用户名: 密码: 验证码:
中等强度磁场对神经元离子通道特性的影响及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种通信设备、家用电器的日益普及和各种理疗设备的应用,人类受到电磁场或利或弊的影响越来越多,而对电磁场的生物效应的研究报道也日益增多,但其内在作用机理尚不清楚,仍需进行深入的实验和理论探索。因而,有必要研究不同参数的电磁场对人体的影响和作用,特别是在细胞层次上的探讨,将有助于排除以往流行病学方式研究中的个体差异的影响,更有利于在深层次上揭示电磁场对生物的作用机制。本研究利用全细胞膜片钳技术,从离子通道特性及细胞电活动的角度研究不同场强、频率和暴露时间的磁场对动物神经元通道特性的影响,包括磁场对小鼠神经元电压门控钠、钾通道电流的时间、电压、磁场强度和频率依赖性以及磁场对通道稳态激活和失活动力学特征的影响,这可在细胞和分子水平上探索磁场对动物神经元的影响和作用规律。本文的主要研究内容包括:
     1.在细胞水平上,利用膜片钳技术研究恒定磁场的作用对细胞形成全细胞模式之后的存活时间(也即细胞的存活能力)的影响。在30mT和100mT恒定磁场的暴露过程中,记录神经元的钠通道电流情况。实验显示30mT恒定磁场可显著延长神经元的平均存活时间,平均存活时间可达对照组的一倍以上,而100mT恒定磁场暴露组细胞的存活时间与对照组没有显著性变化。
     2.针对以往磁场对生物组织的影响多数停留在动物整体和器官水平上,利用膜片钳技术研究了一系列有代表性的3mT、30mT、100mT恒定磁场和3mT工频磁场对小鼠前额叶皮层神经元钠离子通道特性的影响。实验得出,不同强度和频率的磁场对神经元钠通道的激活和失活特性都产生了不同程度的影响,具有电压、时间以及磁场强度和频率依赖性。
     3.研究了一系列磁场(3mT、30mT、100mT恒定磁场和3mT工频磁场)对小鼠前额叶皮层神经元瞬时外向钾通道和延迟整流钾通道特性的影响。结果表明不同参数的磁场对神经元两种钾通道特性产生了不同程度的影响。
     4.针对目前动物标本的选择主要集中在大鼠上,而小鼠本身又有其无法取代的优点,通过多次的实验获得一种简单快速,能够制备大量小鼠神经元的急性分离方法。该方法获得的神经元具有良好的形态学特征和典型的电生理学特性,可用于膜片钳实验,这拓宽了细胞标本的选择。
With the increasingly popularity of various of communicating devices, household appliances and the application of many physiotherapy equipments, people are suffering more and more from the effects of electromagnetic fields. There are many research about the biological effects of electromagnetic fields, however, its mechanism is unclear, so it needs to be further explored. Therefore, it is necessary to study the influences and functions of the electromagnetic fields with different parameters on human being, especially on the cellular level, which will help to remove the effect of individual difference in the previous epidemiological study, and be more beneficial to reveal the biological mechanism of electromagnetic fields at a deeper level. From the aspects of the characters of ion channels and the electric activity of the cells, the influence of the magnetic field of different intensity, frequency and effect time to the channel characters of the animal neurons were researched using whole-cell patch-clamp technique. In this thesis, the dependences of the time, voltage, magnetic field intensity and frequency of the magnetic fields to the sodium and potassium channel currents of the neurons of the mouse and the influences of the magnetic fields to the activation and inactivation characteristics of the channels were researched. This will be able to explore the effects and rules of magnetic fields on animal neurons at cellular and molecular level.
     The main research contents of the dissertation are as follows:
     1. At the cellular level, using patch-clamp technique, we investigated the effects of static magnetic fields on the survival time (i.e. the viability of the cell) after the formation of the whole-cell mode. In the exposure process of 30mT and 100mT static magnetic field, the sodium channel currents were recorded. The experiments revealed that 30mT static magnetic field could increase the average survival time of the neurons one time longer than the cell which was not exposed under magnetic field. However, the average survival time of neurons exposed under the 100mT static magnetic field had no significant differences with the control group.
     2. Most of the previous researches about the effects of biological tissues inflicted by magnetic fields are at the levels of entire body or organs. The effects of 3mT, 30mT, 100mT static magnetic fields and 3mT power frequency magnetic fields on the properties of sodium channel in cortex neurons of a mouse were studied using the patch-clamp technique at the level of cells in this thesis. The results revealed that the magnetic fields of different intensities and frequencies had different influences on the activation and inactivation properties of neuronal sodium channel with the dependences of voltage, time, intensity and frequency of magnetic field.
     3. The effects of series of magnetic fields (3mT, 30mT, 100mT static magnetic field and 3mT power frequency magnetic field) were studied on the properties of transient outward potassium channel and delayed rectifier potassium channel of cortex neurons. The results show that the magnetic fields of different parameters produced different effects on two potassium channel properties of neurons.
     4. At present, most researches choose the rat as the animal specimens, but the mouse have their own advantages can not be replaced by the rat. A simple and fast acute isolation method preparing a large number of neurons was obtained by a lot of experiments in this paper. The neurons obtained by this method have good morphological and typical electrophysiological characteristics, which can be used for patch-clamp experiments. Thus the method can broaden the choice of cell samples.
引文
[1] Pengfei Yang, Lifang Hu, Zhe Wang, et al, Inhibitory effects of a gradient static magnetic field on normal angiogenesis, Bioelectromagnetics, 2009, 30: 446-453
    [2] A.W. Thomas, D.J. Drost, F.S. Prato, Human subjects exposed to a speci?c pulsed (200 mT) magnetic feld: effects on normal standing balance, Neuroscience Letters, 2001, 297: 121-124
    [3] Enzo Ottaviani, Davide Malagoli, Alex Ferrari, et al, 50 Hz magnetic fields of varying flux intensity affect cell shape changes in invertebrate immunocytes: the role of potassium ion channels, Bioelectromagnetics, 2002, 23: 292-297
    [4] Majid Jadidi, Seyed Mohammad Firoozabadi, Ali Rashidy-Pour, et al, Acute exposure to a 50 Hz magnetic field impairs consolidation of spatial memory in rats, Neurobiology of Learning and Memory, 2007, 88: 387-392
    [5] Naomi M S, Frank S P, Alex W T, Human exposure to a specific pulsed magnetic field: effects on thermal sensory and pain thresholds, Neuroscience Letters, 2004, 363: 157-162
    [6] Pang L J, Baciu C, Traitcheva N, et al, Photodynamic effect on cancer cells influenced by electromagnetic fields, Journal of Photochemistry and Photobiology B-biology, 2001, 64(1): 21-26
    [7] Soma S, Babita K, Sher A, Effect of radiofrequency electromagnetic field on human DNA, Defence Science Journal, 2006, 56(2): 199-208
    [8] Ivan P, Ivancica T, Influence of 864 MHz electromagnetic field on growth kinetics of established cell line, Biologia, 2006, 61(3): 321-325
    [9] Michael J M, Stefan E, Zhang Q K, et al, Effects of a static magnetic field on audiogenic seizures in black Swiss mice, Epilepsy Research, 2008, 80: 119-131
    [10] Yawara E, Mari O I, Shoogo U, Control of orientation of rat Schwann cells using an 8-T static magnetic field, Neuroscience Letters, 2003, 351: 130-132
    [11] Stefania P, Gabriella B V , Tullio B, et al, Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability, Neuroscience Letters, 1999, 267: 185-188
    [12] Naomi M S, Jennifer M H, Shelly K C, et al, Analgesic and behavioral effects of a 100μT specific pulsed extremely low frequency magnetic fieldon control and morphine treated CF-1 mice, Neuroscience Letters, 2004, 354: 30-33
    [13] Thomas A W,White K P, Drost D J, et al, A comparison of rheumatoid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed (200μT) magnetic field: effects on normal standing balance, Neuroscience Letters, 2001, 309: 17-20
    [14]寿天德,神经生物学,北京:高等教育出版社, 2001: 88-110
    [15]杨宝峰,离子通道药理学,北京:人民卫生出版社, 2005: 3-37,59-119,235-259
    [16] Li Gang, Cheng Lijun, Qiao Xiaoyan, et al, Characteristics of transient outward potassium channel exposed to 3 mT static magnetic field, Transactions of Tianjin University, 2009, 15(5): 319-323
    [17]李刚,程立君,林凌,恒定磁场对神经元延迟整流钾通道特性的影响,天津大学学报, 2009, 42(10): 923-928
    [18] Michelle Belton, Frank S Prato, Camilla Rozanski, et al, Effect of 100mT Homogeneous static magnetic field on [Ca2+]C response to ATP in HL-60 cells following GSH depletion, Bioelectromagnetics, 2009, 30(4): 322-329
    [19] Nau, Jean-Yves, A new path in the treatment of Parkinson disease: electric stimulation of the motor cortex, Rev Med Suisse, 2005, 1(1): 89
    [20] Kinoshita, Masako, Ikeda Akio, et al, Electric stimulation on human cortex suppresses fast cortical activity and epileptic spikes, Epilepsia, 2004, 45(7): 787-791
    [21] Matarazzo A, Giordano A, Sassi O, et al, Spinal cord electric stimulation. Treatment of serious chronic ischemic syndromes of the limbs, Minerva cardioangiologica, 2002, 50(6): 691-694
    [22] Thomas Radman, Raddy L. Ramos, Joshua C. Brumberg, et al, Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro, Brain Stimulation, 2009, 2: 215-231
    [23] Qing He Yao, Hua Zhang, Hai Wei Wang, et al, Low- and high-frequency electric cortical stimulation suppress the ferric chloride-induced seizures in rats, Neuroscience Letters, 2008, 430: 187-190
    [24] Yousif N, Bayford R, Liu X, The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation, Neuroscience, 2008, 156: 597-606
    [25] Wood MD, Willits RK, Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements Journal of Neural Engineering, 2009, 6(4): 1-8
    [26] Fumal A, Coppola G, Bohotin V, et al, Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients, Cephalalgia : an international journal of headache, 2006, 26(2): 143-149
    [27] Bajbouj Malek, Brakemeier Eva-Lotta, Schubert Florian, et al, Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex and cortical excitability in patients with major depressive disorder, Experimental neurology, 2005, 196(2): 332-338
    [28] Wang Hong, Wang Xu, Wetzel Wolfram, et al, Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation, The European journal of neuroscience, 2006, 23(8): 2176-84
    [29] Sommer Martin, Alfaro Aránzazu, Rummel Milena, et al, Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 2006, 117(4): 838-844
    [30] Tamagawa Akira, Uozumi Takenori, Tsuji Sadatoshi, Diagnosis and attempt to treat nervous system diseases with magnetic stimulation, [Zasshi] Journal. Nihon Naika Gakkai, 2005, 94(4): 782-787
    [31] DiMarco, Anthony F, Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques, Respiratory physiology & neurobiology, 2005, 147(2-3): 273-287
    [32] Frédéric Nahmias, Claire Debes, Daniel Ciampi de Andrade, et al, Diffuse analgesic effects of unilateral repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers, Pain, 2009, 147(1-3): 224-232
    [33] Iris Van Soens, Michel M. Struys, Ingeborgh E. Polis, et al, Magnetic stimulation of the radial nerve in dogs and cats with brachial plexus trauma: A report of 53 cases, The Veterinary Journal, 2009, 182(1): 108-113
    [34] Juha Silvanto, Zaira Cattaneo, Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex, NeuroImage, 2010, 50: 1683-1689
    [35]孙永安,赵合庆,张志琳,等,长程经颅磁刺激对脑梗死大鼠皮质脑源性神经营养因子表达及神经功能恢复的影响,中华物理医学与康复杂志, 2005, 27(12): 712-716
    [36] Abigail Coots, Riyi Shi, Arthur D.Rosen, Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord, Journal of the Neurological Sciences, 2004, 222(1): 55-57
    [37] Tsuyoshi Oda, Tatsuro Koike, Magnetic field exposure saves rat cerebellar granule neurons from apoptosis in vitro[J], Neuroscience Letters, 2004, 365:83-86
    [38] Hideyuki Matsumoto, Fitri Octaviana, Yasuo Terao, et al, Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil, Journal of the Neurological Sciences, 2009, 284(1): 46-51
    [39] Skarratt PA, Lavidor M, Magnetic stimulation of the left visual cortex impairs expert word recognition, Journal of Cognitive Neuroscience, 2006, 18(10): 1749-1758
    [40] Londero Alain, Lefaucheur Jean-Pascal, Malinvaud David, et al, Magnetic stimulation of the auditory cortex for disabling tinnitus: preliminary results, Presse medicale (Paris, France : 1983), 2006, 35(2 Pt 1): 200-206
    [41]彭泽峰,秦天森,马建荣,光动力学疗法中低温对脑损伤的保护,中国医学工程杂志, 2005, 13(2): 176-178
    [42] SmídováL, Mourek J, SlapetováV, et al, Effect of hypothermia on lactate dehydrogenase activity in blood and the cerebral cortex in 14-day-old and adult laboratory rats, Ceska gynekologie / Ceska lekarska spolecnost J. Ev. Purkyne, 2004, 69(2): 129-132
    [43] SmídováL, Mourek J, SlapetováV, et al, The effect of posthypoxic hypothermia for lactate dehydrogenase activity in brain cortex and blood serum of 14-days-old rats, Ceska gynekologie/Ceska lekarska spolecnost J. Ev. Purkyne, 2004, 69(4): 258-262
    [44]刘思兰,王志萍,曾因明,等,低温对大鼠海马脑片缺氧无糖损伤的保护作用及其机制,中风与神经疾病杂志, 2004, 21(2): 114-117
    [45] Takara Itaru, Ohshiro Masakatsu, Takechi Akiko, et al, The relationship between postoperative body temperature for 24 hours and central nervous system dysfunction in patients of selective cerebral perfusion, Masui. The Japanese journal of anesthesiology, 2003, 52(9): 963-966
    [46] Yoo D S, Kim D S, Park C K, et al, Significance of temperature difference between cerebral cortex and axilla in patients under hypothermia management, Acta neurochirurgica. Supplement, 2002, 81: 85-87
    [47] Martelli Eugenio, Cho Jae-Sung, Mozes, Geza, et al, Epidural cooling for the prevention of ischemic injury to the spinal cord during aortic occlusion in a rabbit model: determination of the optimal temperature, Journal of vascular surgery : official publication, the Society for Vascular Surgery∧International Society for Cardiovascular Surgery, North American Chapter, 2002, 35(3): 547-553
    [48]廖晓梅,张迎春,王建枝,温度对不同年龄大鼠海马器官型脑片长期培养中细胞活性和tau蛋白表达的影响,中国生物化学与分子生物学报, 2005, 21(5): 637-641
    [49] Radmilovich M, Fernandez A, Trujillo-Cenoz O, Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles, Journal of Experimental Biology, 2003, 206(17): 3085-3093
    [50]蔡誉青,邹飞,不同温度条件对下丘脑神经元K离子通道簇状开放的影响,中国应用生理学杂志,2002, 18(2): 105-108
    [51]邓彦,朱海清,邓国宝,等,低剂量激光鼻腔照射联合电刺激小脑治疗脑梗死的临床研究,中国康复理论与实践, 2005, 11(5): 372-373
    [52]侯天德,何福元,程昉,光刺激蛱蝶和菜粉蝶复眼引起的视神经节层电生理反应,兰州大学学报:自然科学版, 2005, 41(3): 45-47
    [53] Taly Arun B, Sivaraman Nair Krishan P, Murali Thyloth, et al, Efficacy of multiwavelength light therapy in the treatment of pressure ulcers in subjects with disorders of the spinal cord: A randomized double-blind controlled trial, Archives of physical medicine and rehabilitation, 2004, 85(10): 1657-1661
    [54]马丽玲,谭志明,邹华娅,超激光照射星状神经节治疗神经衰弱的临床研究,中国临床医药研究杂志,2005, 139: 35-36
    [55]谢小乔,汪浩,陈波,等,幼年大鼠视前额叶皮层神经元对闪光刺激的反应特性,生物化学与生物物理进展,2005, 32(11): 1088-1092
    [56] Ayata Cenk, Dunn Andrew K, et al, Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2004, 24(7): 744-755
    [57] Martin Pienkowski, Jos J. Eggermont, Intermittent exposure with moderate-level sound impairs central auditory function of mature animals without concomitant hearing loss, Hearing Research, 2010, 261: 30-35
    [58]李玲,谭永霞,陈景藻,等,次声作用后大鼠颞叶前额叶皮层5-HT、5-HTR、RyR表达及恢复时间,中华物理医学与康复杂志,2005, 27(6): 328-331
    [59]叶琳,龚书明,黄晓峰,等,次声作用对鼠大脑前额叶皮层超微结构的影响,第四军医大学学报,2002, 23(9): 856-858
    [60] Ostroff Jodi M, McDonald Kelly L, Schneider Bruce A, et al, Aging and the processing of sound duration in human auditory cortex, Hearing research, 2003, 181(1-2): 1-7
    [61]李刚,程立君,林凌,等,物理因子对神经系统影响的研究现状和膜片钳技术的应用,中国医学物理学杂志,2007, 24(4): 279-284
    [62]李刚,程立君,林凌,等,物理因子对脑前额叶皮层影响的研究现状及膜片钳技术的应用,中国物理医学与康复杂志,2008, 30(3): 204-207
    [63] Angie M. Cason, Bumsup Kwon, James C. Smith, Thomas A. Houpt,Labyrinthectomy abolishes the behavioral and neural response of rats to a high-strength static magnetic field, Physiology & Behavior, 2009, 97: 36-43
    [64]韩利华,王全平,罗二平,等,昼夜节律对脉冲电磁场预防卵巢切除大鼠骨质疏松症的影响,中国临床康复,2004, 8(3): 506-507
    [65] Ganesan K, Gengadharan AC, Balachandran C, et al, Low frequency pulsed electromagnetic field - A viable alternative therapy for arthritis, Indian Journal of Experimental Biology, 2009, 47(12): 939-948
    [66] Li-Yi Sun, Dean-Kuo Hsieh, Tzai-Chiu Yu, et al, Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells, Bioelectromagnetics, 2009, 30(4): 251-260
    [67]宋晋刚,许建中,周强,等,不同脉冲电磁场促人骨髓间充质干细胞增值的实验研究,中国矫形外科杂志,2004, 12(23): 1867-1869
    [68] Pavicic I, Trosic I, Influence of 864 MHz electromagnetic field on growth kinetics of established cell line, BIOLOGIA, 2006, 61(3): 321-325
    [69] Cornaglia AI, Casasco M, Riva F, et al, Stimulation of osteoblast growth by an electromagnetic field in a model of bone-like construct, European Journal of Histochemistry, 2006, 50 (3): 199-203
    [70] Selvamurugar N, Kwok S, Partridge N, Effects of pulsed electromagnetic field (PEMF) and BMP-2 on rat primary osteoblastic cell proliferation and gene expression, Journal of Bone and Mineral Research, 2005, 20(9): S323-S323
    [71] Ming-Tzu Tsai, Wan-Ju Li, Rocky S Tuan, et al, Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation, Journal of Orthopaedic Research September, 2009, 27(9): 1169–1174
    [72] Nagarajan Selvamurugan, Sukyee Kwok, Anatoliy Vasilov, et al, Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression, Journal of Orthopaedic Research Septhmber, 2007, 25: 1213-1220
    [73] Borsje MA, Ren YJ, de Haan-Visser HW, et al, Comparison of Low-Intensity Pulsed Ultrasound and Pulsed Electromagnetic Field Treatments on OPG and RANKL Expression in Human Osteoblast-like Cells, Angle Orthodontist, 2010, 80(3): 498-503
    [74] Yu Li, Pu Yang, Xiaofeng Fan, et al, Static magnetic field combined with functional appliances: A new approach to enhance mandibular growth in ClassⅡmalocclusion, Medical Hypotheses, 2009, 72(3): 276-279
    [75] Milena Fini, Paola Torricelli, Gianluca Giavaresi, et al, Effect of pulsedelectromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs, Biomedicine & Pharmacotherapy, 2008, 62(10): 709-715
    [76] Er-Ping Luo, Li-Cheng Jiao, Guang-Hao Shen, et al, Effects of exposing rabbits to low-intensity pulsed electromagnetic fields on levels of blood lipid and properties of hemorheology, Chinese Journal of Clinical Rehabilitation, 2004, 8(18): 3670-3671
    [77]罗二平,申广浩,王跃民,等,低强度脉冲电磁场暴露对兔血液流变学特性及血脂水平的影响,第四军医大学学报,2002, 23(11): 995-997
    [78] J Sabo, L Mirossay, L Horovcak, et al, Effects of static magnetic field on human leukemic cel line HL-60, Bioelectrochemistry, 2002, 56: 227-231
    [79] Luciana Dini, Majdi Dwikat, Elisa Panzarini, Cristian Vergallo, BernadettaTenuzzo, Morphofunctional study of 12-O-tetradecanoyl-13-phorbol Acetate (TPA)-Induced differentiation of U937 cells under exposure to a 6 mT static magnetic field, Bioelectromagnetics, 2009, 30: 352-364
    [80] Zborowski M, Kligman B, Midura RJ, et al, Decibel attenuation of pulsed electromagnetic field (PEMF) in blood and cortical bone determined experimentally and from the theory of ohmic losses, Annals of Biomedical Engineering, 2006, 34(6): 1030-1041
    [81] Juraj Gmitrov, Static magnetic field effect on the arterial baroreflex-mediated control of microcirculation: implications for cardiovascular effects due to environmental magnetic fields[J], Radiat Environ Biophys, 2007, 46: 281-290
    [82] Michael J.Mclean, Hideyuki Okano, Chiyoji Ohkubo, Effects of neck exposure to 5.5mT static magnetic field on pharmacologically modulated blood pressure in conscious rabbits, Bioelectromagnetics, 2005, 26(6): 469-480
    [83] Baria ?ztas, Tunaya Kaikan, Handan Tuncel, Influence of 50 Hz frequency sinusoidal magnetic field on the blood-brain barrier permeability of diabetic rats, Bioelectromagnetics, 2004, 25: 400-402
    [84] Violeta Calota, Simona Dragoiu, Aurelia Meghea, Maria Giurginca, Decrease of luminol chemiluminescence upon exposure of human blood serum to 50Hz electric fields[J], Bioelectrochemistry, 2006, 69: 126-127
    [85] Masanori Kuribayashi, Jianqing Wang, Osamu Fujiwara, et al, Lack of effects of 1439MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats, Bioelectromagnetics, 2005, 26(7): 578-588
    [86] Maciej Zborowski, Boris Kligman, Ronald J Midura, et al, Decibelattenuation of pulsed electromagnetic field (PEMF) in blood and cortical bone determined experimentally and from the theory of ohmic losses, Annals of Biomedical Engineering,, 2006, 34(6): 1030-1041
    [87] Amancio Romanelli Ferreira, Tanise Knakievicz et al Matheus Augusto de Bittencourt Pasquali, Ultra high frequency-electromagnetic field irradiation during pregnancy leads to an increase in erythrocytes micronuclei incidence in rat offspring, Life Sciences, 2006, 80(1): 43-50
    [88] Hideyuki Okano, Chiyoji Ohkubo, Exposure to a moderate intensity static magnetic field enhances the hypotensive effect of a calcium channel blocker in spontaneously hypertensive rats, Bioelectromagnetics, 2005, 26: 611-623
    [89] Julia C. McKay, Michael Corbacio, Karel Tyml, et al, Extremely low frequency pulsed electromagnetic field designed for antinociception does not affect microvascular responsiveness to the vasodilator acetylcholine, Bioelectromagnetics, 2010, 31: 64-76
    [90] B. Tenuzzo, C. Vergallo, L. Dini, Effect of 6mT static magnetic field on the bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes[J], Tissue and Cell, 2009, 41(3): 169-179
    [91] Igor Y. Belyaev, Lena Hillert, Marina Protopopova, et al., 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1Foci in human lymphocytes from hypersensitive and healthy persons[J], Bioelectromagnetics, 2005, 26: 173-184
    [92] Zhang Y, Ding J, Duan W, A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells, Journal of Biological Physics, 2006, 32(1): 1-9
    [93] Yuichiro Hashimoto, Masashi Kawasumi, Masao Saito, Effect of static magnetic field on cell migration, Electrical Engineering in Japan, 2007, 160(6)(6): 46-52
    [94] Ismail Meral, Handan Mert, Nihat Mert, et al, Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs, Brain Research, 2007, 1169: 120-124
    [95] Sarkar S, Kumari B, Ali S, Effect of radiofrequency electromagnetic field on human DNA, Defence Science Journal, 2006, 56(2): 199-208
    [96] Cheng K, Zou CH, Electromagnetic field effect on separation of nucleotide sequences and unwinding of a double helix during DNA replication, Medical Hypotheses, 2006, 66(1): 148-153
    [97] Cocek A, Jandovah A, Pokornyh J, et al, Oral and pharyngeal cancer and sinusoidal electromagnetic field 50 Hz/0.5 mT, Oral Oncology, 2005, 1(1): 164
    [98] Williams CD, Markov MS, Hardman WE, et al, Therapeutic electromagnetic field effects on angiogenesis and tumor growth, Anticancer Research, 2001, 21(6A): 3887-3891
    [99] Tomoko Okano, Yasuo Terao, Toshiaki Furubayashi, et al, The effect of electromagnetic field emitted by a mobile phone on the inhibitory control of saccades, Clinical Neurophysiology, 2010, 121(4): 603-611
    [100] Lihong Wang, Colin Barber, Ryusuke Kakigi, Yoshiki Kaneoke, Tomohiro Okusa, Yaqin Wen, A first comparison of the human multifocal visual evoked magnetic field and visual evoked potential[J], Neuroscience Letters, 2001, 315: 13-16
    [101] Myoung Soo Kwon, Teija Kujala, Minna Huotilainen, et al, Preattentive auditory information processing under exposure to the 902 MHz GSM mobile phone electromagnetic field: AMismatch negativity (MMN) study, Bioelectromagnetics, 2009, 30: 2741-248
    [102] János László, Júlia Tímár, Zsuzsanna Gyarmati, et al, Pain-inhibiting inhomogeneous static magnetic field fails to influence locomotor activity and anxiety behavior in mice: No interference between magnetic field- and morphine-treatment, Brain Research Bulletin, 2009, 79(5): 316-321
    [103] N. Bernabò, E. Tettamanti, M.G. Pistill, D. Nardinocchi, P. Berardinelli, M. Mattioli, B. Barboni,, Effects of 50 Hz extremely low frequency magnetic field on the morphology and function of boar spermatozoa capacitated in vitro[J], Theriogenology, 2007, 67: 801-815
    [104] Bernabo N, Tettamanti E, Russo V, et al, Extremely low frequency electromagnetic field exposure affects fertilization outcome in swine animal model, Theriogenology, 2010, 73(9): 1293-1305
    [105] Khaki Amir Afshin, Zarrintan Sina, Khaki Arash, et al, The effects of electromagnetic field on the microstructure of seminal vesicles in rat: a light and transmission electron microscope study, Pak J Biol Sci, 2008, 11(5): 692-701
    [106] Klara Gyires, Zoltan S .Zadori, Bernadette Racz, et al, Pharmacological analysis of inhomogeneous static magnetic field-induced antinociceptive action in the mouse, Bioelectromagnetics, 2008, 29(6): 456-462
    [107] Sharon Barzelai, Anat Dayan, Micha S. Feinberg, et al, Electromagnetic field at 15.95–16 Hz is cardio protective following acute myocardial infarction, Annals of Biomedical Engineering, 2009, 37(10): 2093-2104
    [108] A.H. Hashish, M.A. El-Missiry, H.I. Abdelkader, et al, Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice, Ecotoxicology and Environmental Safety, 2008, 71: 895-902
    [109] Arendash GW, Sanchez-Ramos J, Mori T, et al, Electromagnetic Field Treatment Protects Against and Reverses Cognitive Impairment in Alzheimer's Disease Mice, Journal of Alzheimers Disease, 2010, 19(1): 191-210
    [110] Maharramov, AA, Static magnetic field and plant growth, Six International Conference of the Balkan Physical Union, 2007, 899: 401-402
    [111]刘普和,物理因子的生物效应,北京:科学出版社,1992: 145-183
    [112] D, Rosen A, Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells, Bioelectromagnetics, 2003, 24: 517-523
    [113]李国栋,生物磁学及其应用,北京:科学出版社,1983: 1-153
    [114] Harold Sonnier, Oleg Kolomytkin, Andrew Marino, Action potentials from human neuroblastoma cells in magnetic fields, Neuroscience Letters, 2003, 337: 163-166
    [115]庞小峰,生物电磁学,北京:国防工业出版社,2008: 1-130
    [116]刘振伟,实用膜片钳技术,北京:军事医学科学出版社,2006: 1-435
    [117] Klára Gyires, Zoltán S. Zádori, Bernadette Rácz, et al, Pharmacological analysis of inhomogeneous static magnetic field-induced antinociceptive action in the mouse, Bioelectromagnetics, 2008, 29: 456-462
    [118] Jolanta Jajte, Janina Grzegorczyk, Marek Zmyslony, et al, Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes[J], Bioelectrochemistry, 2002, 57: 107-111
    [119] Michelle Belton, Kristy Commerford, Justin Hall, et al, Real-time measurement of cytosolic free calcium concentration in HL-60 cells during static magnetic field exposure and activation by ATP, Bioelectromagnetics 2008, 29(6): 439-446
    [120] Camilla Rozanski, Michelle Belton, Frank S. Prato, et al, Real-time measurement of cytosolic free calcium concentration in DEM-treated HL-60 cells during static magnetic field exposure and activation by ATP[J], Bioelectromagnetics, 2009, 30(3): 213-221
    [121]张杰,李振华,孙晋浩,等,恒定磁场对Schwann细胞氧化损伤的保护作用,山东大学学报(医学版),2007, 45(3): 229-232
    [122] Agatha P. Colbert, HelanéWahbeh, Noelle Harling, et al, Static magnetic field therapy: a critical review of treatment parameters[J], Evidence-based Complementary and Alternative Medicine, 2009, 6(2): 133-139
    [123] Stefano Falone, Alessandro Mirabilio, Maria Cristina Carbone, et al, Chronic exposure to 50 Hz magnetic fields causes a signigicant weakening of antioxidant defence systems in aged rat brain, The International Journalof Biochemistry & Cell Biology, 2008, 40: 2762-2770.
    [124] Mardi L Sait, Andrew W Wood, Richard L G Kirsner, Effects of 50 Hz magnetic field exposure on human heart rate variability with passive tilting, Physiological Measurement, 2006, 27: 73-83
    [125] Yi Che, Huaying Sun, Yonghua Cui, et al, Effects of exposure to 50 Hz magnetic field of 1 mT on the performance of detour learning task by chicks, Brain Research Bulletin, 2007, 74: 178-182
    [126] Timo Kumlin, P?ivi Heikkinen, Jarmo T.Laitinen, et al, Exposure to a 50-Hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice, J.Radiat.Res, 2005, 46: 313.318
    [127] Moh'd-Ali Al-Akhras, Homa Darmani, Ahmed Elbetieha, Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rate, Bioelectromagnetics, 2006, 27: 127-131
    [128] Shinji Komazaki, Kazuhiro Takano, Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50-Hz magnetic field, Journal of Experimental Zoology, 2007, 307A: 156-162
    [129] Shen J F, Chao Y L, Du L, Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons, Neuroscience Letters, 2007, 415: 164-168
    [130]沈颉飞,牙科磁性附着体模拟静磁场对离子通道电生理特性的影响:[博士学位论文],四川;四川大学, 2007
    [131]成波,极低频磁场发生器的开发及其在神经细胞电生理特性研究中的应用:[博士学位论文],武汉;华中科技大学, 2007
    [132]李飞,恒磁场对血管内皮细胞生物学效应的研究:[博士学位论文],西安;第四军医大学, 2002
    [133]王海燕,1Gs恒磁场对共培养内皮细胞增殖活动和膜离子通道的影响:[博士学位论文],西安;第四军医大学, 2004
    [134] D, Rosen A, Mechanism of action of moderate-intensity static magnetic fields on biological systems, Cell Biochemistry and Biophysics, 2003, 39(2): 163-173
    [135] D, Rosen A, Inhibition of calcium channel activation in GH3 cells by static magnetic fields, Biochimica et Biophysica Acta, 1996, 1282: 149-155
    [136] R. Hinch, K.A. Lindsay, D. Noble, et al, The effects of static magnetic field on action potential propagation and excitation recovery in nerve, Progress in Biophysics and Molecular Biology, 2005, 87(2-3): 321-328
    [137] V. J. Auld, A. L. Goldin, D. S. Krafte, et al, A neutral amino acid change in segment 11S4 dramatically alters the gating properties of thevoltage-dependent sodium channel[J], Neurobiology, 1990, 87: 323-327
    [138]康华光,膜片钳技术及其应用,北京:科学出版社, 2003: 1-100
    [139] Kornreich, Bruce G., The patch clamp technique: Principles and technical considerations, Journal of Veterinary Cardiology, 2007, 9: 25-37
    [140] Adam J. Sherman, Alvin Shrier, Ellis Cooper, Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator, Biophysical Journal, 1999, 77: 2590-2601
    [141]乔晓艳,弱激光对神经元离子通道的影响及其电流检测方法:[博士学位论文],天津:天津大学, 2006
    [142] Russell E. Thompson, Manfred Lindau, Watt W. Webb, Robust, high-resolution, whole cell patch-clamp capacitance measurements using square wave stimulation, Biophysical Journal, 2001, 81: 937-948
    [143]张鹏俊,张宇,张文平,等,大鼠海马CAⅠ区锥体细胞的急性分离及全细胞记录方法,中国药物与临床,2006, 6(8): 586-589
    [144] Tian Yu-Tao, Liu Zhao-Wei, Yao Yang, Yang Zhuo, Zhang Tao, Effect of alpha-cypermethrin and theta-cypermethrin on delayed rectifier potassium currents in rat hippocampal neurons[J], NeuroToxicology, 2009, 30: 269-273
    [145] Juan Tamargo, Ricardo Caballero, Ricardo Gómez, et al, Pharmacology of cardiac potassium channels, Cardiovascular Research, 2004, 62: 9-33
    [146]张艳,朱峰,李明华,等,新生大鼠海马神经元的急性分离与膜片钳技术,中国临床康复,2006, 10(46): 132-134
    [147]乔晓艳,李刚,贺秉军,弱激光对大鼠海马神经元钠通道特性的影响,生物化学与生物物理进展,2006, 33(2): 178-182
    [148] Li X M, Li J G, Yang J M, et al, An improved method for acute isolation of neurons from the hippocampus of adult rats suitable for patch-clamp study, Sheng Li Xue Bao, 2004, 56(1): 112-117
    [149]高秀萍,张宇,大鼠海马神经元急性分离法,山西医科大学学报,2003, 3(3): 197-198
    [150]谢正祥,牛永红,马厚勤,等,人、小鼠和大鼠的ADRB3比较及其生物学和药理学意义,中国医学物理学杂志,2006, 23(2): 123-125
    [151] http://zhidao.baidu.com/question/13173796.html?fr=qrl3
    [152]杨雷,李玉荣,苏莉芬,等,大鼠前额叶皮层神经元急性分离改良方法,哈尔滨医科大学学报,2005, 39(3): 285-287
    [153] Zhang C F, Yang P, Zinc-induced aggregation of A (10-21)potentiates its action on voltage-gated potassium channel, Biochemical and Biophysical Research Communications, 2006, 345: 43-49
    [154] Kay A R, Krupa D J, Acute isolation of neurons from the maturemammalian central nervous system, Curr Protoc Neurosci, 2001, 6:Unit 6.5
    [155]李刚,程立君,林凌,等,小鼠海马神经元急性分离和膜片钳技术的应用,天津大学学报,2008, 41(10): 1157-1161
    [156] Andrew P. Southan, Brian Robertson, Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels, The Journal of Neuroscience, 1998, 18(3): 948-955
    [157] Fran?ois Rugiero, Maurice Gola, Wolf A. A. Kunze, et al, Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia, Journal of Physiology, 2002, 538: 447-463
    [158] Xin-Yi Gu, Zheng-Xu Cai, Hong Yuan, Tai-Hua Wu, Jian Li, Hui-Shu Guo, Effects of Dendroaspis natriuretic peptide on delayed rectifier potassium currents and its mechanism[J], Regulatory Peptides, 2009, 155(1-3): 115-120
    [159] Guangke Lia, Nan Sang, Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury, Ecotoxicology and Environmental Safety, 2009, 72(1): 236-241
    [160] Gül Erdemli, Vincenzo Crunelli, Response of thalamocortical neurons to hypoxia: a whole-cell patch-clamp study, The Journal of Neuroscience, 1998, 18(14): 5212-5224
    [161]李刚,程立君,林凌,等,30mT恒定磁场对神经细胞钠通道特性的影响,光电子?激光,2009, 20(12): 1695-1698
    [162]李刚,程立君,林凌,30mT恒定磁场可延长神经细胞的存活时间,天津大学学报,2010, 43(7): 619-622.
    [163]席晓莉,文俊,王斯刚,等,极低频脉冲磁场生物效应的实验研究,第四军医大学学报,1999, 20(3): 264-265
    [164]姜虹,贾忠葆,贾洁虹,等,浅谈磁疗的作用,生物磁学,2003: 3(1): 37
    [165]丘冠英,彭银祥,生物物理学,武汉:武汉大学出版社,2000: 236-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700