用户名: 密码: 验证码:
季节冻土地区圆形基坑冻结壁模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工冻结技术在基坑工程中尚未被广泛应用,一个重要的原因是人工冻结的耗能大,阻碍了这项绿色施工技术的推广。而我国季节冻土区面积广大,利用季节冻土层中的天然低温冷能环境进行冻结技术施工必定节约大量的能源。因而开展季节冻土区圆形基坑冻结壁的模型试验研究,揭示在该环境中人工冻结壁沿深度初始温度场、热学、力学特性与节能规律将为推动季节冻土区基坑支护技术的发展具有重要的理论意义与实用价值。
     本文在对国内外相关研究进行系统总结与深入分析的基础上,采用大型模型试验、数值计算、建立冻胀模型等方法,以圆形基坑冻结壁为研究对象,以模型试验为主线,考虑了季节冻土层中负温温度环境的影响,完成了以下方面的研究工作:
     1、完成了徐州粉质粘土37个试样8项试验工作,认识土性特点,获取了模型试验所用土质的相关物理、力学、热学特性指标。为模型试验和有限元数值计算的参数确定提供了基础。
     2、根据相似准则,设计研发、改造了大型模型试验设备,使之能够满足试验项目的要求。完成与试验台配套的制冷冻结、加载、监测系统的配套工作,确保合理取得相关试验成果。
     3、开展大型模型试验研究,进行了10种工况,不同季节冻土层温度与有、无季节冻土层的大型圆形基坑冻结壁模型试验。研究季节冻土层下冻结壁内的温度、冻胀力的变化规律。在人工开挖后,使用气囊加压,模拟水平地应力,并研究位移变化规律。监测制冷盐水消耗,获取季节冻土层对冻结壁能量消耗的影响规律。
     4、根据试验实测数据,确认季节冻土层存在对加快冻结壁交圈时间,提高冻结速度和明显限制水平位移的重要作用,并得到相关经验公式。
     5、使用有限元软件模拟季节冻土区二维平面冻土墙的耗能特性,为模型试验提供佐证。
     6、根据模型试验的工程背景,提出建立宏观冻胀模型的必要性。建立模型数值计算方法,通过室内冻胀试验和借鉴国外学者试验资料对模型进行验证。通过以上工作,本文主要取得了以下研究成果:
     1、确认季节冻土层对圆形基坑冻结壁的温度场、冻胀力、外载作用下的变形、耗能等方面的影响规律。季节冻土层温度越低,越有利于冻结壁温度场向低温迅速发展,越有利于增加冻结壁抵抗外载的能力,但同时导致冻结壁冻胀力增大。
     2、模型试验数据和数值计算结果均表明季节冻土层的存在明显减小冻结壁形成所需冻结时间,可有效减少冻结能量消耗。
     3、模型试验中各类监测数据随冻结壁深度变化的规律,说明季节冻土层对圆形基坑冻结壁性能的影响范围有限。
     4、以分凝势理论为基础,在冻结缘内建立分凝势与孔隙率变化率的联系,得到孔隙率变化率公式。建立起冻胀有限元计算公式。
     5、使用Fortran和python语言对ABAQUS进行二次开发,以ABAQUS为平台实现宏观冻胀模型的数值求解,并建立有限元计算模型。对比显示数值计算结果与试验数据具有较好的一致性。
Artificial Ground Freezing has not yet been widespreadly applied in pit engineer-ing up to now, and one of the most important reasons is that Artificial Ground Freezingneeds plenty of energy, which hinders the promotion and generalization of this“green”engineering construction technology. There is a great deal of seasonally frozen region inChina, and it must save greatly vast energy to carry out Artificial Ground Freezing undernaturallow temperature conditioninseasonallyfrozen layer. Hence, the circlefrozen walllarge-scale model test was performed with seasonally frozen layer, in order to reveal arti-ficialcharacteristicsandlawof initialtemperaturefield, calorifics, mechanicsandenergy-saving of freezing wall along length, which is theoretically and practically valuable andsignificant to promote the development of pit supporting technology in seasonally frozenregion.
     Based on systemic sum-up and profound analysis of the relative national and inter-national research, the circle frozen wall was mainly studied by large-scale model test withthe menus temperature condition of seasonally frozen layer, as well as through numericalcalculation, frost-heave model and so on, the fulfilled research work as follows:
     1. 8 items of tests were conducted on 37 Xuzhou silty clay samples, and the charac-teristics of physics, calorifics and mechanics were obtained, which provided experimentalparameters for model test and numerical calculation.
     2. According to similarity criterion, a large-scale model test equipment was de-signed, developed and rebuilt to satisfy the requirement of experiment projects. Thematched freezing, loading and monitoring systems were also developed to insure the ra-tionality of test results.
     3. Large-scalemodelcircleartificialfrozenwalltestswerecarriedouton10kindsofexperimental conditions with or without seasonally frozen layer to investigate the changelawoftemperatureandfrost-heaveforceoffrozenwallwithseasonallyfrozenlayer. Afterexcavation, the air balloon was compressed to simulate horizontal ground stress and studythe variation of displacement. The influence law of seasonally frozen layer on the energyexpenditure of artificial frozen wall was got by monitoring the flow-rate consumption offreezing salt water.
     4. Intermsofthecollectedtestdata, theformationtimeofcircleartificialfrozenwallwas obtained with seasonally frozen layer, as well as the important and obvious restrictionon horizontal displacement, increment of freezing velocity and the relative experienceformula.
     5. The energy-wasting characteristics of 2-dimension plane numerical model offrozen wall was founded and calculated by FEM software, which provided the feasibleproof for large-scale model test.
     6. Based on the background of engineering construction by artificial ground freez-ing, the necessity of foundation of macro frost-heave model was proposed, of which thenumerical calculation method was developed, and the model was validated by frost-heavetest and experimental data from international researchers.Through all above research work, the main study production was achieved as fol-lows:
     1. Therulesweregainedfromtheaffectionofseasonallyfrozenlayerontemperaturefield, frost-heave force, deformation from load, energy-wasting of artificial frozen wall ,and so on. It can be concluded that the lower the temperature of seasonally frozen layerwas, the faster the temperature field went down to the menus value, and the stronger theresisting force of frozen wall against load, but, at the same time, the bigger frost-heaveforce was.
     2. The results from model tests and numerical calculation demonstrate that the ex-istence of seasonally frozen layer will obviously reduce the formation time of artificialfreezing wall and the energy waste.
     3. From the change rules along depth of all kinds of monitoring data of frozen wallmodel tests, it can be seen that the influence range of seasonally frozen layer on the frozenwall.
     4. The relationship between change rate of porosity and segregate potential in freez-ing frontier on the foundation of segregate potential theory was founded, also the FEMcalculation formula of frost-heave.
     5. Numericalsolutionofmacrofrost-heavemodelwasperformedthroughABAQUSby using Fortran and python language, and the numerical calculation model was founded.By comparison, the results of numerical calculation was almost correspondent with thoseof numerical calculation.
引文
1徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社, 2001:110–312.
    2马巍.中国地层土冻结技术研究的回顾与展望[J].冰川冻土, 2001,23(3):218–224.
    3 O. Andersland, B. Ladanyi. Frozen Ground Engineering[M]. New York: JohnWiley & Sons Inc, 2004:19–120.
    4 B. Braun, J. Shuster, E. Burnham. Ground Freezing for Support of Open Excava-tions[J]. Engineering geology, 1979, 13(1-4):429–453.
    5程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工业学院学报,2000, 20(2):17–22.
    6王长生.冻结施工技术的新发展[J].煤炭科学技术, 1989, (8):53–56.
    7陈瑞杰,程国栋.人工地层冻结应用研究进展和展望[J].岩土工程学报, 2000,22(1):40–44.
    8陈湘生,陈朝辉.岩土工程技术最新进展:全向冻结施工技术[J].地下空间,1999, 19(4):297–302.
    9陈湘生,杨春来.冻结法加固地层的原理与应用[J].水利水电施工, 1997,(3):71–72.
    10 P. van Dijk, J. Bouwmeester-van den Bos. Large Scale Application of ArtificialGround Freezing[C]//2000:315–330.
    11 J. Shuster. Engineering Quality Assurance for Construction Ground Freezing[J].Engineering Geology, 1981, 18(1-4):333–350.
    12 J. Ross. Ground Freezing Method, 1976. US Patent 3,943,722.
    13 J. Jones, R. Brown. Design of Tunnel Support Systems Using Ground Freezing[J].Engineering geology, 1979, 13(1-4):375–395.
    14马牛静.冻结技术在桥梁基础中的应用[J].西部探矿工程, 2007,19(12):208–212.
    15余占奎,黄宏伟,王如路,等.人工冻结技术在上海地铁施工中的应用[J].冰川冻土, 2005, 27(4):550–556.
    16汪仁和,许大雄.冻洁法施工软土深基坑的可行性研究[J].建筑施工, 1996,18(2):29–32.
    17杨平.冻结法用于深基坑坑壁维护的可行性研究[J].山东矿业学院学报,1996, 15(4):12–16.
    18马巍,吴紫汪.深基坑人工冻结围护墙厚度的计算[R].冻土工程国家重点实验室年报,兰州:中国科学院冰川冻土研究所, 1996.
    19金永军,杨维好.冻土直墙用于基坑支护的研究[J].岩石力学与工程学报,2004, 23(13):2280–2285.
    20东兆星,崔广心.深基坑支护中冻土墙力学特性研究综述[J].岩土力学, 2002,23(5):622–626.
    21 R. Peurifoy, C. Schexnayder, A. Shapira. Construction Planning, Equipment, andMethods[M]. New York: McGraw-Hill, 1956:11–20.
    22 I. Klein. Present State of Freeze Shaft Design in Mining[C]//Strata mechanics:proceedings of the Symposium on Strata Mechanics held in Newcastle upon Tyne,5-7 April 1982. 1982:147.
    23徐学燕,丁靖康.冻土冻融界面长期抗剪强度计算方法[J].地基基础工程,1992, 2(2):52–55.
    24徐学燕,陈亚明.冻土的动力特性研究及其参数确定[J].岩土工程学报, 1998,20(5):77–81.
    25徐学燕,李海山.桩基础约束条件下季节冻土场地冻胀量的二维数值求解[J].哈尔滨建筑大学学报, 2001, 34(6):8–11.
    26于琳琳,徐学燕.原状土人工冻结试验研究[J].低温建筑技术, 2008,26(5):117–119.
    27周幼吾,郭东信,邱国庆.中国冻土[M].北京:科学出版社, 2000:10–220.
    28赵其国,王浩清.中国的冻土[J].土壤学报, 1993, 30(4):341–354.
    29林利明,徐学燕.某深基坑支护工程加深度的设计确定[J].低温建筑技术,2002, (1):52–53.
    30益德清.深基坑支护工程实例[M].北京:中国建筑工业出版社, 1996:3–12.
    31唐业清,李启民,崔江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社, 1999:12–120.
    32侯学渊,刘国彬.城市基坑工程发展的几点看法[J].施工技术, 2000,29(1):5–7.
    33李钟.深基坑支护技术现状及发展趋势(一)[J].岩土工程界, 2001, 4(1):42–45.
    34李钟.深基坑支护技术现状及发展趋势(二)[J].岩土工程界, 2001, 4(2):45–47.
    35 J. Harris. Ground Freezing in Practice[M]. New York: Amer Society of CivilEngineers, 1995:110–120.
    36 P. Schmall, B. Braun. Ground Freezing—a Viable and Versatile Construction Tech-nique[C]//2006:1–11.
    37张乃柱,王建成,杨平,等.应用冻结法在含水砂层中施工地下建筑物[J].地层冻结工程技术和应用——中国地层冻结工程40年论文集, 1995:460–464.
    38沈忠群,肖钊义.排桩冻结法在桥梁基础工程中的应用[J].世界桥梁, 2005,(2):20–23.
    39 P. Schmall, D. Maishman. Ground Freezing a Proven Technology in MineShaft Sinking[J]. MINING ENGINEERING-NEW YORK THEN LITTLETONCOLORADO-, 2007, 59(6):25–30.
    40 J. Dash. Ice Technology for Hazardous Waste Management[J]. Waste management,1991, 11(4):183–189.
    41 J. Dash. Ground Freezing for Management of Hazardous Wastes[J]. A. A.BALKEMA., 1994:351–354.
    42 J. Dash, H. Fu, R. Leger. Frozen Soil Barriers for Hazardous Waste Confine-ment[C]//International Containment Technology Conference. 1997:607–613.
    43木下诚一原著,王志权译.冻土物理学[M].长春:吉林科学技术出版社,1995:10–20.
    44陈湘生.地层冻结工法理论研究与实践[M].北京:煤炭工业出版社,2007:103–120.
    45杨家星.冻结法在凤台淮河大桥主桥墩基础中的应用[J].地层冻结工程技术和应用——中国地层冻结工程40年论文集, 1995:472–475.
    46张树光,孙利.深基坑排桩冻结温度场的数值模拟[J].岩土工程学报, 2006,28(B11):1510–1512.
    47武亚军,李大勇,杨敏.冻结法隧道施工数值仿真模拟[J].岩石力学与工程学报, 2005, 24(A02):5851–5856.
    48周兴荣.冻结法在上海地铁支护工程中的应用[J].西部探矿工程, 2002,(z1):187–189.
    49杨平,余才高,董朝文.人工冻结法在南京地铁张府园车站的应用[J].岩土力学, 2003, 24(2):388–391.
    50李大建.广州地铁超长水平冻结施工设计[J].都市快轨交通, 2007,20(2):55–59.
    51金永军,杨维好.直线形冻土墙动态温度场的试验研究[J].辽宁工程技术大学学报:自然科学版, 2002, 21(6):730–733.
    52 H. Malekzadeh, D. Edwards, F. Frank. Modelling Culvert Construction in Artifi-cially Frozen Ground Using Finite Element Analysis[J]. Structural Survey, 2001,19(5):253–261.
    53陈湘生.深冻结壁时空设计理论[J].岩土工程学报, 1998, 20(5):13–16.
    54 G.Newman, P.Eng. CaseStudy: ThermalAnalysisofArtificialGroundFreezingatthe Mcarthur River Uranium Mine[J]. GEOTECHNICAL NEWS-VANCOUVER-,2003, 21(2):60–62.
    55 J. Zhao, H. Wang, X. Li, et al. Experimental Investigation and Theoretical Modelof Heat Transfer of Saturated Soil Around Coaxial Ground Coupled Heat Ex-changer[J]. Applied Thermal Engineering, 2008, 28(2-3):116–125.
    56 E. Simonsen, V. Janoo, U. Isacsson. Prediction of Temperature and MoistureChanges in Pavement Structures[J]. Journal of Cold Regions Engineering, 1997,11(4):291–307.
    57 R. Lackner, A. Amon, H. Lagger. Artificial Ground Freezing of Fully SaturatedSoil: Thermal Problem[J]. Journal of engineering mechanics, 2005, 131:211–220.
    58 J. Palm. Temperature Analysis Using Abaqus[J]. Fire Technology, 1994,30(3):291–303.
    59余力,崔广心,翁家杰.特殊凿井[M].北京:煤炭工业出版社, 1990:133–135.
    60郭兰波,庞荣庆,史文国.竖井冻结壁温度场的有限元分析[J].中国矿业大学学报, 1981, 3:37–55.
    61崔广心.厚表土层湿土结冰温度与冻结壁厚度确定的研究[J].中国矿业大学学报, 1997, 26(3):1–4.
    62李宝花,杨更社,王连花,等.冻土墙冻结温度场和应力场耦合的有限元分析[J].西安科技学院学报, 2003, 23(2):143–146.
    63王连花,杨更社,李宝花,等.冻土墙围护深基坑开挖的蠕变有限元数值模拟[J].西安科技学院学报, 2003, 23(2):147–150.
    64张晶,杨更社.深基坑维护中冻土墙厚度的计算[J].岩石力学与工程学报,2000, 19(6):799–801.
    65肖朝昀,胡向东,张庆贺.地铁修复工程中冻结法设计[J].岩土工程学报,2006, 28(B11):1716–1719.
    66汪仁和,曹荣斌.双排管冻结下冻结壁温度场形成特征的数值分析[J].冰川冻土, 2002, 24(2):181–185.
    67汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报:自然科学版, 2003, 23(1):25–29.
    68胡向东,黄峰,白楠.考虑土层冻结温度时人工冻结温度场模型[J].中国矿业大学学报, 2008, 37(4):550–555.
    69齐吉琳,马巍.冻土的力学性质及研究现状[J].岩土力学, 2010, (1):133–143.
    70刘慧,杨更社,田俊锋,等.冻结岩石细观结构及温度场数值模拟研究[J].地下空间与工程学报, 2007, 3(6):1127–1132.
    71王文顺,王建平,井绪文,等.人工冻结过程中温度场的试验研究[J].中国矿业大学学报, 2004, 33(4):388–391.
    72 L. Bronfenbrener, E. Korin. Thawing and Refreezing Around a Buried Pipe[J].Chemical Engineering and Processing, 1999, 38(3):239–247.
    73 P. Yang, J. Ke, J. Wang, et al. Numerical Simulation of Frost Heave with CoupledWaterFreezing, Temperatureand Stress Fields in TunnelExcavation[J]. Computersand Geotechnics, 2006, 33(6-7):330–340.
    74陈肖柏,刘鸿绪,刘建坤,等.土的冻结作用与地基[M].北京:科学出版社,2006:210–213.
    75 A. Fowler, W. Krantz. A Generalized Secondary Frost Heave Model[J]. SiamJournal on Applied Mathematics, 1994, 54(6):1650–1675.
    76 B. Petrov. Investigation of Tangential Forces of Frost Heave[J]. Soil Mechanicsand Foundation Engineering, 1973, 10(5):313–315.
    77 R. Harlan. Analysis of Coupled Heat-fluid Transport in Partially Frozen Soil[J].Water Resources Research, 1973, 9(5):1314–1323.
    78 B. Kay, M. Fukuda, H. Izuta, et al. The Importance of Water Migration in theMeasurement of the Thermal Conductivity of Unsaturated Frozen Soils[J]. ColdRegions Science and Technology, 1981, 5(2):95–106.
    79 S. Halldin, H. Grip, P. Jansson, et al. Micrometeorology and Hydrology of PineForest Ecosystems. Ii. Theory and Models[J]. Ecological Bulletins, 1980:463–503.
    80 M. Fukuda Akin, J. Luthin. Experimental Studies of Coupled Heat and MoistureTransfer in Soils During Freezing[J]. Cold Regions Science and Technology, 1980,3(2-3):223–232.
    81 R. Kettle, R. Williams. Frost Heave Testing[J]. Materials and Structures, 1976,9(2):99–107.
    82 K. Jackson, D. Uhlmann, B. Chalmers. Frost Heave in Soils[J]. Journal of appliedphysics, 1966, 37:848–852.
    83 D. Yang, D. Goodings. Predicting Frost Heave Using Frost Model with CentrifugeModels[J]. Journal of Cold Regions Engineering, 1998, 12:64–83.
    84 D. Sheng, K. Axelsson, S. Knutsson. Frost Heave Due to Ice Lens Formation inFreezing Soils 2. Field Application[J]. Nordic Hydrology, 1995, 26(2):147–168.
    85 T. Baker, J. Davis, H. Hayhoe, et al. Locating the Frozen-unfrozen Interface inSoils Using Time-domain Reflectometry[J]. Canadian Geotechnical Journal, 1982,19(4):511–517.
    86 K. O’Neill, R. Miller. Numerical Solutions for a Rigid-ice Model of SecondaryFrost Heave[R]. U.s. armay crrel report 82-13, U.S. Armay, 1982.
    87 R. Miller. Freezing and Heaving of Saturated and Unsaturated Soils[J]. HighwayResearch Board, 1971, 393:1–11.
    88 J.Konrad, N.Morgenstern. TheSegregationPotentialofaFrozenSoil[J]. CanadianGeotechnical Journal, 1981, 18:482–491.
    89周扬,周国庆,张琦.土体冻胀透镜体生长的广义准静态模型研究[J].中国矿业大学学报, 2008, 37(3):333–338.
    90 J. Konrad, M. Shen. 2-d Frost Action Modeling Using the Segregation Potential ofSoils[J]. Cold Regions Science and Technology, 1996, 24(3):263–278.
    91 E. Penner, L. Goodrich. Location of Segregated Ice in Frost-susceptible Soil[J].Engineering Geology, 1981, 18(1-4):231–244.
    92 J. Konrad, N. Lemieux. Influence of Fines on Frost Heave Characteristics ofa Well-graded Base-course Material[J]. Canadian geotechnical journal, 2005,42(2):515–527.
    93 C. Duquennoi, M. Fremond. Modelling of Thermal Soil Behavior[C]//VTT Sym-posium. 1989, 94:2.
    94 J. Konrad, C. Duquennoi. A Model for Water Transport and Ice Lensing in FreezingSoils[J]. Water Resources Research, 1993, 29(9):3109–3124.
    95 N. Li, B. Chen, F. Chen, et al. The Coupled Heat-moisture-mechanic Model of theFrozen Soil[J]. Cold Regions Science and Technology, 2000, 31(3):199–205.
    96 A. Selvadurai, J. Hu, I. Konuk. Computational Modelling of Frost Heave InducedSoil-pipeline Interaction:: I. Modelling of Frost Heave[J]. Cold Regions Scienceand Technology, 1999, 29(3):215–228.
    97 A. Palmer, P. Williams. Frost Heave and Pipeline Upheaval Buckling[J]. Canadiangeotechnical journal, 2003, 40(5):1033–1038.
    98 V. Razbegin, S. Vyalov, R. Maksimyak, et al. Mechanical Properties of FrozenSoils[J]. Soil Mechanics and Foundation Engineering, 1996, 33(2):35–45.
    99左保成,陈从新,刘才华,等.相似材料试验研究[J].岩土力学, 2004,25(11):1805–1808.
    100郑涛.岩土工程模型试验的理论与方法[J].矿业快报, 2008, 24(3):18–21.
    101尤明庆.试验结果的数学拟合与力学模型[J].岩石力学与工程学报, 2008,27(2):251–257.
    102朱林楠,李东庆.无外荷载作用下冻土模型试验的相似分析[J].冰川冻土,1993, 15(1):166–169.
    103辛立民,沈志平.冻土墙围护深软基坑的模型试验研究[J].建井技术, 2001,22(5):29–31.
    104姚直书,程桦,夏红兵.特深基坑排桩冻土墙围护结构的冻胀力模型试验研究[J].岩石力学与工程学报, 2007, 26(2):415–420.
    105吴紫汪,马巍,张长庆,等.人工冻结壁变形的模型试验研究[J].冰川冻土,1993, 15(1):121–124.
    106杨维好.某深基坑冻土墙应力与变形的数值计算[J].中国矿业大学学报,2002, 31(3):285–288.
    107崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社, 1998:240–243.
    108崔广心.相似理论与模型试验[M].北京, 1990:146–150.
    109杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005:172–173.
    110张辰熙.季节冻土环境中人工冻土墙试验研究[D].哈尔滨:哈尔滨工业大学, 2008:38–43.
    111 S. Taber. Frost Heaving[J]. The Journal of Geology, 1929, 37(5):428–461.
    112吉植强,徐学燕,徐伯孟,等.蒲石河电站面板堆石坝垫层料冻胀试验[J].重庆建筑大学学报, 2008, 30(6):136–139.
    113徐学祖,泰斯.土水势、未冻水含量和温度[J].冰川冻土, 1985, 7(1):35–35.
    114 D. Anderson, A. Tice. The Unfrozen Interfacial Phase in Frozen Soil Water Sys-tems[J]. Ecological Studies, 1973, 4:107–124.
    115朱元林,张家懿,彭万巍,等.冻土的单轴压缩本构关系[J].冰川冻土, 1992,14(3):210–217.
    116李海鹏,林传年,张俊兵,等.饱和冻结黏土在常应变率下的单轴抗压强度[J].岩土工程学报, 2004, 26(1):105–109.
    117马芹永.人工冻土单轴抗拉,抗压强度的试验研究[J].岩土力学, 1996,17(3):76–81.
    118董鉴峰.漠河地区多年冻土物理力学性质研究[D].哈尔滨:哈尔滨工业大学, 2010:48–53.
    119陈军浩,汪仁和.多圈管冻结下冻结壁温度场融化特性的实测研究[J].中国煤炭, 2009, (12):48–50.
    120王文顺,王建平,井绪文,等.人工冻结过程中温度场的试验研究[J].中国矿业大学学报, 2004, 33(4):388–391.
    121胡向东,黄峰,白楠.考虑土层冻结温度时人工冻结温度场模型[J].中国矿业大学学报, 2008, 37(4):550–555.
    122陈付桥,李显伟,刘新宇,等.冻土墙墙体时空扩展过程中热能消耗的有限元分析[J].解放军理工大学学报:自然科学版, 2003, 4(3):38–42.
    123崔云龙.简明建井工程手册(下册)[M].北京:煤炭工业出版社, 2003:302–303.
    124徐学祖,何平,张健明.土体冻结和冻胀研究的新进展[J].冰川冻土, 1997,19(3):280–283.
    125崔灏,汪仁和.人工冻结粘性土的冻胀特性研究[J].安徽理工大学学报:自然科学版, 2004, 24(B05):44–47.
    126姚直书,程桦,夏红兵.特深基坑排桩冻土墙围护结构的冻胀力模型试验研究[J].岩石力学与工程学报, 2007, 26(2):415–420.
    127隋铁龄,那文杰.季节冻土区挡土墙水平冻胀力的设计取值方法[J].水利学报, 1992, (1):67–72.
    128蔡瑛,汪仁和.人工深土冻土冻胀特性的试验研究[J].能源技术与管理, 2007,2:60–61.
    129吉植强,徐学燕.季节冻土地区人工冻土墙的冻结特性研究[J].岩土力学,2009, 30(4):971–975.
    130徐学燕,吉植强,张晨熙.模拟季节冻土层影响的冻土墙模型试验[J].岩土力学, 2010, 31(006):1705–1708.
    131 R. Michalowski, M. Zhu. Freezing and Ice Growth in Frost-susceptible Soils[J].Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, 2007:429–441.
    132 D. Kane. Snowmelt Infiltration Into Seasonally Frozen Soils[J]. Cold RegionsScience and Technology, 1980, 3(2-3):153–161.
    133 D. Blanchard, M. Fremond. Soil Frost Heaving and Thaw Settlement[C]//4th Int.Symp. Ground Freezing, Sapporo. 1985:209–216.
    134 R. Michalowski, M. Zhu. Frost Heave Modelling Using Porosity Rate Func-tion[J]. International Journal for Numerical and Analytical Methods in Geome-chanics, 2006, 30(8):703–722.
    135 R.Michalowski,M.Zhu. ModellingofFreezinginFrost-susceptibleSoils[J]. Com-puter Assisted Mechanics and Engineering Sciences, 2006, 13(4):613–625.
    136 N. Li, F. Chen, B. Xu, et al. Theoretical Modeling Framework for an UnsaturatedFreezing Soil[J]. Cold Regions Science and Technology, 2008, 54(1):19–35.
    137 S. Mu, B. Ladanyi. Modelling of Coupled Heat, Moisture and Stress Field in Freez-ing Soil[J]. Cold Regions Science and Technology, 1987, 14(3):237–246.
    138 Z.Ji,X.Xu,L.Yu. MacroscopicFrostHeaveModelBasedonSegregationPotentialTheory[J]. Transactions of Tianjin University, 2010, 16(4):304–308.
    139 J. Konrad. Frost Susceptibility Related to Soil Index Properties[J]. CanadianGeotechnical Journal, 1999, 36(3):403–417.
    140 J. Konrad. Estimation of the Segregation Potential of Fine-grained Soils Using theFrost Heave Response of Two Reference Soils[J]. Canadian geotechnical journal,2005, 42(1):38–50.
    141 K.Hibbitt, I.Sorensen. AbaqusUser’sManual[J]. ABAQUS/STANDARD,2003,6.
    142 J. Konrad. Prediction of Freezing-induced Movements for an UndergroundConstruction Project in Japan[J]. Canadian Geotechnical Journal, 2002,39(6):1231–1242.
    143张树光,李选海,杨育红.路基冻胀过程的温度效应[J].辽宁工程技术大学学报:自然科学版, 2005, 24(4):546–548.
    144仇培云,岳丰田,杨国祥,等.复杂地质条件下隧道联络通道冻结工程实录[J].地下空间与工程学报, 2005, 1(6):979–982.
    145张喜发,辛德刚,张冬青,等.季节冻土区高速公路路基土中的水分迁移变化[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2004,26(4):454–460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700