京林业大学学报,1994,6:25-29.
    [41]张勇,李小东,王英刚.脱硫细菌最佳生长条件的初步探索[J].沈阳大学学报,2005,17(2):44-46.
    [42]孙先锋,郭爱莲,朱宏莉等.氧化亚铁硫杆菌的分离及其生长条件的研究[J].西北大学学报(自然科学版),2000,30(2):143-146.
    [43]Alexander B., Leach S. Ingledew W.J. The relationship between charismatic parameters and sensitivity to anions and organic acids in the acidophil Thiobacillus ferrooxidans [J]. J. Gen. Microbiol.,1987,133:1171-1179.
    [44]Otero A.P., Curutchet G, Donati E., et al. Action of Thiobacillus thiooxidans on sulphur in the presence of a surfactant agent and its application in the indirect dissolution of phosphorus [J]. Process Biochemistry,1995,30(8):747-750.
    [45]刘程,李江华,刘博等.表面活性剂应用手册(第三版)[M].北京:化学工业出版社,2004.
    [46]Slaska, Metalurgii K, Katowice etal. Microbial leaching of blende flotation concentrate using acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans [J]. Physicochemical Problems of mineral processing,2003,37:57-68.
    [47]周顺桂,王世梅,余素萍等.污泥中氧化亚铁硫杆菌的分离及其应用效果[J].环境科学,2003,3:56-60.
    [48]Zeng J., Geng M.M., Liu Y.D. et al. The sulfhydryl group of Cys138 of rusticyanin from Acidithiobacillus ferrooxidans is crucial for copper binding [J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2007,17(4):519-525.
    [49]Lesia H.. Control of Iron and Sulfur Oxidation Activities of Thiobacillus ferrooxidans and Bacterial Leaching of Metals from Sulfide Ores [Ph. D. Thesis], University of Manitoba, 2000.
    [50]Idachaba M.A,Nyavor K, Egiebor N.O.,The leaching of chromium from cement-based waste from via a predominantly biological mechanism[J]. Advances in Environmental Research,2004,8:483-491.
    [51]Mishar, A.K., Roy, P., Mahapatra, S.S. Isolation of Thiobacillus ferrooxidans from various habits and their growth pattern on solid medium [J]. Current Microbial.1983,8:147-152.
    [52]Sreekrishnan T.R, Tyagi R.D. Sensitivity of Metal-Bioleaching Operation to Process Variables [J]. Process Biochemistry,1995,30 (1):69-80.
    [53]Wakao N., Mishian M., Sakurai Y. et al. Bacterial pyrite oxidationl.Absorption of Thiobacillus ferroxidans cells on solid surfaces and its effect on iron release from pyrite [J]. Gen App. Microbial.,1984,30:63-77.
    [54]Brand H, Bosshard R, Wegmann M. Computer-munching microbes:metal leaching from electronic scrap by bacteria and fungi [J]. Hydrometallurgy,2001,59:319-326.
    [55]柳建设.硫化矿物生物提取及腐蚀电化学研究[D].长沙:中南大学,2002.
    [56]Gu X.Y., Jonathan W.C., Wong. Identification of Inhibitory Substances Affecting Bioleaching of Heavy Metals from Anaerobically Digested Sewage Sludge [J]. Environ. Sci. Techno.,2004,38 (10):2934-2939.
    [57]Renata P.R., Barreira Luciene, D., Villart and Oswaldo Garcia J. Tolerance to copper and zinc of Acidithiobacillus thiooxidans isolated from sewage sludge [J]. World Journal of Microbiology & Biotechnology,2005,21:89-91.
    [58]Maria E.A.G, Oprime, Oswaldo Garcia J, et al. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans [J]. Process Biochemistry,2001, 37 (2):111-114.
    [59]张子间.生物滴滤池烟气脱硫工艺与机理的研究[D].广东:广东工业大学,2004.
    [60]郑士民,严望明,钱新民.自养微生物[M].北京:科学出版社,1983.
    [61]武华平,袁斌.氧化亚铁硫杆菌的筛选及其特性研究[J].矿冶,2004,13(4):69-71.
    [62]Cho K. S,Ryu H.W,Lee N. Y,Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacill us thiooxidans[J]. Journal of Bioscience and Bioengineering. 2000,90 (1):25-31.
    [63]Robert C. Blake Ⅱ, Elizabeth A. Shute, and Gary T. Howard. Solubilization of Minerals by Bacteria:Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite, and Sulfur [J]. Applied and Environmental Microbiology,1994,9:3349-3357.
    [64]Lesia H., Hector M. Lizama, Isamu S. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans [J]. Applied and Environmental Microbiology,2000, 3:1031-1037.
    [65]Fowler T. A., Holmes P. R. Crundwell F. K. Mechanism of Pyrite Dissolution in the Presence of Thiobacillus ferrooxidans[J]. Applied and environmental microbiology,1999, 7:2987-2993.
    [66]Pablo R., Nicolas G., Lissette V., Simon B., Carlos A.J. Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on Ferrous Iron, Sulfur Compounds, or Metal Sulfides [J]. Applied and Environmental Microbiology,2004,8:4491-4498.
    [67]Aceved E, Aroca G. Studies on the agitation and power characteristics of mineral slurries [J]. Fundamental and apllied biohydrometallurgy,1986,3:255-261.
    [68]Pergon. A reassessment of relationship between riser and down comer gas hold-ups in airlift reactors [J]. Chemical Engineering Science,1998,53:4151-4154.
    [69]Weiland P. Influence of draft tube diameter on operation behavior of airlift loop reactors [J]. German Chemical Engineering,1984,7:374-385.
    [70]Korpijarvi J. Hydrodynamics and mass transfer in an airlift reactor [J]. Chemical Engineering Science,1999,54:2255-2262.
    [71]Boon M., Meeber T.A. Influence of oxygen adsorption on the dynamic kLa measurement in three2phase slurry reactors [J]. Biotechnology and bioengineering,1992,40:1097-1106.
    [72]Roy P., Huber T.F. Feasibility of a ditch process for microbial desulphurization of coal [M]. Resources conservation and recycling:1988.
    [73]Chapman C.M., Nenow A.W., Cooke M. et al. Particle-gas-liquid mixing in stirred vessels [J].Chemical engineering research and design,1983,61 (1):182-185.
    [74]方兆珩.生物氧化浸矿反应器的研究进展[J].黄金科学技术,2002,10(6):1-7.
    [75]曾冬明.喜温硫杆菌与新型生物反应器的应用研究[D].长沙:中南大学,2006.
    [76]罗林,康瑞娟.氧化亚铁硫杆菌在气升式反应器中培养条件对其生长特性的影响[J].过程工程学报,.2001,1(4):365-368.
    [77]Lu WJ. Hwang S.J. Chang CM. Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low density particles [J]. Chemical Engineering Science,1995,50: 1301-1310.
    [78]Zhang L. Hydrodynamics behavior of airlift reactors [J]. Chemical Engineering Science, 1990,35:483-491.
    [79]Katrina J. Eawards Thomas M. Gihring and Jillian F. Banfield. Seasonal Variations in Microbial Populations and Environmental Conditions in an Extreme Acid Mine Drainage Environment [J]. Applied and Environmental Microbiology,1999,8:3627-3632.
    [80]Jean L., Barron, Donald, R., Lueking. Growth and Maintenance of Thiobacillus ferrooxidans Cells [J]. Applied and Environmental Microbiology,1990,9:2801-2806.
    [81]Isamu S., Douglas L., Byron M., Lesia H., Jae K.O. Effect of various ions,pH,and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans [J]. Applied and Environmental Microbiology,1999,65(11):5163-5168.
    [82]薛嘉,黄钧.废水处理一体化生物反应器的发展[J].应用与环境生物学报,2006,12(4):595-599.
    [83]Hayward T. Satalic D.M., Spencer P.A.. Engineering, equipment and materials: development in the design of a bacterial oxidation reactor [J]. Minerals Engineering,1997, 10(10):1047-1055.
    [84]赵小蓉,林启美.细菌解磷能力测定方法的研究[J].微生物学通报,2001,28(1):1-4.
    [85]陈茂春.细菌分解磷矿基础研究[D].成都:四川大学,2001.
    [86]Visca P., Bianchi E., Polidoro M., et al. A new medium for isolating and enumerating Thiobacillus ferrooxidans [J]. Gen App. Microbial.,1989,35:71-81.
    [87]Douglas E, Rawlings. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates [J]. Microbial Cell Factories,2005,4:13.
    [88]Hiltunen P., Vuorinen A. Bacterial pyrite oxidation:release of iron and scanning electron microscope observation [J]. Hydrometallurgy,1981,7:147.
    [89]Boon M., Ras C., HelJnen J.J. The ferrous iron oxidation kinetics of thiobacillus ferroxidans. In batch cultures [J]. App. Microbe. Biotechnology,1999,51:813-819.
    [90]Michael R. Hoffmann B., Faust C., Fern A., Panda H. Koo H., Henry M. Kinetics of the Removal of Iron Pyrite from Coal by Microbial Catalysis [J]. Applied and Environmental Microbiology,1981,42(2):259-271.
    [91]Ghosh R., Banik A.K. Optimisation of Different Physical Parameters for Bioleaching of Phosphate by Aspergillus niger from Indian Rock Phosphate [J]. Indian Journal of Experimental Biology,1998,36(7):688-692.
    [92]Narsion V, Patel H.H. Aspergillus aculeatus as a rock phosphate solubilizer [J]. Soil Biology Biochemistry,2000,32 (7):559-565.
    [93]Chi R., Xiao C., Gao H. Bioleaching of Phosphorus from Rock Phosphate Containing Pyrites by Acidithiobacillus ferrooxidans [J]. Minerals Engineering,2006,19(9):979-981.
    [94]Liu H.L., Chen B.Y., Lan Y.W., Cheng Y.W. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans [J]. App. Microbial Biotechnol, 2003,62:414-420.
    [95]Pogliani C., Donati E. The role of exploiters in the bioleaching of a non-ferrous metal supplied [J]. Journal of Industrial Microbiology Biotechnology,1999,22:88-92.
    [96]Douglas E., Rawlings. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates [J]. Microbial Cell Factories,2005,4:13-19.
    [97]www.custeel.com/Scripts/viewArticle.jsp?articleID=1298998&group=1002-22k.
    [98]柳正.我国磷矿资源的开发利用现状及发展战略[J].中国非金属矿工业导刊,2006,1:21-23.
    [99]林启美,赵海英,赵小蓉.4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002,29(6):24-28.
    [100]周吉奎.三类生物冶金微生物菌种的选育及其与矿物作用研究[D].长沙:中南大学,2004.
    [101]陆栋.硫杆菌分离鉴定及无机硫氧化系统研究:[D].兰州:兰州大学,2006.
    [102]Natarajan K.A., Das A. Surface chemical studies on "Acidithiobacillus" group of bacteria with reference to mineral flocculation [J]. J. Miner Process,2003,72:189-198.
    [103]Liu H.L., Lan Y.W., Cheng Y.C. Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology [J]. Process Biochemistry,2004,39: 1953-1961.
    [104]Kingma J.G., Jar and Silver M. Autotrophic growth of thiobacillus acidophilus in the presence of a surface-active agent, Tween-80[J]. Applied and Environmental Microbiology, 1979,38(5):795-799.
    [105]Travisl T., Isamu S. Cell hydrophobic and sulfur adhesion of Thiobacillus thiooxidans [J]. Applied and Environmental Microbiology,1997,5:2058-2061.
    [106]Leweis W. K., Whitnman W. C. Princeples of Gas Absorplion [J]. Iustrial Engineering Chemistry,1924,16:1215.
    [107]Higbie R.The Rate of Absorption of a Pure Gas into a Still Liquid during 51 Periods of Exposure. Transaetions [J]. Amer. Inst. Of Chem. Engineerings,1934,35:31-32.
    [108]Wilke J.R.质量、动量、热量传递原理[M].北京:国防工业出版社,1984.
    [109]崔吉让,方启学,黄国智等.高磷铁矿石脱磷工艺研究现状及发展方向[J].矿产综合利用,1998,6:20-24.
    [1l0]郭瑾龙.曝气两相流中氧传质的研究:[D].西安:西安理工大学,2001.
    [111]马听霞.气液两相绕流的数值模拟及实验研究[D].石家庄:华北电力大学,2001.
    [112]程文,宋策,周孝德.曝气池中气液两相流的数值模拟与实验研究[J].水利学报,2001,12:32-35.
    [113]王双峰.静止均匀环境中的气泡羽流与射流[J].武汉水利电力大学学报,1997,22:23-26.
    [114]郭自杰,陆逢升.关于两相流基础理论的讨论[J].水泵技术,1996,2:32-35.
    [115]徐麦容,刘成云.水中浮升气泡的半径和速度变化[J].大学物理,2008,27(11):14-17.
    [116]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,1988.
    [117]Majid Hassanizadeh S. Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws [J]. Advances in Water Resources,1986,9(4): 207-222.
    [118]De Schepper I.M., Ernst M.H. Self-diffusion beyond Fick's law [J]. Physica A:Statistical Mechanics and its Applications,1979,98(1-2):189-214.
    [119]Paolo P., Rita C., Francesco M. The fractional Fick's law for non-local transport processes [J]. Physica A:Statistical Mechanics and its Applications,2001,293(1-2):130-142.
    [120]Biswas M.E., Chatzis I., loannidis M.A. et al. Modeling of adsorption dynamics at air-liquid interfaces using statistical rate theory (SRT) [J]. Journal of Colloid and Interface Science,2005,286(1):14-27.
    [121]许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,1990.
    [122]严煦世,范瑾初等.给水工程(第三版)[M].北京:中国建筑工业出版社,1995.
    [123]鲍光明龚文琪胡纯等.鄂西鲕状高磷赤铁矿微生物脱磷研究[J].金属矿山,2010,3:40-42,56.
    [124]马龙霞,张建民,王天.一株高效SRB的选育及其硫酸盐转化性能研究[J].西安工程大学学报,2008,22(3):343-346.
    [125]田凯勋,戴友芝,凌运林.厌氧酸化菌产酸过程研究[J].微生物学通报,2007,34(1):108-111.
    [126]张自杰.排水工程(第四版,下册)[M].北京:中国建筑工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700