用户名: 密码: 验证码:
微生物燃料电池能量特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(MFC)涉及到微生物学、电化学、传热传质学、流体力学和水质工程学等多个学科,是典型的多学科交叉问题。目前,MFC的研究还处于实验阶段,主要是通过实验得到MFC的某些特性,缺乏系统深入的理论与实验。另外,功率太低是MFC技术的最大缺点(比燃料电池小三个数量级)。MFC的理论基础包括工程热力学、酶动力学和传质学等。本文对MFC进行了简单的理论分析,并且搭建了双室MFC试验台,从基础实验出发逐步深入地探索输出功率的影响因素。主要工作包括:
     基于酶动力学理论、化学反应理论和传质学理论分析了MFC工作性能的影响因素。为了便于分析,特以底物为葡萄糖和电子受体为氧气为例,根据酶动力学理论分析了化学反应速率与底物浓度之间的关系;根据化学反应理论分析了葡萄糖氧化反应进行的程度和反应速率;根据传质学理论建立了反应物传输的简单模型,并对一个实例进行了分析。发现,在相同条件下,与葡萄糖相比,氧气的质量传输是输出功率大小的限制性因素。另外,质子传输对MFC内阻的影响不容忽视。
     搭建了温度可调控的MFC实验台。首先,以开路电压为参数分析了MFC的启动情况;其次,详细分析了MFC运行时阳极液和阴极液pH值和电导率的变化规律;另外,还对MFC的产电过程和能量利用情况进行了分析和计算。通过定期测试MFC运行时阳极液和阴极液pH值和电导率,得出MFC运行时的变化规律。随着MFC的运行,阳极液的pH值和电导率呈现下降的趋势,阴极液的pH值和电导率呈现上升的趋势,阳极液和阴极液的平均电导率变化不大。实验和理论分析发现MFC理想的产电过程包括三个阶段:上升期输出电压的限制性因素是阳极电化学反应速率;稳定期输出电压的限制性因素是阳极电化学反应速率、阴极电化学反应速率或者质子的质量传输速率;下降期输出电压的限制性因素是反应物的质量传输速率。能量分析发现大部分葡萄糖被非产电菌消耗,用来发电的葡萄糖的比率很小。同时,能量利用效率很低。
     根据燃料电池的普通模型建立了适合MFC的模型,并结合电学知识推导出了MFC内阻的构成。然后,通过对实验数据的拟合,分析了各构成对总内阻的影响。另外,根据功率曲线分析出输出功率大小的限制性因素。MFC的内阻是与输出功率相关的一个重要参数,大多文献把功率最大时对应的内阻作为MFC的内阻,作为一个重要的参数来评价MFC性能的好坏。理论分析发现,总内阻由三部分构成:活化内阻、欧姆内阻和浓差内阻。本文设计了一个实验来估计三组分对总内阻的贡献,并且采用所建模型对实验数据进行拟合。结果发现尽管内阻在一定段的电流范围内基本上是一个常数,其还是随着电流变化而变化。电流较小时除外,总内阻的最大组分是浓差内阻。当电流较小时,活化内阻随着电流的增加减小的很快,最后,接近一个常数。在电流变化的整个过程中,欧姆内阻一直是一个常数。实验还揭示出增加极限电流和减小浓差损失对提高MFC的工作性能非常重要。
     分别固定外阻为无穷大、500Ω和100Ω,测试了MFC运行时阳极液和阴极液的pH值和电导率的变化、伏安曲线和输出电压,并对其进行了详细的比较分析。另外,还比较了不同外阻条件下MFC的能量利用情况。电流是决定功率高低的一个重要参数。如果想提高MFC的功率,必须采用减小外阻的方式来提高电路中的电流。本文把MFC工作时的外电阻分别固定为无穷大、500Ω和100Ω来进行比较分析。另外,从质量和能量角度对实验结果进行了详细分析。当MFC长期运行在低外阻条件下时,会引起溶液pH值和电导率的极大变化。当外阻固定为100Ω时,阴极液和阳极液的pH值最大相差0.82,电导率最大相差2.14 mS/cm;当外阻固定为500Ω时,pH值最大相差0.41,电导率最大相差1.55 mS/cm。另外,前者的极限电流为2.69 mA,而后者的极限电流为3.83 mA。这些说明减小MFC运行时阴极液和阳极液的pH值和电导率的变化以及改善低外阻条件下生成物和反应物的质量传输对提高MFC的性能至关重要。
     分别以铁氰化钾(K_3Fe(CN)_6, 1 g/L、2 g/l)和高锰酸钾(KMnO_4、1 g/l)作为电子受体,测试了MFC运行时阳极液和阴极液的pH值和电导率的变化规律、伏安曲线和输出电压,研究了电子受体对MFC的工作性能的影响。依据反应物的物性参数的比较和以前实验的总结,阴极的反应特性是限制MFC整体输出功率的瓶颈,为了提高MFC的输出功率和整体效能,需要侧重阴极方面的研究。本文在MFC的构型和运行条件都相同的基础上,分别采用铁氰化钾和高锰酸钾作为电子受体,测试MFC的pH值、电导率、输出电压和COD随时间的变化情况以及极化曲线。根据以上实验数据,对不同电子受体时MFC的性能进行了比较分析。结果发现,当高锰酸钾作为电子受体时,MFC的工作性能最好。然而,当高锰酸钾作为电子受体时,溶液电导率和pH值的变化幅度都非常大,这是由电路中大的电流引起的。另外,推导出了底物降解的公式。
Microbial fuel cell (MFC) is a typical interdisciplinary problem which mainly relates to microbiology, electrochemistry, heat and mass transfer, fluid mechanics, and water quality engineering. At present, the study on MFCs is still in experimental stage. The characteristics of MFCs are obtained mainly from experimental observations and there is a lack of systematic and profound experimental and theoretical investigations. In addition, low power output is the biggest problem of the MFC technology (three orders of magnitude smaller compared with a normal fuel cell). The theoretical basis of MFCs involves engineering thermodynamics, enzyme kinetics and mass transfer, et al. In this article, a simple theoretical analysis is given, a double-chamber MFC experimental rig is built and the factors affecting power output are investigated through a series of experiments. The main work are summarized as follows:
     The factors affecting the MFC performances were analyzed from enzyme kinetics, chemical reaction theory and mass transfer. In order to facilitate the analysis, glucose is used as the substrate and oxygen as the electron acceptor. The relationship between substrate concentration and chemical reaction rate was analyzed based on enzyme kinetics; the extent of glucose oxidation reaction and reaction rate were also analyzed based on chemical reaction theory; A simple model of reactant transfer was established according to mass transfer theory, which was used to analyze a case of other experimental results, and found that under the same conditions, the mass transfer of oxygen is the limiting factor of the MFC power output compared to glucose. In addition, the impact of proton transfer on the MFC internal resistance can not be ignored.
     A temperature-adjustable MFC experimental rig was built. Firstly, the start-up situation of the MFC was analyzed using open-circuit voltage as the parameter; secondly, the pH and ionic conductivity variation of the anode and cathode solution during the MFC operation was analyzed in detail. In addition, producing electricity process and energy utilization were analyzed and calculated in detail. The pH and ionic conductivity variation of the anode and cathode solution were obtained by testing them regularly. The pH and ionic conductivity of the anode solution decreased, while that of the cathode solution increased with the MFC operation, and the average ionic conductivity of which changed slightly. Electricity generation of the MFC ideally includes three phases. At the ascending phase, the rate of anodic electrochemical reaction is the limiting factor of the voltage; at the stationary phase, the rate of anodic electrochemical reaction, the rate of the proton mass transfer or the rate of cathode electrochemical reaction is the limiting factor of the voltage; at the declining phase, the rate of the reactant mass transfer becomes the limiting factor of the voltage. According to energy analysis, most glucose was consumed by other microorganisms. A small amount of glucose was used to product electricity. Meanwhile, energy efficiency is very low.
     The model being suitable for an MFC was obtained based on the general fuel cell model, and the various components of the total internal resistance were analyzed combined with electrical knowledge. Then, the impact of the various components on the total internal resistance was analyzed by using the model to fit experimental data. In addition, the limiting factor of the power output was found out according to the power curve. The internal resistance of a MFC is closely related to the power output. The particular internal resistance that results in the largest power output is used as an important parameter to evaluate MFC performances in most literatures. According to theoretical analysis, the total internal resistance consists of three parts, activation loss internal resistance (AIR), ohmic loss internal resistance (OIR) and concentration loss internal resistance (CIR). The experimental investigations were completed to estimate the contributions of these three components to the internal resistance, and the model was used to fit the experimental data. The result shows as follows: the internal resistance is found to vary with electric current, although it is almost a constant for the current is within a certain region. The largest component of the internal resistance is CIR except for small currents. The AIR decreases quickly for small current and reduces its decreasing rate as the current increases and approaches to a constant. The OIR is constant over the whole current range. The experiments also disclose that increasing the limiting current and reducing the concentration loss are both important for improving the MFC performance.
     The pH and ionic conductivity of the anode and cathode solutions, the polarization curve and the voltage were tested and compared in detail when the external resistance was fixed at infinity, 500Ωand 100Ω, respectively. In addition, the energy utilization was also compared under the different external resistance condition. The current is an important parameter in determining the power output, and which must be increased by reducing the external resistance in order to increase the power output. The MFC performance was analyzed when the external resistance was fixed at infinity, 500Ωand 100Ω. In addition, experimental results were analyzed in detail from the perspective of mass and energy. The solution pH and ionic conductivity changed greatly when the MFC was operated at low external resistance in a long time. When the external resistance was fixed at 100Ω, the maximum pH difference of the cathode and anode solution was 0.82, and the maximum ionic conductivity difference of which was 2.14 mS/cm; When the external resistance was fixed at 500Ω, the maximum pH difference of the cathode and anode solution was 0.41, and the maximum ionic conductivity difference of which was 1.55 mS/cm. In addition, limiting current of the former was 2.69 mA, while that of the latter was 3.83 mA. These indicate that reducing the changes of the solution pH and ionic conductivity during the MFC operation and improving the mass transfer of the reactants and products at low external resistance are very important to enhance the MFC performance.
     The pH and ionic conductivity of the anode and cathode solutions, the polarization curve and the voltage were tested when the electron acceptor was Potassium ferricyanide (K_3Fe(CN)_6, 1 g/L, 2 g/l), potassium permanganate (KMnO_4, 1 g/l). And the impact of electron acceptor on the MFC performance was studied. Based on the comparison of reactant’s physical parameters and the summary of previous experiments, the characteristics of the cathode reaction are the bottleneck that limiting the MFC power output. In order to improve the performance or power output of the MFC, the research should focus on the cathode. Potassium ferricyanide and potassium permanganate were used as the electron acceptor in the same MFC at the same operating conditions, and the variation of the pH, ionic conductivity, voltage output and COD with time as well as polarization curve were tested in this paper. Based on the above experimental data, the MFC performance at different electron acceptors was compared. Results show as follows: the MFC performance was the best when potassium permanganate was used as the electron acceptor. However, the pH and ionic conductivity changed largely too, and that was caused by a great current. In addition, the equation used to describe the substrate degradation was deduced.
引文
1高莹,郭文琦.中国能源行业发展的现状、问题及对策.产业经济, 2010, 351(6): 26~28.
    2中华人民共和国统计公报2010.
    3中国能源统计年鉴2010.
    4史丹.国际金融危机以来中国能源的发展态势、问题及对策.中外能源, 2010, 15(6): 1~11.
    5世界能源展望2009.
    6王朗玲,魏枫.中国能源安全问题的现状及对策.学习与探索, 2010, 5: 174~175.
    7高建良,欧雪银.能源安全约束下中国低碳经济问题探讨.兰州商学院学报, 2010, 26(2): 38~43.
    8谢美娥.能源贫困与中国欠发达资源富集区的农村能源建设问题研究.经济研究导刊, 2010, 3: 29~31.
    9付全高.中国能源问题分析及政策建议.经济研究导刊, 2010, 16: 8~9.
    10曹茹,董淑芳.探讨中国新能源问题.企业家天地, 2010.
    11宋成华.中国新能源的开发现状、问题与对策.学术交流, 2010, 3: 57~60.
    12霍雅勤.化石能源的环境影响及其政策选择.中国能源, 2000, 5: 17~21.
    13尼德兰环境评估机构(EEA)评估报告2007.
    14刘宁.加快西部水土流失治理步伐[N].经济日报,2006, 09, 26.
    15 Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc, (Lond), 1911, 84: 200~276.
    16 Delaney G M, Bennetto H P, Mason J R. Electron-transfer coupling in microbial fuel cells. Chem Technol Biotechnol, 1984, 34(1): 13~27.
    17 Kim B H, Kim H J, Hyun M S, Park D H. Direct electrode reaction of Fe(Ⅲ)-reducing bacterium,Shewanella putrefaciens. Microbiol Biotechnol, 1999, 9(2): 127~131.
    18 Bond D R, Holmes D E, Tender L M, Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295(5554): 483~485.
    19 Jang J K, Pham T H, Chang I S. Kang K H, Moon H, Cho K S, Kim B H. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 2004, 39(8): 1007~1012.
    20 Liu H, Logan B E. Electricity generation using an air–cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol, 2004, 38(14): 4040~4046.
    21关毅,张鑫.微生物燃料电池.化学进展, 2007, 19(1): 75~80.
    22 Du Z W, Li H R. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 2007, 25(5): 464~482.
    23孙健,胡勇有.废水处理新理念—微生物燃料电池技术研究进展.工业用水与废水,2008, 39(1): 1~6.
    24 Logan B E. Microbial Fuel Cells, 1st ed. New York, 2007.
    25 He Z. Microbial Fuel Cells: Their Application and Biotechnology, Ph. D. Dissertation. Washington University, 2007.
    26 Leonard M, Tender S A. Ethan G, Lowy D A, Kauffman P, Melhado J, Tyce R C, Flynn D, Petrecca R, Dobarro J. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sources, 2008, 179 (2): 571~575.
    27 Liu Z D, Lian J, Du Z W, Li H R. Construction of sugar based microbial fuel cells by dissimilatory metal reduction bacteria. Chinese J Biotechnol, 2006, 22(1): 131~137.
    28 You S J, Zhao Q L, Jiang J Q. Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell. Environ Sci, 2006, 27(9): 1786~1790.
    29曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报, 2006, 26(8): 1252~1257.
    30李登兰.以Shewanelladecolorationis S12构建的单室微生物燃料电池产电特性研究.硕士学位论文.广州:广东工业大学, 2008, 26~30.
    31 Wen Q, Wu Y, Cao D X, Zhao L X, Sun Q. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource Thechology, 2009, 100 (18): 4171~4175.
    32黄杰勋.产电微生物菌种的筛选及其在微生物燃料电池中的应用.博士学位论文.合肥,中国科学技术大学, 2009.
    33徐凤玲.海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究.博士学位论文.北京,中国科学院研究生院, 2009.
    34孙敏.微生物燃料电池的功能拓展和机理解析.博士学位论文.合肥,中国科学技术大学, 2009.
    35张金娜.三种不同阴极类型微生物燃料电池产电性能研究.博士学位论文.黑龙江,哈尔滨工业大学, 2009.
    36曹效鑫.微生物燃料电池中产电菌与电极的作用机制及其应用.博士学位论文.北京,清华大学, 2009.
    37顾荷炎.微生物燃料电池的产电性能及对氯酚废水协同脱氯的研究.硕士学位论文.杭州:浙江大学, 2007.
    38 Meitzler D E. Biochemistry: the Chemical Reactions of Living Cells. Academic Press, 1977.
    39 Rose A H. Chemical Microbiology. London: Butterworths, 1976.
    40 Rabaey K, Verstraete W. Microbial fuel cells: Novel Biotechnology for Energy Generation. Trends in Biotechnology, 2005, 23(6): 291~298.
    41车振明.工科微生物学教程.成都:西南交通大学出版社, 2007.
    42 Kim B H, Park H S, Kim H J, Kim G T, Chang I S, Lee J, Phung N T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. ApplMicrobiol Biotechnol, 2004, 63(6): 672~681.
    43 Tanaka K, Vega C A, Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 156(11): 289~297.
    44 Park H S, Kim B H, Kim H S, Kim H J, Kim G T, Kim M, Chang I S, Park Y K, Chang H I. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001, 7(6): 297~306.
    45 Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 2002, 30(2): 145~152.
    46 Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 2003, 21(10): 1229~1232.
    47 Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 2003, 69(3): 1548~1555.
    48 Rabaey K, Lissens G, Steven D, Verstraete S W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 2003, 25: 1531~1535.
    49 Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate in a single chamber microbial fuel cell. Environmental Science and Technology, 2005, 39(2): 658~662.
    50 Reimers C E, Tender L M, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface. Environ Sci Technol, 2001, 35(1): 192~195.
    51 Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435(7045): 1098~1101.
    52 Paulture A L.微生物电池向化学能源发起挑战.今日电子, 2004, (2): 2~2.
    53 Park D H, Zeikus J G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Microbiol Biotechnol. 2002, 59(1): 58~5961.
    54康峰,伍艳辉,李佟茗.生物燃料电池研究进展.电源技术, 2004, 28(11): 723~727.
    55 Ghangrekar M M, Shinde V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 2007, 98(15): 2879~2885.
    56 Prasad D, Arun S, Murugesan M, Padmanaban S, Satyanarayanan R S, Berchmans S, Yegnaraman V. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens Bioelectron, 2007, 22(11): 2604~2610.
    57 Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol, 2005, 39(20): 8077~8082.
    58 Sell D, Kramer P, Kreysa G. Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell. Appl MicrobiolBiotechnol, 1989, 31(2): 211~213.
    59 Lowy D A, Tender L M, Zeikus J G, Park D H, Lovley D R. Harvesting energy from the marine sediment-water interfaceⅡ-Kinetic activity of anode materials. Biosens Bioelectron, 2006, 21(11): 2058~2063.
    60 Cheng S A, Logan B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun, 2007, 9(3): 492~496.
    61 Kim J R, Min B, Logan B E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol, 2005, 68(1): 23~30.
    62 Kim B H, Ikeda T, Park H S, Kim H J, Hyun M S, Kano K, Takagi K, Tatsumi H. Electrochemical activity of an Fe(Ⅲ)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech, 1999, 13(7): 475~478.
    63 Schr?der U, NieBen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie International Edition, 2003, 42(25): 2880~2883.
    64姜珺秋.废水同步生物处理与微生物燃料电池发电的可行性研究.硕士学位论文.哈尔滨:哈尔滨工业大学, 2006.
    65 Gil G C, Chang L S, Kim B H, Kim M, Jang J K, Park H S1, Kim H J. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron, 2003, 18(4): 327~334.
    66李贺.无介体双室微生物燃料电池运行影响因素的研究.硕士学位论文.哈尔滨:哈尔滨工业大学, 2006.
    67吴晶.利用微生物燃料电池技术处理有机废水的效能研究.硕士学位论文.杭州:浙江大学, 2006.
    68 Logan B E, Murano C, Scott K, Gray N D, Head I M.. Electricity generation from cysteine in a microbial fuel cell. Water Res, 2005, 39(5): 942~952.
    69 Liu H, Cheng S A, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol, 2005, 39(14): 5488~5493.
    70 Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTEE) in single chamber microbial fuel cells. Environ Sci Technol, 2006, 40(1): 364~369.
    71 Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Application of pyrolysed iron (Ⅱ) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun, 2005, 7(12): 1405~1410.
    72 Morris J M, Jin S, Wang J Q, Zhu C Z, Urynowicz M A. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem Commun, 2007, 9(7): 1730~1734.
    73 Cheng S A, Liu H, Logan B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun, 2006, 8(3): 489~494.
    74 Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol, 2004, 38(7): 2281~2285.
    75 Zhang E R, Xu W, Diao G W, Shuang C Q. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J. Power Sources, 2006, 161(2): 820~825.
    76 Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol, 2004, 38(18): 4900~4904.
    77 You S J, Zhao Q L, Zhang J N, Jiang J Q, Zhao S Q. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources, 2006, 162(2): 1409~1415.
    78 Rhoads A, Beyenal H, Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol, 2005, 39(12): 4666~4671.
    79 Zhao F, Harnisch F, Schr?rder U, Scholz F, Bogdanoff P, Herrmann I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol, 2006, 40(17): 5193~5199.
    80 Sone Y, Ekdunge P, Simonsson D. Proton conductivity of Nafion117 as Measured by a Four-electrode AC Impedance Method. Journal of the Electrochemical Society, 1996, 143(4): 1254~1259.
    81 Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res, 2005, 39(9): 1675~1686.
    82付宁.无介体微生物燃料电池处理模拟有机废水及其影响因素研究.硕士学位论文.大连:大连理工大学, 2006.
    83 Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol, 2004, 38(21): 5809~5814.
    84 He Z, Minteer S D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol, 2005, 39(14): 5262~5267.
    85 You S J, Ren N Q, Zhao Q L, Kiely P D, Wang J Y, Yang F L, Fu L, Peng L. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosens Bioelectron, 2009, 24(12): 3698~3701.
    86周顺伍.动物生物化学.北京:化学工业出版社.
    87徐伟.微生物燃料电池的基础研究.硕士学位论文.扬州:扬州大学, 2007.
    88肖衍繁,李文斌.物理化学.天津:天津大学出版社, 2004.
    89温青,刘智敏,陈野,李凯峰朱宁正.空气阴极生物燃料电池电化学性能.物理化学学报, 2008, 24 (6): 1063~1067.
    90詹亚力,王琴,闫光绪,郭绍辉.高锰酸钾作阴极的微生物燃料电池.高等学校化学报, 2008, 29(3): 559~563.
    91 Incropera F P, Dewitt D P, Bergman T L, Lavine A S著.葛新石,叶宏译.传热和传质基本原理.北京:化学工业出版社,2007.
    92王经.传热学与流体力学基础.上海:上海交通大学出版社, 2007.
    93 Liu Z D, Li H R. Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal 36 (2007) 209~214.
    94夏青,陈艳卿,刘宪兵.水质基准与水质标准.北京:中国标准出版社,2004.
    95 O’Hayre R, Chas S Y, Colella W, Prinz F B著.王晓红,黄宏译.燃料电池基础.北京:电子工业出版社, 2007.
    96冯雅丽,李浩然,祝学远.单室直接微生物燃料电池性能影响因素分析.北京科技大学学报, 2007, 29(2): 162~165.
    97刘志丹,连静,杜竹玮,李浩然.利用异化金属还原菌构建含糖微生物燃料电池.生物工程学报, 2006, 22(1): 131~136.
    98黄霞,范明志,梁鹏,曹效鑫.微生物燃料电池阳极特性对产电性能的影响.中国给水排水, 2007, 23(3): 8~13.
    99 Raghavulu S V, Mohan S. V, R. Goud K, Sarma P N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun, 2009, 11(2): 371~375.
    100 Lu N, Zhou S G, Zhuang L, Zhang J T, Ni J R. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal, 2009, 43(3): 246~251.
    101 Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40(17): 5181~5192.
    102黄敏.微生物燃料电池和废水厌氧生物处理结合的探讨.硕士学位论文.合肥:合肥工业大学, 2007.
    103孙伟,高瑞芳,毕瑞锋,焦奎.室温离子液体六氟磷酸正丁基吡啶修饰碳糊电极的制备与表征.分析化学研究简报, 2007, 35(4): 567~570.
    104 Cheng K Y, Cord-Ruwisch R, Ho G. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat. Bioelectrochemistry, 2009, 74(2): 227~231.
    105詹亚力,王琴,张佩佩,闫光绪,郭绍辉.微生物燃料电池影响因素及作用机理探讨.高等学校化学学报, 2008, 29(1): 144~148.
    106梁鹏,范明志,曹效鑫,黄霞,彭尹明,王硕,巩前明,梁吉.碳纳米管阳极微生物燃料电池产电特性的研究.环境科学, 2008, 29(8): 2356~2360.
    107 Min B, Angelidaki I. Innovative microbial fuel cell for electricity production from anaerobic reactors. J. Power sources, 2008, 180 (1): 641~647.
    108 Manohar A K, Mansfeld F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochimica Acta, 2009, 54 (6): 1664~1670.
    109毛宗强.燃料电池.北京:化学工业出版社, 2005.
    110 Rismani-Yazdi H, Sarah M C, Christy A D, Tuovinen O H. Cathodic limitations in microbial fuel cells: An overview. J. Power sources, 2008, 180 (2): 683~694.
    111 Hong S W, Chang I S, Choi Y S, Chung T H. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology, 2009, 100(12): 3029~3035.
    112詹亚力,张佩佩,闫光绪,郭绍辉.无中间体无膜微生物燃料电池的构建与运行.高等化学工程学报, 2008, 22(1): 177~181.
    113 Zhu X P, Ni J R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochemistry Communications, 2009, 11(2): 274~277.
    114 Thygesen A, Poulsen F W, Min B, Angelidaki I, Thomsen A B. The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technology, 2009, 100(3): 1186~1191.
    115 Yu E H, Cheng S A, Scott K, Logan B E. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources, 2007, 171(2): 275~281.
    116梁鹏,黄霞,范明志,曹效鑫,崔岳.双筒型微生物燃料电池产电及污水净化特性的研究.环境科学, 2009, 30(2): 616~620.
    117何辉,冯雅丽,李浩然,李顶杰.利用小球藻构建微生物燃料电池.过程工程学报, 2009, 9(1): 133~137.
    118 Kim J R, Cheng S A, Oh S E, Logan B E. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol, 2007, 41(3): 1004~1009.
    119 Rozendal R A, Hamelers H V, Buisman C J. Effects of Membrane Cation Transport on pH and Microbial Fuel Cell Performance. Environ Sci Technol, 2006, 40(17): 5206~5211.
    120 Zhang P Y, Liu Z L. Experimental study of the microbial fuel cell internal resistance. J. Power Sources, 2010, 195(24): 8013~8018.
    121 Rabaey K, Keller J. Microbial fuel cell cathodes: from bottleneck to prime opportunity. Water Science & Technology, 2008, 57(5): 655~659.
    122 Clauwaert P, Rabaey K, Aelterman P, de Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells. Environ Sci Technol. 2007, 41(9):3035~3036.
    123赵庆良,张金娜,尤世界,姜珺秋.不同阴极电子受体从生物燃料电池中发电的比较研究.环境科学学报, 2006, 26( 12 ): 2052~2057.
    124 Fornero J J, Rosenbaum M, Cotta M A, Angenent L T. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber. Environ Sci Technol, 2008, 42(22): 8578~8584.
    125 Oh S E, Logan B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol, 2006, 70(2):162~169.
    126 Freguia S, Rabaey K, Yuan Z G, Keller J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta, 2007, 53(2): 598~603.
    127 Kim B H, Chang I S, Gadd G M. Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol, 2007, 76(3): 485~494.
    128 Fan Y Z, Hu H Q, Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources, 2007, 171(2): 348~354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700