用户名: 密码: 验证码:
模型试验中地基材料粒径与基础尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着土工离心模拟技术的不断发展,离心模型试验已成为解决工程问题的一种强有力的手段,在环境工程、建筑工程、水利水电、近海、交通、采矿等工程中广泛应用。但由于承载力离心模型试验中粒径效应问题的存在,使得离心模型试验结果存在误差,不能很好的模拟原型的各种特性。本文在研究基础埋深对圆形浅基础粒径效应的影响的基础上,详细研究了端承型桩承载力离心模型试验中的粒径效应问题,并讨论了基础埋深对基础尺寸效应的影响,探讨了承载力离心模型试验中颗粒破碎性与粒径效应之间的关系。
     首先利用modelling of models(模型的模拟)的方法研究基础埋深对圆形浅基础承载力离心模型试验中的粒径效应的影响规律。使用的地基材料为经过粒度调整的河砂,其平均粒径为0.06cm,模型基础直径为0.5~4cm,模型基础直径与地基材料平均粒径的比值在8.3~66.7之间,模型基础埋深与直径的比值为0,0.5和1.0;模拟原型直径为20~150cm。利用粒径效应评价指标对试验中的粒径效应进行定量讨论,结果表明,随着基础埋深的增大,粒径效应的范围及对试验结果的影响程度减小。同时,给出粒径效应范围图,用于选择合理的模型基础尺寸或地基材料尺寸。
     通过一系列不同埋深情况下的圆形基础承载力离心模型试验研究基础埋深对基础尺寸效应的影响,并探讨粒径效应和基础尺寸效应之间的关系。试验结果表明,基础尺寸效应的程度和影响范围均随基础埋深的增大而增大,即随着基础埋深的增加,承载力试验中的基础尺寸效应逐渐变得显著,由此推测,承载力系数Nq同样存在基础尺寸效应问题,且随着基础埋深的增加,Nq的基础尺寸效应逐渐明显。同时,对于相同的基础埋深,基础尺寸效应的影响随基础直径的增大而增大,即在离心场中,基础尺寸效应随粒径效应的减小而变得显著。
     利用不同长径比情况下的端承型桩承载力离心模型试验,研究桩基承载力离心模型试验中的粒径效应问题。在模拟同一原型时,不同桩径的模型桩,桩身压缩性及桩长均不同,导致侧摩阻力发挥机理及程度不同,本文分别探讨了桩端阻力,侧摩阻力及承载力(桩顶荷载)的粒径效应对承载机理和承载特性的影响。结果表明,桩端阻力的粒径效应的作用规律与浅基础一致,可以借用浅基础的粒径效应定量评价方法评价端承桩承载力离心模型试验中的粒径效应。侧摩阻力的粒径效应比桩端阻力的粒径效应显著。由于侧摩阻力的影响,相同条件下承载力的粒径效应比桩端阻力有所增强。对于极限桩端阻力和极限承载力,粒径效应均随长径比的增加而减弱。
     为了探讨承载力离心模型试验中的颗粒破碎性与粒径效应之间的关系,对承载力离心模型试验中的基底砂进行了颗粒分析试验,并用电子显微镜对基底砂进行了观察。结果表明,当换算基础直径和埋深较小时,不同直径模型基础承载力试验基底土样的颗粒级配曲线基本重合,颗粒破碎现象不明显。而随着换算基础直径和埋深的增大,不同直径模型基础承载力试验基底土样的颗粒级配曲线则并不完全重合,尤其粒径较小部分的曲线差别较大。即随着承载力的增加,颗粒破碎现象变得明显。通过电子显微镜的观察,在大多数试验条件下,基础底部的砂土颗粒都出现了破碎现象,且当极限承载力大于2174kN时,破碎现象比较明显。应力水平的增加对颗粒破碎性的影响大于基础埋深(长径比)对颗粒破碎性的影响。而随着换算基础直径的增大,粒径效应增强,因此,随着颗粒破碎性的增强,粒径效应变得明显。
With the development of centrifugal model tests, the centrifuge has become a valid method in many fields. Though centrifugal model test, the environmental engineering, civil engineering, hydraulic projection, offshore engineering, highway bridge construction project and mining can be studied in the same stress level as the prototype. But because of the influence of the particle size effect on the centrifuge test, the centrifuge test can't reflect the characters of the prototype. In this thesis, the influence of the depth on the particle size effect in bearing capacity centrifuge tests is studied at first, and then the particle size effects on the centrifuge bearing capacity tests of the end bearing pile are researched. The influence of the scale effect and the particle crushing on the particle size effect is also studied.
     Fristly, the influence of the depth on the particle size effects of the circle shallow footings in centrifugal bearing capacity tests are studied by modelling of models. In the tests, the ground is made by the river sand whose grain diameter is adjusted by sieving and the mean grain diameter is 0.06cm. The diameter of the model footings changed from 0.5 to 4cm and the ratio of the footing diameter to the mean grain diameter is 8.3 to 66.7. The ratio of the depth to the footing diameter is 0,0.5 and 1.0 and the equivalent footing diameter is 20 to 150cm. The evaluating index is used to discuss the particle size effects in the tests and the results show that the influence of the particle size effects is decreased as the depth increased. And based on the test results, the figure which indicates the scope of the particle size effects is deduced and it can be used to choose the reasonable model footing size and the ground material.
     Secondly, the bearing capacity tests are conducted in a centrifuge to examine the influence of the footing embedment on the scale effect of the footings. Test results show that the scale effect becomes more significant with the increasing of footing embedment and there also exists a scale effect for the bearing capacity Nq, and Nq decreases more sharply as the footing embedment increases. The scale effect also becomes more significant with the increasing in the model footing diameter for the same footing embedment and in the centrifuge model test, the scale effect become smore significant in the case of the particle size effect less obvious.
     Thirdly, the particle size effect on the centrifuge bearing capacity tests of the end bearing pile are studied by modeling of models. For the same prototype, because the different model piles had different length and compressibility, the mobilization of the shaft resistance is different. In this thesis, the influence of the particle size effect on the end resistance, the shaft resistance and the total pile resistance are discussed respectively. The test results show that the rule of particle size effects on the end resistance is the same as the shallow foundation, and the index evaluating the particle size effects on the shallow foundation can be used to assess the influence on the end resistance. The particle size effect on the shaft resistance is more obvious than the end resistance. And because of the shaft resistance, the particle size effect on the total pile resistance is also more marked than the end resistance in the same condition. For both the end resistance and the total pile resistance, the particle size effect decreases as the slender ratio increased.
     Lastly, the particle size analysis is conducted and the electron microscope is used to study the particle crushing in the bearing capacity centrifuge tests. The results show that the curves of grains size distribution of different footing diameter are almost the same when the equivalent footings and depth are small and the particle crushing is not significant. But as the equivalent footing diameter and the depth increase, the curves of grains size distribution are different from others, especially the part of small grains size. The particle crushing becomes significant with the bearing capacity increasing. Though the electron microscope, the sand under the model footings present the particle crushing in the most tests, and the particle crushing becomes obvious when the ultimate bearing capacity is greater than 2174kN. The influence of the stress level on the particle crushing is more than that of the depth. Because the particle size effect becomes more significant with the equivalent footing diameter increasing, the particle size effect is more obvious when the particle crushing is marked.
引文
[1]李广信.高等土力学,北京:清华大学出版社,2004.
    [2]三笠正人.土質工学と模型実験.1980,28(6):1~2.
    [3]土質工学会.地盤工学における模型実験入门,1994.
    [4]山口柏樹.模型実験結果の解釈と信頼性.土と基礎,1980,28(5):3~7.
    [5]足立紀尚.模型実験とその限界.土と基礎,1992,40(5):1~4.
    [6]雷胜友.离心模型试验技术及其在中国的应用.西安公路交通大学学报,1998,18(4):222~225.
    [7]唐春安,唐烈先,李连崇,李常文.岩土破裂过程分析RFPA离心加载法.岩土工程学报,2005,29(1):71~76.
    [8]黄志全,王思敬.离心模型试验技术在我国的应用概况.岩石力学与工程学报,1998,17(2):199~204.
    [9]油新华,李晓.国外离心模型试验技术在边坡工程中的应用现状与展望.工程地质学报,2000,8(4):442~445.
    [10]张嘎,牟太平,张建民.基于图像分析的土坡离心模型试验变形场测量.岩土工程学报,2007,19(1):94~97.
    [11]介玉新,李广信,陈轮.纤维加筋土和素土边坡的离心模型试验研究.岩土工程学报,1998,20(4):12~15.
    [12]Mark,C, Gemperline,D, Hon,Y. Centrifuge model tests for ultimate bearing capacity of footing on step slope in cohesionless soils. Proc of Int Conference Centrifuge'88,1988,203~221.
    [13]濮家骝.土工离心模型试验及其应用的发展趋势.岩土工程学报,1996,18(5):92~94.
    [14]胡黎明,劳敏慈,张建红,濮家骝.离心模型试验技术在环境岩土工程中的应用现状与展望.土壤与环境,2001,10(4):327~330.
    [15]张建红,孙国亮,鲁晓兵.离心机中冻冰荷载的模拟.岩土工程学报,2005,27(4):474~477.
    [16]袁凡凡,栾茂田,闫澍旺,孙万禾,毛明.港口工程中非均质层状地基承载力计算方法.岩土力学,2006,27(4):1124~1128.
    [17]张建红,林小静,鲁小兵.水平荷载作用下张力腿平台吸力式基础的物理模拟.岩土工程学报,2007,29(1):77~81.
    [18]曾有金,章卫民,王年香,许光明.运营期船桥碰撞时大型哑铃型承台群桩基础承载变形特征.岩土工程学报,25(5):575~581.
    [19]王年香,章为民.苏通长江公路大桥主桥索塔群桩基础与土体共同作用离心模型试验研究报告:南京:南京水利科学研究院,2004,47~49.
    [20]姚裕春,姚令侃,袁碧玉.边坡开挖迁移式影响离心模型试验研究.岩土工程学报.2006,28(1):76~80.
    [21]刘俊新,文江泉,邱恩喜.离心模型试验在粉喷桩处理软土地基沉降中的研究.工程地质学报,2005,13(3):71~75.
    [22]赵晓彦.类土质边坡特性及其锚固设计理论研究.岩石力学与工程学报,2006,25(3).
    [23]苗英豪,胡长顺.土工格栅加筋陡边坡路堤位移特性的试验研究.中国公路学报,2006,19(1):47~53.
    [24]康佐,谢永利,冯忠居,杨晓华.应用离心模型试验分析涵洞病害机理.岩土工程学报, 2006,28(6):784~788.
    [25]胡小明,雷胜友.双面加筋土高挡墙的离心模型试验研究.四川大学学报(工程科学版),2002,34(4):38~41.
    [26]胡小明,余学明.高填方黄土路堤的最优填筑密度分区研究.四川大学学报(工程科学版),2002,34(1):40~45.
    [27]徐光明,章卫民.离心模型中的粒径效应和边界效应研究.岩土工程学报,1996,18(3):80~85.
    [28]Kusakabe O. Application of centrifuge modeling to foundation engineering. Foundation and Construction,1993,11(1):1~10.
    [29]Okamura,M, Takemura,J, Ueno,K.. Centrifugal model test-the technology and the applicability.2. The similarity of centrifugal model test and the technology-advantage and disadvantage. Soil Mechanics and Foundation Engineering,2004,52(10):7~14.
    [30]Lyndon.A, Pearson.R.A. Skin friction effects on laterally loaded large diameter piles in sand. Proceedings of the International Conference Centrifuge Modeling, Pairs,1988,363~369.
    [31]Leung.C.F, Yet.N.S. Behaviour of poles subjected to lapses during installation. Proceedings of the International Conference Centrifuge,Tokyo,1998,491~494.
    [32]Dyson.G. J, Randolph.M. F. Installation effects on lateral load-transfer curves in calcareous sands. Proceedings of the International Conference Centrifuge, Tokyo,1998,545~550.
    [33]Kouda.M.M, Okamato.J, Takemura.O. Direct measurement of p-y relationships of piles in sand:Proceedings of the International Conference Centrifuge, Tokyo,1998,551~556.
    [34]Latotzke.J, Konig.D.. Axial pile load tests with reaction piles. Proceedings of the International Conference Centrifuge, Tokyo,1998,485~490.
    [35]Feld.T, Bloomquist.P.. Investigation of pile group efficiencies in sand. Proceedings of the International Conference Centrifuge 94, Singapore,1994,437~442.
    [36]Fioravante.V.. Load transfer mechanism of piled aft foundation. Proceedings of the International Conference Centrifuge, Tokyo,1998,.495~500
    [37]Kimura.M, Adachi.T, Yamanaka.T. Failure mechanism of axially-loaded concrete piles under cyclic lateral loading. Proceedings of the International Conference Centrifuge, Tokyo,1998, 539~544.
    [38]Hamilton.J.M, Dunnavant.Y.W, Murff.J.D.. Centrifuge study of laterally loaded behavior in clay. Proceedings of the International Conference Centrifuge, Colorada,1991,285~292.
    [39]Novak.M, Sharnoby.B. Pile groups under static and dynamic loading. proc.11th ICSMFE, san Francisco,1985,13:1449~1454.
    [40]Renzi.R,Maggioni.W,Smits.F.. A centrifuge study on the behavior of suction piles. Proceedings of the International Conference Centrifuge, Colorada,1991,169~176.
    [41]Ilyas.T, Leung.C.F, Chow.Y.K.. Performance of laterally loaded pile group in clay. Proceedings of the International Conference Physical Modelling in Geotechnics, Balkema,2002, 703~708.
    [42]Remaud.D,Garnier.J,Frank.R.. Laterally loaded piles in dense sand:Group effects. Proceedings of the International Conference Centrifuge, Tokyo,1998,527~532.
    [43]Terashi.M,Kitazume.M,Maruyama.A.. Lateral resistance of a long pile in or near the slope. Proceedings of the International Conference Centrifuge, Colorada,1991,245~252.
    [44]曾友金,王年香,章为民等.软土质地区微型桩基础离心模型试验研究.岩土工程学报,2003,25(2):242~245.
    [45]郑金秋.群桩入桩过程中的孔压变化及其对承载力影响的离心试验研究:[博士学位论文].北京:清华大学,1998.
    [46]张利民,胡定.土石坝离心模拟的若干推断方法.第二届全国土工离心机模拟技术会议讨论文集,上海:同济大学出版社,1991.
    [47]吴宏伟,陈重义,陈司豪.固结软土中单桩负摩擦离心机模型试验,香港科技大学,2004.
    [48]徐建中.入桩顺序对粘土地基群桩竖向承载力影响的土工离心试验研究:[博士学位论文].北京:清华大学,1997.
    [49]王年香,章为民.苏通长江公路大桥索塔超深基础受力变形专题研究之一大型超深基础离心模型试验研究报告.南京:南京水利科学研究院,2002.
    [50]游庆仲,王年香,章卫民.大直径超长单桩竖向承载性能离心模型试验研究.桥梁建设,2006,1:1~4.
    [51]雷胜友.离心模型试验技术及其在中国的应用.西安公路交通大学学报,1998,18(4):222~225.
    [52]Sarah M. Springman. Physical Modelling in Geotechnics. International Workshop on Geotechnical Centrifuge Modelling--In the light of better centrifuge modelling technology, Shanghai,2009,32~74.
    [53]Chen.W.F. Limit Analysis and Soil Plasticity. NewYork:Elsevier Scientific Publishing Co., 1975.
    [54]Mikasa.M, Takada.N, Yamada.K. Significance of centrifuge model test in soil mechanics. Proc 8th Int Conf Soil Mech Found Eng, Moscow,1973,2:273~278.
    [55]Ovesen.N.K. Centrifugal Testing Applied to Bearing Capacity Problems of Footings on Sand. Geotechnique,1975,25(2):354~401.
    [56]Yamaguchi.H.,Kimura.T. and Fujii.N. On the scale effect of footings in dense sand. Proc.9th Int. Conf. Soil Mech. Found. Engg.,1977.
    [57]Corte.J.F.. Essais sur modeles reduits en geotechnique. Proceedings 12th Int.Conf.of Soil Mechanics and Foundation Engineering.1980,4:2553-2571
    [58]J.-L.Pu, H.-Y.Ko:Experimental determination of bearing capacity in sand by centrifugal footing tests, Pro.Centrifugal 88,1988,293-299.
    [59]Kutter.B.L., Abghari A., Cheney J.A.. Strength Parameters for Bearing Capacity of Sand. Journal of Geotechnical Engineering, ASCE,1988,114(4):491~497.
    [60]Roscoe.K.H. Soil and model tests. Journal of Strain Analysis,1968,3.
    [61]Roscoe.K.H. The influence of strain in soil mechanics. Geotechnique,1970,20(2).
    [62]Yamaguchi.H. Soil Mechanics. edited by T. Mogami. Gihodo, Tokyo,1969.
    [63]Malushitsky.Y.N. The centrifugal model testing of waste-heap embankments. London: Cambridge University Press,1975.5~11.
    [64]Santamarina,J.C,Goodings,D.J.. Centrifuge Modeling:A Study of Similarity. Geotechnical Testing Journal,1989,12(2):163~166.
    [65]Tatsuoka,F.,Molemkamp,F.,Torii,T.,Hino,T.. Behaviour of lubrication layers in element tests. Soils and Foundations,1984,24(1):13~128.
    [66]Tatsuoka,F.,Haibara,O. Shear resistance between sand and smooth or lubricated surfaces. Soils and Foundations,1985,25(1):89~98.
    [67]Ovesen N K. The use of Physical Models in Design:The Scaling Law Relationships. Proc.7th European Conference on Soil Mechanics and Foundation Engineering,1979,4:318~323.
    [68]Yang Jun-jie, Toyosawa Y. Bearing capacity of reinforced sandy ground using centrifuge tests. Soil Mechanics and Foundation Engineering,2003,51(11):47~49.
    [69]Tatsuoka,F.,Okahara,M.,Tanaka,T.,Tani,K.,Morimoto,T.and Siddiquee,M.S.A.. Progressive failure and particle size effect in bearing capacity of a footing on sand. Geotechnical Engineering Congress, ASCE,1991,11:788~802.
    [70]Tatsuoka,F., Tanaka,T., Okahara,M., Siddiquee, S. A. Study into the bearing capacity of strip footing on sand by model tests, element tests and numerical analyses. Soil Mechanics and Foundation Engineering,1992,40(5):11~16.
    [71]Tatsuoka,F.,Goto,S., Tanaka,Tani,K and Kimura,Y. Particle size effects on bearing capacity of footing on granular material. Proc. IS-NAGOYA,1997:133-138.
    [72]Siddiquee,M.S.A,Tanaka,T.,Tatsuoka,F.. A numerical simulation of bearing capacity of footing on sand. Proc.27th Annu. Meet. Japanese Soc. Soil Mech. and Found. Eng.,1992,2: 1413-1416.
    [73]Okamura,M, Takemura,J, Kimura,T. A study on bearing capacity of shallow footing on sand. Journal of Geotechnical Engineering, JSCE,1993, No.463/111-66:247~257.
    [74]黄志全,王思敬.离心模型试验技术在我国的应用概况.岩石力学与工程学报,1998,17(2):199~203.
    [75]刘守华等.土工离心模型填料装置研究.岩土工程学报,1996,18(3):74~79.
    [76]Andrzej F. Tejchman.. Model Investigations of Pile Groups in Sand. Journal of the Soil Mechanics and Foundation Division, Proceedings of the American society of civil engineers,1973, (2):199~217.
    [77]Michael W.O'Neill, Richard A. Hawkins, Larry J. Mahar. Load transfer mechanisms in piles and pile groups. Journal of the geotechnical engineering division, Proceedings of the American society of civil engineers,1982,108(11):1605~1623.
    [78]Jean-louis Briaud, Larry M. Tucker. Measured and predicted axial response of 98 Piles. Journal of Geotechnical Engineering,1988,114:984~1001.
    [79]Ming-Fang Chang, Hong Zhu. Construction effect on load transfer along bored piles. Journal of geotechnical and geoenvironmental engineering, Proceedings of the American society of civil engineers,2004,130(4):426~437.
    [80]陈强华.进入持力层不同深度对单桩承载力的影响.岩土工程学报,1981,3(1):16~27.
    [81]董金荣,林胜天,戴一鸣.大口径钻孔灌注桩荷载传递分析.岩土工程学报,1994,16(6):123~131.
    [82]王国民.软岩钻孔灌注桩的荷载传递性状.岩土工程学报,1996,18(2):99~103.
    [83]高广运,王文东,吴世明.黄土中灌注桩竖向承载力试验分析.岩土工程学报,1998,20(3):75~79.
    [84]费鸿庆,王燕.黄土地基中超长灌注桩工程性状研究.岩土工程学报,2000,22(5):576~580.
    [85]赵明华,曹文贵,刘齐建.按桩顶沉降控制嵌岩桩竖向承载力的方法.岩土工程学报,2004,26(1):67~71.
    [86]Lyndon A, Pearson R A. Skin friction effects on laterally loaded large diameter piles in sand, pairs,1988,363~369.
    [87]Nunez,i L, Hoadley P J, Randolph M F, et al. Driving and tension loading of piles in sand on a centrifuge.1988,363~369.
    [88]Luong M P, Bonaz R, Pecker A. Piles and pile groups under forced horizontal loading in a centrifuge. Pairs,1988,513~520.
    [89]张利民,胡定.土石坝离心模拟的若干推断方法.上海:同济大学出版社,1991.
    [90]Terashi M, Kitazume M, Maruyama A. Lateral resistance of a long pile in or near the slope. Colorado,1991,245~252.
    [91]Hamilton J M, Dunnavant T M, Murff J D. Centrifuge study of laterally loaded behavior in clay. Colorado,1991,285~292.
    [92]Remaud D, Gamier J, Frank R.. Laterally loaded piles in dense sand:Group effects. Tokyo, 1998.
    [93]Kimura M, Adachi T, Yamanaka T. Failure mechanism of axially-loaded concrete piles under cyclic lateral loading. Tokyo,1998,539~544.
    [94]Dyson G J, Randolph M F. Installation effects on lateral load-transfer curves in calcareous sands. Tokyo,1998,545~550.
    [95]Kouda M M, Okamota J, Takemura O. Direct measurement of P-y relationships of piles in sand. Tokyo,1998,551~556.
    [96]LIyas T, Leung C F, Chow Y K. Performance of laterally loaded pile group in clay. Rotterdam:Balkema A A,2002.
    [97]Renze R, Maggioni W, Smits F. A centrifuge study on the behavior of suction piles. Colorado, 1991,169~176.
    [98]Feld T, Bloomquist P. Investigation of pile group efficiencies in sand. Singapore,1994, 437~442.
    [99]徐建忠.入桩顺序对粘土地基群桩竖向承载力影响的土工离心试验研究:[博士学位论文].北京:清华大学,1997.
    [100]Leung C F,Yet N S. Behavior of piles subjected to lapses during installation. Tokyo,1998.
    [101]Fioravante V. Load transfer mechanism of piled aft foundation. Tokyo,1998,491~494.
    [102]C.J.Lee, H.T.Chen, W.H.Wang. Negative skin friction on a pile due to excessive groundwater withdrawal. Tokyo,1998,513~518.
    [103]Latotzke J, Konig D. Axial pile load tests with reaction piles. Tokyo,1998,485~490.
    [104]M.E.B.Rezenda, J.Garnier, G.Rault, J.C.A.Cintra. Effect of shaft friction developer by centrifuge acceleration on pile loading tests results. Tokyo,1998,501~506.
    [105]郑金伙.群桩入桩过程中的孔压变化及其对承载力影响的离心试验研究:[博士学位论文].北京:清华大学,1998.
    [106]曾友金,章为民,王年香等.桩基模型试验研究现状.岩土力学,2003,24(supp):674~ 680.
    [107]吴宏伟,陈重义,陈思豪.固结软土中单桩负摩擦离心机模型试验.香港:香港科技大学,2004.
    [108]王年香,章为民,曾友金等.主桥索塔群桩基础与土体共同作用离心模型试验研究报告.南京水利科学研究院,2004.
    [109]童建国,朱瑞燕.固结软土中单桩负摩擦离心机模型试验研究.岩土工程勘测,2005,2(1):12~16.
    [110]杨俊杰.承载力离心模型试验中的粒径效应.包承纲编著:岩土工程离心模拟技术及其工程应用,武汉:长江出版社,2010.
    [111]濮家骝,高汉棪.浅基础承载力离心模型试验研究.岩土工程学报,1988,10(6):1~18.
    [112]杨俊杰,柳飞,丰泽康男,堀井宣幸,伊藤和也.砂土地基承载力离心模型试验中的 粒径效应研究.岩土工程学报,2007,29(4):477~483.
    [113]Kimura,T., Kusakabe.O. and Saitoh,K.. Geotechnical model test of bearing capacity problems in a centrifuge. Geotechnique,1985,35(1):33~45.
    [114]Kusakabe 0. Geotechnical Centrifuge Technology. R.N.Taylor Ed. Published by Blackie Academic and Professional,1995.
    [115]I.L. Nunez, R. Phillips, M.F.Randolph and B.D.Wesselink. Modeling laterally loaded piles in calcareous sand. Centrifuge'88, Balkema, Rotterdam,1988,371~381.
    [116]D. Remaud, J. Gamier and R. Frank. Laterally loaded piles in dense sand:Group effects. Centrifuge'98, Balkema, Rotterdam,1998,533~538.
    [117]J. Latotzke, D. Konig and H. L. Jessberger. Axial pile load tests with reaction piles. Centrifuge'98, Balkema, Rotterdam,1998,485~490.
    [118]P. Caporaletti, G. Scarpelli and R. N. Bearing capacity of screwed conical piles in sand: centrifuge modeling. Physical Modelling in Geotechnics:ICPMG'02, Swets&Zeitlinger Lisse, 2002,631~636.
    [119]U.Klotz and R. N. Taylor. Modelling the behavior of driven piles in sands. Physical Modelling in Geotechnics:ICPMG'02, Swets&Zeitlinger Lisse,2002,637~642.
    [120]A.D. Deeks and D.J. White. Centrifuge modelling of jacked piles. Physical Modelling in Geotechnics:ICPMG'06, London,2006,821~826.
    [121]V. Fioravante, A. Colombi and M. Jamiolkowski. On the effects of residual tangent stresses in centrifuge pile tests. Physical Modelling in Geotechnics:ICPMG'06, London,2006,827~833
    [122]J.Garnier and D.Konig. Scale effects in piles and nails loading tests in sand. Centrifuge'98, Balkema, Rotterdam,1998,205~210.
    [123]P.Foray, L.Balachowski and GRault. Scale effect in shaft friction due to the localisation of deformations. Centrifuge'98, Balkema, Rotterdam,1998,211~216.
    [124]J-Ch.Sartoris, P.Chambon and D.Konig. Scale effects of small diameter cylindrical inclusion in sand. Centrifuge'98, Balkema, Rotterdam,1998,199~204.
    [125]M.C.Gemperline.. Coupled effects of common variables on the behavior of shallow foundations in cohesionless soils. Centrifuge'88,Balkema, Rotterdam,1988,285~292.
    [126]Yamaguchi,H., Kimura,T. and Fujii,N.. On the influence of progressive failure on the bearing capacity of shallow foundation in dense sand. Soils and Foundations,1976,13(1):11~ 22.
    [127]柳飞杨俊杰,丁原东.基础形状及埋深对承载力特性的影响研究.建筑技术,2007,38(增刊):327~331.
    [128]Ueno K. on the bearing capacity of surface foundation on granular media:[Ph.D.Thesis], 2001.
    [129]Toyosawa,Y., Yang Junjie, Miura, S. and Suemada,N.. Bearing Capacity of Reinforced Ground Using Centrifuge Tests. Journal of Geotechnical Engineering, JSCE,2004, No.757/Ⅲ-66: 247~257.
    [130]Meyerhof,G.G.. An investigation of the bearing capacity of shallow footings on dry sand. Proc.2nd Int. Conf. on Soil Mech. and Found. Engrg., Rotterdam,1948,1.
    [131]谢树彬,姬安宁,廖胜贤.用双曲线模拟载荷试验曲线方法探讨.岩土工程学报,1999,21(6):707~711.
    [132]Jun-jie Y. A study on bearing capacity of geogrid reinforced foundation ground: [Ph.D.Thesis],1994.
    [133]柳飞,杨俊杰,刘红军,丰泽康男,堀井宣幸,伊藤和也.离心模型试验模拟平板载荷试验研究.岩土工程学报,2007,29(6):880~886.
    [134]Golder H Q. The ultimate bearing pressure of rectangular footings. ournal of Institute for Civil Engineers,1941,17:161~174.
    [135]De Beer E E. The scale effect in the transposition of the results of deep sounding tests on the ultimate bearing capacity of piles and caisson foundation. Geotechnique,1963,13(1):39~75.
    [136]De Beer E E. Bearing capacity and settlement of shallow foundation on sand. Proc Symposium on Bearing Capacity and Settlement of Foundations.1965:15~33.
    [137]Oda,M.,Koishikawa,I.. Effect of strength anisotropy on bearing capacity of shallow footings in a dense sand. Soils and Foundations,1979,19(3):15~28.
    [138]Graham,J.,Hovan,J. M.Stress Characteristics for Bearing Capacity in Sand Using a Critical State Mode. Can. Geotech.J., Ottawa,1986,23:195~202.
    [139]Hettler,A.,Gudehus,G. Ingluence of the foundation width on the bearing capacity factor. Soils and Foundations,1988,28(4):81~92.
    [140]Kutter,B.L., Abghari A., Cheney J.A.. Strength Parameters for Bearing Capacity of Sand. Journal of Geotechnical Engineering, ASCE,1988,114(4):491~497.
    [141]Bolton,M.D.,Lau,C.K.. Scale effects in the bearing capacity of granular soils.12th Int.Conf.of Soil Mechanics and Foundation Engineering,1989,2:895~898.
    [142]Shiraisi,S. Variation in bearing capacity factors of dense sand assessed by model loading tests. Soils and foundations,1990,30(1):17~26.
    [143]Kusakabe,O.,Yamaguchi,H.,Morikage,A. Experiment and analysis on the scale effect of Nγ for circular and rectangularfootings. Centrifuge'91,Balkema, Rotterdam,1991,179~186.
    [144]Maeda,K.,Miura,K.. Confining stress dependency of mechanical properties of sands. Soils and Foundations,1999,39(1):53~67.
    [145]Muhs,H.. On the Phenomenon of Progressive Rupture in Connection with the Failure Load: Discussion. Proceedings of the 6th International Conference on Soil Mechanics and Foundations Engineering. Montreal, Que,1965,3:491~421.
    [146]Steenfelt,J.S.. Scale effect on bearing capacity factor Nγ Proceedings 9th Int.Conf.Soil Mechan. and Found. Eng., Tokyo,1977,1:749~752.
    [147]Corte,J.F.. Essais sur modeles reduits en geotechnique. Proceedings 12th Int.Conf.of Soil Mechanics and Foundation Engineering,1980,4:2553~2571.
    [148]Habib,P. Effet de taille et surfaces de glissement. Revue Francaise de Geotechn,1985,31(2):5~10..
    [149]Garnier,J.Validation des modeles physiques et numeriques:probleme des effets de taille. ICSMFE, Hambourg,1997,3:659~663.
    [150]Perkins,S.W.,Madson,C.R.. Bearing Capacity of Shallow Foundations on Sand:A Relative Density Approach. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(6): 521~530.
    [151]Tanaka,T.Deformation and stability analysis by finite element method. JSSMFE,1992,109~ 154.
    [152]Liu F., Yang, J.J., Liu H.J.,Toyosawa Y, Horiyi N, Itoh K. Influence of the sandy ground on the scale effect of footings. Recent development of geotechnical and geo-environmental engineering in Asia,2006,145~150.
    [153]柳飞,郑西来,杨俊杰,丰泽康男,堀井宣幸,伊藤和也.基础埋深对承载力离心模型试验中粒径效应的影响.岩土工程学报,2010,待刊.
    [154]Craig W H. Simulation of Foundations for Offshore Structures Using Centrifuge Modelling. Developments in Soil Mechanics and Foundation Engineering——Model Studies. London: Applied Science Publishiers LTD.1983.
    [155]肖宏斌,张春顺.桩端土和桩侧土在荷载传递过程中的相互强化.株洲工学院学报,2006,20(2):75~80.
    [156]Yoshimi. Y, T. Kishida. A ring torsion apparatus for evaluating friction between soil and metal surfaces. Geot. Test. J.1981,4:145~152
    [157]Kishida. H., M.Uesugi. Tests of the interface between sand and steel in simple shear apparatus. Geotechnique,1987 37:45~52.
    [158]Paikowski S. G., C. M. Player, P.J. Connors. A dual interface apparatus for testing unrestricted friction of soil along solid surface. Geot. Test. J,1995,2:168~193.
    [159]BCP Committe. Field tests on piles in sand.1997,11(2):29~49.
    [160]Miura.N. Point resistance of piles in sand. Proc.11th Int. Conf. on SMFE, San Francisco, 1985,3:1445~1448.
    [161]Yasufuku, N., Hyde, A.F.L.. Pile end-bearing capacity in crushable sands. Geotechnique, 1995,45(4):663~676.
    [162]Ohno,S., Sawada,S.. Bearing capacity of piles in sands with different curshabilities under various stress conditions. Proceedings of the Eleventh Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Seoul,1999,1:249~252.
    [163]Randolph,M., Finnie, I, Joer, H. Performance of shallow and deep foundations on calcareous soil. International seminar in Kagoshima'93-Regional soils-, Geomechanics Group of Kagoshima University, Kyushu Branch of JSSMFE,1993,169~220.
    [164]Kusakabe,O., Maeda, Y., Ohuchi, M. Large-scale loading tests of shallow footings in pneumatic caisson. Journal of Geotechnical Engineering, Proc. ASCE,1992,118(11):1681~ 1695.
    [165]Ohuchi,M. Kusakabe,O., Hagiwara,T., Abe,S. Development of shear band and particle crushing ovserved in in-situ loading tests on a sedimented sand. Journal of Geotechnical Engineering, Proc. ASCE,1994, No.487/Ⅲ-26:207~216.
    [166]Miyake,M., Kusakabe,O.. Shear band observed in loading tests. Proc. of Deformation and Progressive Failure in Geomechanics, IS Nagoya,1997,887~898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700