用户名: 密码: 验证码:
急倾斜下保护层开采保护范围及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的不断增加,煤与瓦斯突出日益成为制约矿井安全高效生产的主要因素,而开采保护层是最有效的区域性防突措施。保护层开采时一个重要的问题就是保护范围的划定,然而我国西南地区大多数煤层都是严重突出的急倾斜煤层,采煤方法比较特殊,按照传统的方法(即参考《防治煤与瓦斯突出规定》)划定其保护范围,在实际应用中出现偏差。
     因此,本文以南桐矿业公司东林煤矿的急倾斜俯伪斜下保护层开采为研究的工程背景,采用实验室试验、理论计算、数值模拟和现场工业试验等相结合的方法,研究了急倾斜俯伪斜下保护层开采后被保护层的有效保护范围及其影响因素。本文的主要研究成果和结论有:
     ①通过在煤矿现场取样,在实验室进行了煤岩层的抗压、抗拉和抗剪试验,获得了保护层周围煤岩体的各种物理力学特性参数。
     ②基于煤层卸压的应力保护准则和变形卸压准则,建立了俯伪斜下保护层开采的有限元三维数值模型,对俯伪斜下保护层开采后覆岩的移动变形和卸压程度进行了数值模拟分析研究,并对被保护层的有效保护范围进行了分析和计算,确定了被保护层的有效保护范围。结果表明:保护层开采在倾斜方向的上部和下部卸压角分别为90°和80°,沿走向方向的卸压角在倾斜上、中、下部呈不均匀分布,其大小为44°~68°,安全起见按44°划定走向方向的卸压保护角。
     ③通过开展东林煤矿俯伪斜下保护层开采的现场试验,确定了研究区域内下保护层开采保护范围的现场实测结果。试验结果表明:采用马丽散固化剂结合水泥石膏浆机械封孔的方法能更好的密闭钻孔,使瓦斯压力参数的测定更加准确;保护层开采的倾向下部卸压角为83°,走向卸压角为45°,保护层工作面超前被保护层掘进工作面的最小距离为53 m。数值模拟计算和现场考察的结果比较接近,本文采用的数值模拟方法划定俯伪斜下保护层开采的保护范围是可行的。
     ④针对急倾斜煤层开采后冒落矸石在采空区沿倾斜方向的不均匀充填,在倾斜上部无充填,中部充填较弱,下部充填较为密实的情况。本文对充填体产生的支撑载荷进行了分析,建立了充填体对顶板的支撑载荷函数。
     ⑤根据弹性薄板理论,建立了基于采空区不均匀充填的俯伪斜下保护层开采后基本顶的移动变形和破坏的力学模型,推导出了俯伪斜基本顶的挠曲函数,并根据Marcus修正解计算和分析了基本顶初次破断的极限跨距;在此基础上提出了俯伪斜下保护层开采基本顶初次来压时的顶板管理方法。
     ⑥基于关键层理论,采用理论计算分析和数值模拟的方法确定了急倾斜下保护层开采后上覆岩层中的关键层,并计算了关键层的初次破断距;结合现场的观测,分析了关键层的破断对覆岩移动变形、岩层中离层和裂隙的分布、被保护层瓦斯涌出及保护范围的影响。
With the increasing of exploitation depth for coal mine, coal and gas outburst became the major factor of restricting the safe and effective exploitation to a mine, while mining the protective layer as the most effective measure of preventing the coaland gas outburst in the regional in the world was widely used in a serious outburst coal mine. The determination of protecting scope was an important problem when exploiting the protecting layer, which closely associated with many factors such as the existent condition, the mechanical properties of surrounding rock, mining method and roof management method.
     In the Southwest, the majority coal seam was steep incline and serious coal and gas outburst, and the geological structure was complicated. Furthermore, informal mining methods were adopt. Consequently, the determination of protection scope was much more difficult. According to the traditional method, which referred to the regulation of preventing coal and gas outburst, the protection scope was different from the real protection scope. So it’s essential to determinate the protection scope for mining the steep incline under-protection layer renewedly.
     Taking the exploitation of steep incline under-protection layer of Donglin coal mine in Nantong Mine company as researching project background, combining with the test in laboratory, theoretical arithmetic, numerical simulation and industrial tests, the motion and breaking regulation of cover mass and the protection scope of protected layer after exploitation the under-protection layer was studyed by this paper. The sesults of this paper could be concluded that:
     ①The basic physical-mechanics parameters of coal and rock arround the protection layer at investigation area were confirmed by the mine-site sampling, processed into standard test pieces, the compression test, the tensile test and the shear test.
     ②A three-dimensional finite element numerical simulation model to simulate the exploition of oblique under-protection layer was established. The distortion and pressure-relieving degree of overlying rock srtatum was anslyzed and researched by numerical simulation after the exploition of oblique under-protection layer, and the effective protection scope of protected layer was analyzed and calculated on the basic of the stress protection regulation and the distortion protection regulation for pressure-relieving of protected coal seam. The result indicated that the upside and downside pressure-relieving protection angles along the incline were 90°and 80°respectively when exploiting the under-protection layer. The pressure-relieving protection angle along the strike distributed unevently on the upside and middleside and downside along the incline, and valued from 44°to 68°. For the reasons of security, it was reasonable to determinate the pressure-relieving protection angle along the strike by 44°.
     ③Through the field industrial examination for the exploition of steep oblique under-protection layer in Donglin coal mine, the field test result of protection scope of the exploition of under-protection layer in the investigation region was obtained. The result of examination showed that: the investigation drill could be sealed by use of the method of Malisan curing agent combining with the concrete and plaster slurry mechanism sealling, and the test results of kinetic parameter for gas were more exact. The pressure-relieving protection angle of downside on the incline after the exploition of the under-protection layer was 83°, and the pressure-relieving protection angle along strike was 45°. The minimal leading distance between the coal face of protection layer and advancement face was 53 m. The result of numerical simulation calculation was near the result by field investigation and leaned toward the security directon. Consequently, ascertaining the protection scope of the exploition of steep incline oblique under-protection layer by use of numerical simulation was feasible.
     ④The caving recrement filled the gob unevently along the incline after the exploitation of steep incline coal seam. There was no filling in the up-incline, weak in the middle-incline, and dense in the under-incline. The support load from filling recrement was analyzed and studyed, and the function of support load to the roof was established.
     ⑤Based on the elastic thin plate theory and the unevently filling of gob, the mechanics model of distortion and breaking for basic roof after the exploitation of under-protection layer. The deflection function of basic roof was deduced, and the terminal span for the first breaking of basic roof was analyzed and calculated on the basis of Marcus modify solution. Roof control method of the exploition of oblique under-protection layer when the first weighting of the basic was analyzed and calculated.
     ⑥According to the Key Strata Theory, the key strata of roof stratum was determinated after the exploition of steep incline under-protection layer, and it’s first breaking interval was analyzed. Combining with the field test, the impact of the key strata’s breaking to the distortion of overlying rock srtatum and the distributing of absciss layer and cranny and the gas effusing from protected layer and it’s protection scpoe was analyzed.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [2]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [3] R.D. Lama, J. Bodziony. Management of outburst in underground coal mines[J]. International Journal of Coal Geology, 1998, (35): 83-115.
    [4]中华人民共和国煤炭工业部.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [5]于不凡,白帆,刘明.煤矿瓦斯防治技术[M].北京:中国经济出版社,1987.
    [6]Аǔрунu A.T.Теорияипрактикаборьбысрудничнымигазаминабольшихглубинах[M].Недра, 1981.
    [7]Аǔрунu A.T.,зенковuчЛ.М.,МхаmварuТ.Я.Искусственноеувеличениезащитногодействияприразработкевыбросоопасныхпластов[М].ЦНИЭИуголь, 1984.
    [8]Аǔрунu A.T.,ВаǔншmеǔнЛ.А.прогнозированиеипредотвращениевнезапныхвыбросовугляигазазарубежом[М].ЦНИЭИуголь, 1991.
    [9]А.М.Рудь,О.А.Колесов,А.Т.Айруниидр.Меmодыпрогнозаиспособыпредотвращениявнезапныхвыбросовугля,породыигаза[М].ЦНИЭИуголь, 1990.
    [10]Ю.Н.马雷舍夫,А.Т.艾鲁尼,Ю.Л.胡金等.煤与瓦斯突出预测方法和防治措施[M].北京:煤炭工业出版社,2004.
    [11]ЗенховuчЛ.М..Закономерностиизмененияфильтрационныхсвойствмеждупластовыхтолщпрндегазацинподзащитныхпластовскважинами[М].РотапринтИПКОНАНСССР, 1984.
    [12]АЙруниА.Т.Исследования.динамикидавленияметанавопасныхповнезапнымвыбросамподрабатываемыхйнадрабатываемыхугольныхпластахпрппримененииискусственнойдегазадии[C].Доклади,17международнаяконферендияпонауннымисследованиямвобластибезопасностиработвгорнойпромыщлености,Варна, 1977.
    [13]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [14]肖代兵,刘林.突出煤层保护层开采保护方法的考察[J].陕西煤炭技术,1999,(3): 2-3.
    [15]杨晓峰.松藻矿区防治煤与瓦斯突出综合技术[M].北京:北京科海电子出版社,2005.
    [16]石必明.保护层开采覆岩变形移动特性及防突工程应用实践[M].北京:煤炭工业出版社,2008,11~13.
    [17]杨帆.急倾斜煤层采动覆岩移动模式及机理研究[D].辽宁工程技术大学博士论文,2006.
    [18] A.A鲍里索夫,王庆康译.矿山压力原理与计算[M].北京:煤炭工业出版社,1986.
    [19] Fayol.M. Sur Les movements de terrain provoques par L’eopltitation des mines[J]. Bull. Soc.L’Industrie Minorale. 1985, 14(2): 818~823.
    [20] Salamon, M.D.G. Elastic analysis of displacements and stresses induced by the mining of seam or roof deposis[J]. S.Afr, Inst. Metall. 1963, 63(3): 423~426.
    [21] B.H.G.布雷迪,E.T.布朗.地下采矿岩石力学[M].北京:煤炭工业出版社,1990.
    [22] M.A.Coulthard. Applications of numerical modeling in underground mining and construction[J]. Geotechnical and Geological Engineering. 1999,(17): 373~385.
    [23] M.A.Coulthard, P.M.Dight. Numerical analysis of failed cemented fill at ZC/NBHC Mine[C]. Broken Hill.In proceedings of 3rd Australla-New Zealand Geomecharics Conference, Wellington, 1980,(2): 145~151.
    [24] Kay, D.r. Report of the Angus place Subsidence Modeling Joint Case study[R]. NSw Department of Mineral Resources. Sydeny, 1990.
    [25] M.A.Coulthard. Distinct element modeling of mining-induced Subsidence-A case study[C]. In proceedings of conference on Fractured and Joint Rock Masses[A]. Lake Tahoe, Myeretal. (eds), Balkemn, Rotterdam, 1995: 725~732.
    [26]赴波兰考察团.波兰采空区地面建筑[M].合肥:科学技术出版社,1979.
    [27]钱鸣高.采场矿山压力控制[M].北京:煤炭工业出版社,1983.
    [28]钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557~563.
    [29]缪协兴.砌体梁结构分析与应用[R].中国矿业大学博士后研究工作报告,1996.
    [30]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):92~106.
    [31]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板控制,1995,12(21):3~12.
    [32]钱鸣高,缪协兴.岩层控制中关键层的理论研究[J].煤炭学报,1996,21(3):225~230.
    [33]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135~139.
    [34]茅献彪,钱鸣高,缪协兴采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39~42.
    [35]茅献彪,钱鸣高,缪协兴.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1~4.
    [36]茅献彪,钱鸣高,缪协兴.采高及复合关键层效应对采场来压步距地影响[J].湘潭矿业学院学报,1999,14(1):1~5.
    [37]许家林,钱鸣高.关键层运动时覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122~126.
    [38]钱鸣高. 20年来采场围岩控制理论与实践的回顾[J].中国矿业大学学报,2000,29(1):1~4.
    [39]钱鸣高,缪协兴,许家林.岩层控制的关键层理论[J].徐州:中国矿业大学出版社,2003.
    [40]宋振琪.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1988.
    [41]宋振琪,蒋金泉.煤矿岩层控制的研究重点方向[J].岩石力学与工程学报,1996,15(2):128~134.
    [42]谢和平,陈至达.非线性大变形有限元分析及在预测岩层移动中的应用[J].中国矿业大学学报,1988,(2):94~104.
    [43]何满朝,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [44]刘天泉.矿山岩体采动影响控制工程学及其应用[J].煤炭学报,1995,20(1):1~5.
    [45]李增琪.用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983,8(2):142~145.
    [46]李增琪.计算矿山压力和岩层移动的三维层状模型[J].煤炭学报,1994,19(2):216~219.
    [47]李增琪.用富氏积分变换计算引起的地表移动之二[J].煤炭学报,1985,10(1):100~106.
    [48]麻凤海,王泳嘉,范学理.岩层移动动态过程的离散单元法分析[J].煤炭学报,1996,21(4):388~392.
    [49]麻凤海.岩层移动及动力学过程的理论与实践[M].北京:煤炭工业出版社,1997.
    [50]赵德深,麻凤海.煤矿覆岩离层分布规律及其控制技术[M].上海:东方出版中心,1998.
    [51]麻凤海,范学理,王泳嘉.巨系统复合介质岩层移动模型及工程应用[J].辽宁工程技术大学学报,1997,16(3):289~293.
    [52]于广明.分形及损伤力学在开采沉陷中的应用研究[D]山东科技大学博士学位论文,2000.
    [53]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [54]刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001,23(2):201~204.
    [55]刘红元,唐春安,芮勇勤.各煤层开采时垮落过程的数值模拟[J].岩石力学与工程学报,2001,20(2):190~196.
    [56]唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报,1999,18(5):456~458.
    [57]许家林.岩层移动与控制的关键层理论及其应用[D].中国矿业大学博士学位论文,1999.
    [58]许家林,钱鸣高,高红新.采动裂隙实验结果的量化方法[J].辽宁工程技术大学学报,1998,17(6):586~589.
    [59]石平五,陈文伟.急斜长壁采场顶板破断和岩块运动规律[J].西安矿业学院学报, 1990 (2): 10~21.
    [60]赵朔柱,吴绍倩.急斜煤层顶板岩墙的破断规律及矿压显现[J].西安矿业学院学报,1990(2): 22~32.
    [61]Ю.Н.马雷舍夫,А.Т.艾鲁尼,Ю.Л.胡金等.煤与瓦斯突出预测方法和防治措施[M].北京:煤炭工业出版社, 2004.
    [62]Аǔрунu A.T.Теорияипрактикаборьбысрудничнымигазаминабольшихглубинах[M].Недра, 1981.
    [63]А.М.Рудь,О.А.Колесов,А.Т.Айруниидр.Меmодыпрогнозаиспособыпредотвращениявнезапныхвыбросовугля,породыигаза[М].ЦНИЭИуголь, 1990.
    [64]ЗенховuчЛ.М..Закономерностиизмененияфильтрационныхсвойствмеждупластовыхтолщпрндегазацинподзащитныхпластовскважинами[М].РотапринтИПКОНАНСССР, 1984.
    [65]АЙруниА.Т.Исследования.динамикидавленияметанавопасныхповнезапнымвыбросамподрабатываемыхйнадрабатываемыхугольныхпластахпрппримененииискусственнойдегазадии[C].Доклади,17международнаяконферендияпонауннымисследованиямвобластибезопасностиработвгорнойпромыщлености,Варна, 1977.
    [66]邹奎业.中梁山煤矿解放层开采[J].中煤科技,1980,(2):42~43.
    [67]南桐矿务局,重庆大学采矿系,煤炭科学研究院重庆研究所.南桐矿务局直属一井倾斜近距离开采解放层及抽放瓦斯研究报告,矿业安全与环保,1974, (1): 1~2.
    [68]涟邵矿务局立新煤矿瓦斯研究室.邻近煤层瓦斯抽放[J].煤矿安全, 1976, (4): 22~23.
    [69]老鹰山煤矿.被解放层边采边抽瓦斯在我矿的应用[J].煤矿安全, 1977, (6): 35~41.
    [70]高祥.保护层开采的保护范围和效果的研究[J].煤炭技术, 2004, 23(9): 1~2.
    [71]罗勇,祁琦.煤层群多重开采上保护层防突研究[J].防灾减灾工程学报, 2005, 25(3): 244~250.
    [72]屠锡根.试论上保护层开采的有效性[J].煤炭学报, 1965, 2(3): 20~26.
    [73]华安增.煤层底板采动影响[J].煤炭学报, 1983, 8(3): 36~41.
    [74]马大勋.关于上保护层的实验研究与探讨[J].煤炭学报, 1986, 11(3): 1~6.
    [75]王轩.解放层开采瓦斯渗流数值模拟[D].重庆:重庆大学硕士学位论文, 1983.
    [76]谭学术,肖勤学,吴泽源.上解放层解放范围的力学分析[J].煤炭学报, 1988, 13(2): 25~31.
    [77]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤, 1999, 8(1): 36~39.
    [78]孙培德. Sun模型及其应用~煤层气越流固气耦合模型及可视化模拟[M].杭州:浙江大学出版社, 2002.
    [79]王永秀,齐庆新,徐刚.华丰矿保护层开采数值模拟研究[J].煤矿开采, 2003, 8(4): 4~7.
    [80]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报, 2004, 33(3): 259-263.
    [81]刘林.开采保护层保护效果及范围的数值模拟研究[J].矿业安全与环保, 2005, 32(6): 6~9.
    [82] Sun P.D.. Study of the dynamic models for coal gas dynamics (part 1). Min. Sci. Technol., 1991, 12(1): 17-25.
    [83]煤炭科学研究总院北京开采所. MT38~50-80—1981.煤和岩石物理力学性质试验规程[S].北京:中华人民共和国煤炭工业部, 1981.
    [84]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的研究[J].岩土工程学报, 1995, 17(3): 26-31.
    [85] Jaeger J. C., Cook N. G. W..岩石力学基础.中国科学院工程力学所译.北京:科学出版社, 1981.
    [86] Walsh J B. Effect of pore pressure and confining pressure on fracture permeability [J]. International Journal of Rock Mechanic & Mining Science, 1981, 18: 429-439.
    [87]俞启香,程远平,蒋承林,等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报, 2004, 33(2): 127-131.
    [88]涂敏,缪协兴,黄乃斌.远程下保护层开采被保护层煤层变形规律研究[J].采矿与安全工程学报,2006,23(3),253~257.
    [89]石必明,刘泽功.保护层开采上覆岩层煤层变形特性数值模拟[J].煤炭学报,2008,33(1),17~22.
    [90]周维垣.岩石力学数值计算方法的现状与展望[J].岩石力学与工程学报,1993,12(1):42-47.
    [91]张楚汉.论岩石、混凝土离散—接触—断裂分析[J].岩石力学与工程学报,2008,27(2):217-235.
    [92]蔡美峰,何满潮,刘东燕等.岩石力学与工程[M].北京:科学出版社2002:228~233.
    [93]刘志河,马其华,曹建军.煤矿采空区在数值模拟中的处理方法[J].煤矿开采, 2005, 10(6): 4-12.
    [94] HU Guo-zhong, WANG Hong-tu, LI Xiao-hong, et al. Numerical simulation of protection range in exploiting the upper protective layer with a bow pseudo-incline technique. Journal of China University of Mining and Technology, 2009, 19(1): 58-64.
    [95]赵均海,汪梦莆.弹性力学及有限元[M].武汉:武汉理工大学出版社, 2003.
    [96]李明好.下保护层开采卸压范围及卸压程度的研究[D].淮南:安徽理工大学, 2005.
    [97]王宏图,鲜学福,尹光志,等.煤矿深部开采瓦斯压力计算的解吸算法[J].煤炭学报, 1999, 24(3): 279-283.
    [98] SUN P D. A numerical approach for coupled gas leak flow and coal/rock deformation in parallel coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(supp.1): 2A 21 1-6.
    [99]林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社, 1998: 60-63.
    [100] SOMERTON W H. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1974, 12(1): 129-145.
    [101]吕闰生,张子戌.提高测压钻孔瓦斯压力测定成功率分析[J].煤炭工程, 2004, (11): 46-48.
    [102]中华人民共和国煤炭工业部.煤矿井下煤层瓦斯压力的直接测定方法[S]. 1996.
    [103]刘明举,何学秋.煤层透气性系数的优化计算方法[J].煤炭学报,2004,29(1):74~78.
    [104]谢俊文.急:倾斜厚煤层高效综放长壁开采技术[M].北京,煤炭工业出版社,2005.
    [105]李栖凤.急倾斜煤层开采[M].北京,煤炭工业出版社,1984.
    [106]淮南矿务局生产技术处.淮南矿区伪倾斜柔性掩护支架采煤法[M].北京:煤炭工业出版社,1980.
    [107]尹光志,代高飞,皮文丽等.俯伪斜分段密集支柱采煤法缓和急倾斜煤层矿压显现不均匀现象的研究[J].岩石力学与工程学报,2003, 22(9): 1483~1488.
    [108]石平五,陈文伟.急斜长壁采场顶板破断和岩块运动规律[J].西安矿业学院学报, 1990 (2): 10~21.
    [109]赵朔柱,吴绍倩.急斜煤层顶板岩墙的破断规律及矿压显现[J].西安矿业学院学报,1990 (2): 22~32.
    [110]黄贺.弹性薄板理论[[M].长沙:国防科技大学出版社,1992.
    [111]杨耀乾.平板理论[[M].北京:中国铁道出版社,1980.
    [112]王红卫,陈忠辉,杜泽超等.弹性薄板理论在地下采场顶板变化规律研究中的应用[J].岩石力学与工程学报, 2006, 25增2:3769~3774.
    [113]曲庆璋,章权,季求知等.弹性板理论[M].北京:人民交通出版社, 2000:191~200.
    [114]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [115]王作棠,钱鸣高.老顶初次来压步距的计算预测法[J].中国矿业大学学报,1989,18(2):9~18.
    [116]蒋金泉.倾斜煤层采场老顶初次来压步距的计算[J].矿山压力与顶板管理,1992,1:56~61.
    [117]何富连,赵计生,姚志昌.采场岩层控制论[M].北京:冶金工业出版社,2009,14~20.
    [118]屈庆栋,许家林,钱鸣高等.关键层运动对邻近层瓦斯涌出影响的研究[J].岩石力学与工程学报,2007,26(7), 1478~1484.
    [119]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5),463~464.
    [120]许家林,钱鸣高.关键层对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2),122~124.
    [121]贾剑青,王宏图,唐建新等.硬软交替岩层的复合顶板主关键层及其破断距的确定[J].岩石力学与工程学报,2006,25(5),976~977.
    [122]缪协兴,茅献彪,孙振武等.采场覆岩中复合关键层的形成条件与判别方法[J].中国矿业大学学报,2005,5(34). 547~550.
    [123]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999,64~65
    [124] Liu Jianjun. Simulation of coal-bed methane and water two-phase fluid-solid coupling flow. In: Frontiers of Rock Mechanics and sustainable development in the 21st century[A]. Sijing, Binjun and Zhongkui (eds.).Swets & Zeitlinger B V., Lisse[C]. The Netherlands, 2001, 347-349.
    [125] Dziurzynski W, Krach A. Mathematical model of methane emission caused by a collapse of rock mass trump [J]. Archives of Mining Sciences, 2001, 46(4): 433-449.
    [126] SaghafiA, FaizM, RobertsD. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia [J]. International Journal of Coal Geology, 2007, 70: 240–254.
    [127] SUN P D. A numerical approach for coupled gas leak flow and coal/rock deformation in parallel coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(supp.1): 2A 21 1-6.
    [128] HU Guozhong, WANG Hongtu, FAN Xiaogang, et al. Mathematical model of coalbed gas flow with Klinkenberg effects in multi-physical fields and its analytic solution[J]. Transport in Porous Media, 2009, 76(3): 407-420.
    [129] LIU lin, CHENG Yuan-ping, WANG Hai-feng, et al. Principle and engineering application of pressure relief gas drainage in low permeability outburst coal seam. Journal of China University of Mining and Technology, 2009, 19(3): 342-345.
    [130]胡国忠,王宏图,范晓刚等.俯伪斜上保护层保护范围的瓦斯压力研究[J].中国矿业大学学报. 2008,37(3):328~332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700