用户名: 密码: 验证码:
长沙城市森林生态系统养分循环与碳平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市是人口主要集中居住的地区,是人类活动的重要场所,近年来随着城市的功能和规模不断扩大,城市环境污染日益严重,阻碍了社会、经济的发展。而城市森林被称为“城市之肺”,在改善城市地域内的生态环境,促进人与自然协调,满足社会持续发展等方面的作用突出,因此对城市森林的研究正日益受到世界各国的重视,城市森林显著的生态功能也备受各界科学工作者的关注。本研究在长沙城市选择樟树、马尾松人工混交林,对林分土壤理化性质、生物量结构特征、林分生产力、养分循环及生态系统碳素贮量及碳平衡等进行了系统研究。主要研究结果为:
     1.林地土壤pH值为4.69,属酸性土壤;自然含水量为21.77%;总孔隙度为44.59%;有机质含量为17.59 g·kg-1;全N含量0.99 g·kg-1;全P含量1.13 g·kg-1,且N素、P素有效率低,仅为2%;全K含量6.13 g·kg-1,属于低水平,速效K含量150.15 mg·kg-1,属适量K型土壤;全Ca含量0.79 g·kg-1,全Mg含量3.00 g·kg-1,均为低含量。
     微量元素含量以Fe最高,为60797 mg·kg-1,Cd最低,仅为1.18mg·kg-1,微量元素含量高低依次排序为:Fe>Mn>Zn>Cu>Pb>Ni>Co>Cd,并呈现Mn被淋溶而向土壤下层迁移,Cu、Fe、Zn、Cd、Ni、Pb、Co在土壤中的积累和淋溶作用不明显的规律。
     2.森林生态系统中,樟树单株生物量为191.12 kg,马尾松为291.97kg,山矾为29.37 kg,对蕚山矾为18.04 kg。4个树种单株生物量均为树干最高,且显著高于树皮、树枝、树叶和树根(p<0.05)。按林木各器官生物量大小依次顺序,樟树为树干>树根>树枝>树皮>树叶;马尾松、山矾和对蕚山矾则为树干>树枝>树根>树叶>树皮。在同一生态环境条件下,林冠层常绿阔叶速生樟树和常绿针叶速生马尾松均为24年生,而马尾松单株生物量比樟树大1.5倍;下木层山矾与对蕚山矾均为20年生的常绿阔叶树种,山矾单株生物量大于对蕚山矾1.6倍。表明林木个体生物量大小是由其生物学特性决定的,而环境的影响则是次要的。
     林分乔木层生物量为76.14 t·hm-2,其中樟树为28.67 t·hm-2,占乔木层生物量37.7%;马尾松为17.51 t·hm-2,占23.0%;山矾22.91 t·hm-2,占30.0%;对蕚山矾7.05 t·hm2,占9.3%。
     灌木层生物量为16.15 t·hm-2,其中木姜子1.47 t·hm-2,黄栀子0.64t·hm-2,幼树14.04 t·hm-2。
     草木层生物量为0.22 t·hm-2,其中狗脊蕨0.15 t·hm-2,凤尾蕨0.03t·hm-2,棕叶芦0.04 t·hm-2。
     层外层生物量为0.05 t·hm-2,其中菝葜0.02 t·hm-2,鸡矢藤为0.03t·hm-2。
     死地被物层生物量为5.00 t·hm-2,其中未分解(L)层为0.53 t·hm2,半分解(F)层为2.57 t·hm-2,已分解(H)层为1.90 t·hm-2。
     林内年凋落物生物量为7601.66 kg·hm-2·a-1;其中凋落针叶量为3541.22 kg·hm-2·a-1,凋落阔叶1878.20 kg·hm-2·a-1,落果796.67kg·hm-2·a-1,有机碎屑1385.57 kg·hm-2·a-1。
     林分乔木层生产力为4.85 t·hm-2·a-1,其中樟树为2.62 t·hm-2·a-1,马尾松0.73 t·hm-2·a-1,山矾1.14 t·hm-2·a-1,对蕚山矾0.36 t·hm-2·a-1。
     3.乔木层四个树种体内大量营养元素平均含量:N为5.92—8.25g.kg-1,P 0.43—0.58 g·kg-1;K 1.50—2.53 g·kg-1,Ca 4.36—10.21 g·kg-1, Mg 0.84—1.10 g·kg-1;微量元素平均含量:Fe 165.90—344.56 mg·kg-1, Cu 7.53—9.00 mg·kg-1,Zn 21.63—41.49 mg·kg-1,Mn 138.78—619.27 mg·kg-1,Cd 0.46—2.25 mg·kg-1;Ni 2.88—3.83 mg·kg-1;Pb 5.70—13.65 mg·kg-1.
     生态系统中营养元素的总贮量为1423.44 kg·hm-1,存留量为132.07kg·hm-2·a-1,归还量为238.97 kg·hm-2·a-1,吸收量为371.04 kg·hm-2·a-1,利用系数为0.26,循环系数为0.64,周转时间为5.96年。樟树、马尾松混交林生态系统,养分归还速率快,循环强度大,利用率高,周转时间不长,有利于生态系统和林地养分的维持。
     4.乔木层各树种的平均碳素含量樟树为539.73 g·kg-1,马尾松为458.40 g·kg-1,山矾470.13 g·kg-1,对蕚山矾463.50 g·kg-1。樟树各器官碳素含量差异不显著(p>0.05),马尾松各器官碳素含量差异显著(p<0.05),山矾叶碳素含量显著低于树干和树枝(p<0.05);对蕚山矾树干和树皮碳素含量显著高于树叶(p<0.05)。
     林下灌木层植物碳素平均含量以木姜子最高为481.47 g·kg-1,其次为黄栀子452.81 g·kg-1,再次为幼树466.67 g·kg-1。
     草本植物碳素平均含量棕叶芦为475.55 g·kg-1,凤尾蕨422.71 g·kg-1,狗脊蕨396.04 g·kg-1。
     藤本植物碳素平均含量菝葜为470.36 g·kg-1,鸡矢藤437.69 g·kg-1。草本植物和藤本植物地上部分茎叶碳素含量均高于地下部分根系。
     死地被物层的碳素含量,未分解L层为401.80 g·kg-1,半分解F层为436.59 g·kg-1,已分解H层为352.72 g·kg-1。
     凋落物层碳素含量:凋落针叶为325.03 g·kg-1,阔叶360.75 g·kg-1,落果425.18 g·kg-1,有机碎屑461.80 g·kg-1。
     林地土壤0-60cm层碳素平均含量为10.20 g·kg-1,并随土层的增加而逐渐下降。
     5.生态系统碳素的贮量为132.68 t·hm-2,其中乔木层为38.52 t·hm-2,灌木层为7.27 t·hm-2,草本层0.09 t·hm-2,层外层0.02 t·hm-2。死地被物层2.00 t·hm-2,土壤层(0-60cm)84.78 t·hm-2。系统中碳素贮量高低依次排序为土壤层>植被层>死地被物层。
     6.林分乔木层年净固定碳量为2.44 t·hm-2·a-1,其中樟树为1.37t·hm-2·a-1,马尾松0.35 t·hm-2·a-1,山矾0.54 t·hm-2·a-1,对蕚山矾0.18·hm-2·a-1。
     凋落物固碳量为2.81 t·hm-2·a-1,其中凋落针叶固碳量为1.15t·hm-2·a-1,阔叶0.68 t·hm-2·a-1,落果0.34 t·hm-2·a-1,有机碎屑0.64t·hm-2·a-1;土壤呼吸量(非根呼吸量)为3.58 t·hm-2·a-1。
     长沙城市樟树马尾松人工林生态系统碳收支平衡为正值,即生态系统与大气碳的交换中表现为碳汇,碳汇量为1.67 t·hm-2·a-1。
A city is a large and densely populated urban area and is where human activities intensively taken place. With the growth of urban population and urbanization, many environmental problems are associated with urban development. Problems such as air pollution, biological and environmental degradation, and fresh-water supply shortage have become a growing concern increasing over the years. The Urban forests, called the "lungs of the city", play an important role in improving urban environment quality, regulating the relations between nature and human, and supporting sustainable development in urbanization. As a consequence, a great deal of efforts has been made to investigate structure, function and ecosystem services of urban forests around the world. In this study, physical and chemical properties of soil, patterns of stand biomass and productivity, nutrient biological cycle process, and carbon storage capacity in Camphor tree (Cinnamomum camphora (L.) Presl) and Masson pine(Pinus massoniana Lamb) mix-forest ecosystems were investigated in Changsha city, Hunan province. The results showed as following:
     1. The soils in the studied forests were acidic with a mean pH scale of 4.7. Soil water content averaged 21.8% and total soil porosity was 44.6%. Soil organic matter content was 17.59 g·kg-1. The concentration of total nitrogen (N) and phosphate (P) in soils was 0.99 and 1.13 g·kg-1, respectively. Both available-N and available-P contents were relatively low and accounted for around 2% of the total N and P in the study sites. The concentration of potassium (K) was low (6.13 g·kg-1) but available-K content was in adequate level (150.15 mg·kg-1). The concentration of Calcium (Ca) and Magnesium (Mg) in soils was 0.79 and 3.00 g·kg-1, which was relative low.
     The concentrations of micronutrients in soils were in an order as Fe> Mn> Zn> Cu> Pb> Ni> Co> Cd, with the highest in Fe (60797 mg·kg-1) and lowest in Cd (1.18 mg·kg-1). It was found that Mn was obviously transferred down along soil profiled due to leaching process. No apparent patterns were found for micronutrient elements, Cu, Fe, Zn, Cd, Ni, Pb and Co in terms of accumulation and leaching in soils.
     2. Mean biomass of an individual tree was 191.1,292.0,29.4, and 18.0 kg in the four tree species, Camphor tree, Masson pine, Symplocos sumuntia and Symplocos anomala in the studied mix-forests. Biomass was highest in stem organ, and was significantly higher than that in bark, branch, leaves and root (p<0.05). Biomass was in an order:stem> root> branch> leaves> bark in tree species Camphor tree, but was in an order as stem> branch> root> leaves> bark in Masson pine, Symplocos sumuntia and Symplocos anomala. Under the similar habitat, there was a significant difference of biomass production for different tree species even they were in the same age. For example, mean biomass of an individual tree in a 22-year old Masson pine was 1.5 time as high as that in a 22-year old Camphor tree, and mean tree biomass of a 20-year old Symplocos sumuntia was 1.6 times higher than that in a 20-year old Symplocos anomala. The results indicated that biomass production of an individual tree was primarily determined by biological features of the tree species, and environmental variables were the second most important factors in controlling biomass production.
     Stand biomass of overstorey in the forests was 76.14 t-hm-2, of which Camphor tree was 28.67 t·hm-2, accounting for 37.7%; Masson pine was 17.51 t·hm-2, accounting for 23.0%; Symplocos sumuntia was 22.91 t·hm-2, accounting for 30.0%, and Symplocos anomala was 7.05 t·hm-2, accounting for 9.3% of the total biomass in overstorey.
     Biomass in shrub layer was 16.15 t·hm-2, of which Neolitsea aurata was 1.47 t·hm-2, Gardenla Jasminoides was 0.64 t·hm-2, and other seedlings was 14.04 t·hm-2.
     Biomass in herbivorous layer was 0.22 t·hm-2, of which Woodwardia japonica was 0.15 t·hm-2, Spider brake (Pteris multifida Poir) was 0.03 t·hm-2 and Thysanolaena maxima was 0.04 t·hm-2.
     Biomass in lianas layer was 0.05 t·hm-2, of which Smilax china was 0.02 t·hm-2 and Paederia scandens was 0.03 t·hm-2.
     Biomass in dead floor layer was 5.00 t·hm-2, of which non-decomposed part (L) was 0.53 t·hm-2, semi-decomposed part (F) was 2.57 t·hm-2 and decomposed part (H) was 1.90 t·hm-2.
     Annual amount of litter-fall in the forests was 7601.66 kg·hm-2·a-1, of which litter-needle was 3541.22 kg·hm-2·a-1, litter-broad-leaves was 1878.20 kg·hm-2·a-1, litter-fruit was 796.67 kg·hm-2·a-1 and litter-organic debris was 1385.57 kg·hm-2·a-1.
     Stand productivity in overstorey in the mix-forests was 4.85 t·hm-2·a-of which Camphor tree was 2.62 t·hm-2·a-1, Masson pine 0.73 t·hm-2·a-Symplocos sumuntia 1.14 t·hm-2·a-1 and Symplocos anomala 0.36 t·hm-2·a-1.
     3. Mean concentration of macronutrient elements in the four tree species was:N was 5.92-8.25 g·kg-1, P 0.43-0.58 g·kg-1, K 1.50-2.53 g·kg-1, Ca 4.36-10.21 g·kg-1 and Mg 0.84-1.10 g·kg-1. Concentration of micronutrient elements ranged as:Fe 165.90-344.56 mg·kg-1, Cu 7.53-9.00 mg·kg-1, Zn 21.63-41.49 mg·kg-1, Mn 138.78-619.27 mg·kg-Cd 0.46-2.25 mg·kg-1, Ni 2.88-3.83 mg·kg-1 and Pb 5.70-13.65 mg·kg-1.
     The total storage of nutrients in the mix-forest ecosystems was 1423.44 kg·hm-2. Annual retention amount was 132.07 kg·hm-2·a-1, annual return amount was 238.97 kg·hm-2·a-1 and annual uptake amount was 371.04 kg·hm-2·a-1. The utilization coefficient (retention/uptake) was 0.36, cycling coefficient (return/uptake) was 0.64, and turnover time was about 6 years. The results suggested that the Camphor tree and Masson pine mix-forest ecosystems were characterized by fast return rate, high cycling intensity, high utilization efficiency and relative short turnover time in terms of nutrient biological cycle. These features provide benefits for the forest ecosystems in maintaining site fertility.
     4. Average carbon content in overstorey in the mix-forests was: Camphor tree 539.73 g·kg-1, Masson pine 458.40 g·kg-1, Symplocos sumuntia 470.13 g·kg-1 and Symplocos anomala 463.50 g·kg-1. Carbon content in different organs did not significantly differ in Camphor tree (p>0.05), but was considerably different in Masson pine (p<0.05). Carbon content was statistically lower in leaves than in stem and branch in Symplocos sumuntia (p<0.05), and was considerably higher in stem and bark than in leaves in Symplocos anomala (p<0.05).
     It was found that Neolitsea aurata had the highest carbon concentration (481.47 g-kg-1) in shrub layer, the next was Gardenla Jasminoides (452.81 g·kg-1) and other seedlings (466.67 g·kg-1).
     Mean carbon concentration in the herbivorous layer was:Woodwardia japonica 475.55 g·kg-1, Spider brake (Pteris multifida Poir) 422.71 g·kg-1 and Thysanolaena maxima 396.04 g·kg-1
     Carbon content in lianas layer was:Smilax china 470.36 g·kg-1 and Paederia scandens 437.69 g·kg-1. Carbon content was higher in shoot than in root in both herbivorous and lianas layers.
     Carbon content in dead floor layer was:non-decomposed part (L) 401.80 g·kg-1, semi-decomposed part (F) 436.59 g·kg-1 and decomposed part (H) 352.72 g·kg-
     Carbon content in litter-fall layer was:litter-needle 325.03 g·kg-1, litter-broad-leaves 360.75 g·kg-1 litter-fruit 425.18 g·kg-1 and litter-organic debris 461.80 g·kg-1.
     Carbon content in soils (60 cm depth) was 10.20 g·kg-1, and was decreased with increasing of soil depth.
     5. Total carbon storage in the forest ecosystems was 132.68 t·hm-2, of which overstorey layer was 38.52 t·hm-2, shrub layer was 7.27 t·hm-2, herbivorous layer was 0.09 t·hm-2, lianas layer was 0.02 t·hm-2, dead floor layer was 2.00 t·hm-2 and soil layer (0-60cm) was 84.78 t·hm-2. Carbon storage in different compartments of the ecosystems was in an order:soil vegetation> dead floor layer.
     6. Annual carbon sequestration in overstory layer was 2.44 t·hm-2·a-1, of which Camphor tree was 1.37 t·hm-2·a-1, Masson pine 0.35 t·hm-2·a-1, Symplocos sumuntia 0.54 t·hm-2·a-1 and Symplocos anomala 0.18 t·hm-2·a-1.
     Annual carbon stored in litter-fall was 2.81 t·hm-2·a-1, of which litter-needle was 1.15 t·hm-2·a-1, litter-broad-leaves 0.68 t·hm-2·a-1, litter-fruit 0.34 t·hm-2·a-1 and litter-organic debris 0.64 t·hm-2·a-1. Soil respiration (exclude root respiration) was 3.58 t·hm-2·a-1.
     Net ecosystem productivity was 1.67 t·hm-2·a-1 in the Camphor tree and Masson pine mix-forest ecosystems in Changsha city. Our results indicated that the Camphor tree and Masson pine urban forests was a carbon sink.
引文
[1]马世骏,王如松.社会-经济-自然复合生态系统[J].生态学报,1984,4(1):1-9.
    [2]国家统计局.国际统计年鉴2008.北京:中国统计出版社,2008,23-35.
    [3]世界银行.迈进21世纪1999-2000年世界发展报告.北京:中国财政经济出版社,2000,5-78.
    [4]张敦富.城市经济学原理[M].北京:中国轻工业出版社,2005,19-30
    [5]Rudi Drigo and Fabio Salbitano. Analysis of Wood Energy and Urbanization Using. WISDOM Methodology,2008,26.
    [6]彭镇华,王成.我国城市林业发展总体规划的研究.中国城市森林建设理论与实践.北京:中国林业出版社,2006,510-514.
    [7]张庆费,徐绒娣.城市森林建设的意义和途径探讨[J].大自然探索,1999,18(2):82-86.
    [8]李锋,刘旭升,王如如.城市森林研究进展与发展战略[J],生态学杂志,2003,22(4):55-59.
    [9]俞孔坚,李迪华,李伟.论大运河区域生态基础设施战略和实施途径[J],地理科学进展,2004,23:117.
    [10]张庆费,徐绒娣.城市森林建设的意义和途径探讨[J],大自然探索,1999,18(2):82-86.
    [11]Melvin J. Banghman.The Role of Government in Urban Forestry in the S. Town Mceting Forestry[M].1980.
    [12]库恩.科学革命的结构[M].李宝恒等译.上海:上海科学技术出版社,1980.
    [13]樊宝敏,李智勇.中国古代的城市森林与人居生态建设[J].中国城市林业,2005,3(1):57-61
    [14]Johnston M. The early development of urban forestry in Britain:Part 1[J]. Arboricultural Journal,1997,21:107-126.
    [15]Konijnendijk C.C, Randrup T.B., Nilsson K.Urban Forestry Research in Europe: An Overview. Journal of Arboriculture,2000,26(3):152-161.
    [16]彭镇华.中国城市森林[M].北京:中国林业出版社,2003:18-23.
    [17]孙冰,粟娟,谢左章.城市林业的研究现状与前景[J].南京林业大学学报,1997,21(2):83-88.
    [18]王术林.城市林业的研究与发展[J].林业科学,1995,31(5):46.
    [19]张庆费.城市绿地系统生物多样性保护的策略探讨[J].城市环境与城市生态,1999,12(3):36-38.
    [20]刘殿芳.现代城市承需城市森林—城市环境畅想曲(二).1999.环境,(9).9.
    [21]张鼎华.城市林业[M].中国环境科学出版社.2001,
    [22]朱文泉,何兴元,陈玮城市森林研究进展[J].生态学杂志,2001,20(5)
    [23]王义文.城市森林理论与指标体系的研究.见:何兴元等.城市森林研究进展.北京:中国林业出版社,2002,9-30.
    [24]曾晓阳.成都市城市森林的近自然植物群落配置模式研究[D].2009.
    [25]胡志斌等.沈阳市城市森林结构与效益分析[J].应用生态学报,2003,14(12),2108-2112.
    [26]Leith H.R.H, Whittaker. Primary Productivity of Biosphere[M]. Berlin:Springer Verlag,1975.
    [27]方精云.全球生态学—气候变化与生态响应[M].北京:高等教育出版社,2000.
    [28]潘维俦,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].湖南林业科技,1979,9(4):1-14.
    [29]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [30]田大伦,潘维俦.马尾松林干材阶段生物产量和径阶分化及密度效应初探[J].植物生态学与地植物学报,1986,10(4):294-301.
    [31]叶镜中,姜志林.苏南岳陵杉木人工林的生物量结构[J].生态学报,1983,3(1):7-14.
    [32]余新妥,陈存及,林思祖.福建杉木人工林生态系统生物量的初步研究.林业科技资料(1),福建林学院,1979,46-65.
    [33]朱守谦,杨世逸.杉木生产结构及生物量的初步研究.林业科技资料,贵州林学院,1978,1-14.
    [34]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981,34-50.
    [35]冯林.内蒙古地区油松、白桦、山杨生物量的研究.内蒙古林学院学报,1981,(3):1-17.
    [36]陈灵芝,陈清朗.,鲍显诚.北京山区的侧柏林及其生物量研究.植物生态学与地植物学学报,1986,10(1):17-24.
    [37]徐振邦.长白山阔叶林红松林生物生产量的研究.中国科学院长白山森林生态系统定位站主编.森林生态系统研究,1988.
    [38]吴刚,冯宗炜.中国油松林群落特征及生物量的研究[J].生态学报,199414(4):415-422.
    [39]韩有志,李玉娥,等.华北落叶松人工林林木生物量的研究[J].山西农业大学学报,1997,17(3):278-283.
    [40]杨东,杨秀琴.甘肃武都五凤山林区油松人工林的生物量和生产力研究[J].西北师范大学学报(自然科学版),2004,40(1):70-75.
    [41]索安宁,巨天珍,张俊华,等.甘肃小陇山锐齿栋群落生物量动态研究[J].生态学杂志,2005,24(4):377-381.
    [42]党承林,吴兆录.季风长绿阔叶林短刺拷群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95-107.
    [43]俞益武,施德法,蒋秋怡,等.杭州木荷次生林生物量的研究.浙江林学院学报,1993,10(2):157-161.
    [44]吴兆录,党承林,和兆荣.滇西北黄背栋林生物量和净第一性生产力的初步研究.云南大学学报(自然科学版),1994,16(3):245-249.
    [45]彭少麟,张祝平.鼎湖山地带性植被生物量生产力和光能利用率.中国科学((B辑),1994,24(5):497-502.
    [46]温达志,魏平,孔国辉,等.鼎湖山锥栗+黄果厚壳桂+荷木群落生物量及其特征.生态学报,1997,17(5):497-504.
    [47]蚁伟民,张祝平,丁明慰,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报,2000,20(2):397-403.
    [48]张光富,宋永昌.浙江天童苦储+白栋灌丛群落的生物量研究.武汉植物学研究,2001,19(2):101-106.
    [49]冯志立,郑征,张建侯,等.西双版纳热带湿性季节雨林生物量及其分配规律研究.植物生态学报,1995,22(6):481-455.
    [50]郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产[J].植物生态学报,2000,24(2):197-203.
    [51]郑蓉,吴新才,翁金珊,等.黄甜竹林生长量和鲜笋营养成分的研究[J].福建 林学院学报,1999,19(1):65-68.
    [52]董文渊,黄宝龙,谢泽轩,等.笨竹无性系种群生物量结构与动态研究[J].林业科学研究,2002,15(4):416-420.
    [53]陈礼光,郑郁善,姚庆端,等.沿海沙地造绿竹林生物量结构[[J].福建林学院学报,2002,22(3):249-252.
    [54]冯宗炜, 王效科, 吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [55]周剑芬.基于生物量的城市森林生态系统服务功能价值评估——以白云山为例[D].中山大学,2007.
    [56]吴泽民,黄成林,白林波,等.合肥城市森林结构分析研究[J].林业科学2002(4):7-13.
    [57]杨义波,安太国.长春市主要广场城市森林结构的研究[J].长春大学学报,2005 15(6).
    [58]IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implication for the Koyoto Protocol[J]. Science,1998,280:1393-1394.
    [59]国家林业局西北森林资源监测中心.甘肃省森林资源连续清查第四次复查成果资料(2005年修订)[M].兰州:甘肃省林业厅,2005
    [60]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究(一)不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报,1981(1):1-21.
    [61]林文鹏,王臣立,赵敏,等.基于森林清查和遥感的城市森林净初级生产力估算[J].生态环境,2008,17(2):766-770.
    [62]Kirschbaum, M. U. F. Cen W. A forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling,1999,118:17-59.
    [63]蒋有绪.中国森林生态系统结构与功能规律[M].北京:中国林业出版社,1996.
    [64]张新时.研究全球变化的植被-气候分类系统[J].第四纪研究,1993,157-169.
    [65]Landsberg, J.J, S.T. Gower. Applications of physiological ecology to forest management. Academic Press,1997,125-160.
    [66]CRAMER W, FIELD C B. Comparing global models of terrestrial net primary productivity (NPP):Introduction[J]. Global Change Biology,1999a,5(Suppl.1): iii-iv.
    [67]CRAMER W, KICKLIGHTER D W, BONDEAU A. Comparing global models of terrestrial net primary productivity (NPP):overview and key results[J]. Global Change Biology,1999b,5(Suppl.1):1-15.
    [68]Rowantree R A. Ecology of the urban forest. Introduction to part II.Urban.
    [69]李海梅,刘常富,何兴元.沈阳市行道树树种的选择与配置[J].生态学杂志.2003,22(5):157-160.
    [70]柳林.秦巴山区中小城市绿化树种资源现状及生态绿化对策[J].内蒙古大学学报(自然科学版).2005,35(5):586-590.
    [71]卢俊培,吴仲民.尖峰岭热带林的植物化学特征[J].林业科学研究,1991,4(1):1-9
    [72]沈善敏.中国土壤肥料.北京:中国农业出版社,1998
    [73]陶其骧.机肥和化肥配比研究.土壤通报,1986,17(2):57-61
    [74]张璐.施肥对作物养分浓度及分布的影响.应用生态学报,2000,11(增刊):8-12
    [75]Lodhiyal Neelu, Lodhiyal L S. Aspects of nutrient cycling nutrient use pattern of Bhaba Shisham forests in central Himalaya, India. Forest Ecology and Management,2003,176(1-3):237-252
    [76]聂道平.森林生态系统营养元素的生物循环[J].林业科学研究,1993,30(1):34-42
    [77]沈作奎,杨新光,徐伟声.中国主要森林群落营养元素循环的区域分异[J].湖北民族学院学报(自然科学版),1999,17(2):44-46
    [78]刘广全,土小宁,倪文进.锐齿栋森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246
    [79]邹春静,徐文铎,侯凤莲.长白松人工林生态系统营养元素的分配格局和积累规律[J].应用生态学报,1996,7(1):6-10
    [80]莫江明,SandraBrown,孔国辉,等.鼎湖山马尾松林营养元素的分布和生物循环特征[J].生态学报,1999,19(5):635-640
    [81]曾曙才,苏志尧,古炎坤,等.广州白云山风景名胜区主要林分类型凋落物的研究[J].应用生态学报,2003,14(1):154-156
    [82]田大伦,项文化,康文星.马尾松人工林微量元素生物循环的研究[J].林业科学,2003,39(4):1-8.
    [83]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [84]Kimmins J P. Forest Ecology. New York:Macmillan Publishing Company, 1987.85-92.
    [85]刘增文,李雅素.黄土残塬沟壑区刺槐人工林生态系统的养分循环通量与平衡分析[J].生态学报,1999,19(5):630-634.
    [86]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [87]校现周,罗世巧,许闻献,等.微割对橡胶无性系PR107产量及生理状况的影响[J].热带作物学报,1999,20(1):9-13.
    [88]刘实忠,许闻献,蔡世英,等.橡胶树导胶后引起的生理生化变化研究[J].热带作物学报,2000,21(1):8-14.
    [89]White JG, Zas oski RJ. Mapping soilmicr onutrients. Field Crops Research, 1999,60:11-26.
    [90]Jiang Y, LiangW-J, Wen D-Z. Middle and Microelements in Cultivated Soils of Shenyang Suburbs[M]. Beijing:China Agricultural Science and Technology Press,2003.
    [91]刘广全,土小宁,倪文进.锐齿栋森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246.
    [92]邹春静,徐文铎,侯凤莲.长白松人工林生态系统营养元素的分配格局和积累规律[J].应用生态学报,1996,7(1):6-10.
    [93]曾曙才,苏志尧,古炎坤,等.广州白云山风景名胜区主要林分类型凋落物的研究[J].应用生态学报,2003,14(1):154-156.
    [94]丁宝永.红松人工林调落物营养元素分析[J].植物研究,1986,6(4):161-175.
    [95]甘健民,薛敬意,谢寿昌.云南哀牢山常绿阔叶林土壤渗漏水养分研究[J].地理科学,1997,17(3):237-242.
    [96]辛学兵,王景生,翟明普.西藏色季拉山冷杉林生态系统养分的淋溶输出研究[J].林业科学研究,2004,17(1):6-11.
    [97]Wetselaar R, Farquhar G D. Nitrogen losses from tops of plants[J]. Advances in Agronomy,1980,33:263-302.
    [98]程伯容,张金.长白山北坡针叶林下土壤淋洗液及土壤性质的初步研究[J].土 壤学报,1991,28(4):372-381.
    [99]张万儒.我国森林土壤研究的进展[J].土壤,1991,23(4):214-217.
    [100]何园球,王明珠,赵其国,等.我国热带亚热带森林土壤的水热动态[J].土壤,1988,20(5):225-231.
    [101]姜勇.森林生态系统微量元素循环及其影响因素[J].应用生态学报,2009,20(1):197-204.
    [102]曹建华,李小波,赵春梅.森林生态系统养分循环研究进展[J].热带农业科学,2007,27(6):68-79.
    [103]Regina IS, Tarazona T. Nutrient return to the soil through litterfall and through fall under beech and pine stands of Sierra de la Demanda, Spain[J]. Arid Land Research and Management,2000,14:239-252.
    [104]Hagen Thorn A, Varnagiryte I, Nihlga B, et al. Autumn nutrient resorption and losses in four deciduous forest trees pecies[J]. Forest Ecology and Management,2006, (228):33-39.
    [105]杨烨.森林生态系统养分循环的研究[J].林业建设,2008,(2):55-58.
    [106]Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science,2004,304:1629-1633.
    [107]陈东立,余新晓,廖邦洪.中国森林生态系统水源涵养功能分析[J].世界林业研究,2005,18(1):56-60.
    [108]Rengel Z. Cycling of micronutrients in terrestrial ecosystems//Marschner P, Rengel Z, eds. Nutrient Cyc2ling in Terrestrial Ecosystems. Berlin:Sp ringer2 Verlag,2007:93-121
    [109]Yin X-Q, LiJ-X, DongW-H. Microelement contents of litter, soil faunaand soil in Pinus koraiensis and broadleaved mixed forest[J]. Chinese Journal of Applied Ecology,2007,18 (2):277-282.
    [110]方精云,任梦华.北极陆地生态系统的碳循环与全球温暖化[J].环境科学学报,1998,18(2):113-118.
    [111]Marschner H, Kirkby E A, Engels C. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 1997,110:265-273.
    [112]于恩娜,王金贵,初宝顺.凋落物及其在森林生态中的作用[J].现代农业 科技,2009,1:286-288.
    [113]Vogt K A, Grier C C, Vogt D J, et al. Production, turnover, and nutrient dynamics of above-and below-ground detritus of world forests. Advances in Ecological Research,1986,15:303-377.
    [114]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340.
    [115]杨玉盛,陈光水,谢锦升,等.杉木—观光木混交林群落N、P养分循环的研究[J].植物生态学报,2002,26(4):473-480.
    [116]Tobon C, Sevink J, Verstraten J M. Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia[J]. Biogeochemistry,2004, (70):1-25.
    [117]唐万鹏,刘学军,张新叶,等.宜昌市城市森林生态系统建设技术[J].东北林业大学学报,2002,30(3):135-140.
    [118]吴志英.江苏下蜀城市森林生态系统定位研究成果通过鉴定[J].林业科技开发,2004,18(4):9.
    [119]俞元春,阮宏华,费世民.苏南丘陵森林凋落物量及养分归量[A].见:姜志林主编.下蜀森林生态系统定位研究论文集[C].北京:中国林业出版社,1992,50-55.
    [120]Dale V H. Terrestrial CO2 Flux:The challenge of interdisciplinary research. In: Dale V Hed. Effects of land-use change on atmospheric CO2 concentrations. New York:Springer-Verlag,1994,1-14.
    [121]Houghton J T, Meira Filho L g, Callander B A, et al. eds. Climate Change 1995: The Science of Climate Change. Cambridge University Press,1996,444-481.
    [122]Woodwell G D, Mackrnzie F T, Houghton R A, et al. Biotic feedbacks in the warming of the earth. Climate Change,1998,40:495-518.
    [123]Tans P P, Fung I Y and Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438.
    [124]Cao M K and Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998,393:249-252.
    [125]Woodwell G D, Mackrnzie F T, Houghton R A, et al. Biotic feedbacks in the warming of the earth. Climate Change,1998,40:495-518.
    [126]Valentini R, Matteucii G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404:861-864.
    [127]Waring R.H, Running S.W. Forest Ecosystem, Analysis at Multiple Scales.2nd edition, Academic Press, San Diego,1998.
    [128]Kurz W A, Apps M J. Contribution of northern forest to the global carbon cycle:Canada as a case study, Water. Air and Soil Pollution,1993,70:163-176.
    [129]Kimble, J M, Heath, L S, Birdsey, R A, et al.2002. The potential of U. S. Forest soils to sequester carbon and mitigate the greenhouse effect. CRC /Lewis, Boca Raton,FL.429 PP.
    [130]Holmen K. The global carbon cycle[A]. In:Butcher et al (eds.). Global Biogeochemical Cycles[C]. San Diego:Academic Press,1992.239-262.
    [131]Houghton R A, Skole D L. Carbon[A]. In:The earth as transformed by human action. In:Turner et al (eds.). The Global Carbon Cycles[C].New York:John Wiley,1979:129-181.
    [132]Olson J S, Carbon in live vegetation of major World Ecosystem, Report ORNT.5862.Oak Ridge National Laboratory.1983.
    [133]Daily, G.C.eds. Nature's Sevrices:Societal Dependence on Natural Ecosystems[M]. Island Press, washingtonD.C1997,1-10.
    [134]孙刚,盛连喜,周道玮.生态系统服务及其保护策略[J].应用生态学报,1999,10(3):365-368.
    [135]肖英,刘思华,王光军.湖南4种森林生态系统碳汇功能研究[J].湖南师范大学学报自然科学版,2010,3(33):124-128
    [136]Sedjo R A. The carbon and global forest ecosystem[J].Water, Air and Soil Pollution,1993,70:295-307.
    [137]Dixon R K, Brown S, Houghton R A, et al.Carbon pools and flux of global forest ecosystems[J]. Science,1994,263,185-190.
    [138]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [139]李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学[D辑],2003,33(1):72-80.
    [140]方精云,刘国华.中国陆地生态系统碳库[M].中国科学技术出版社,1996, 251-267.
    [141]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [142]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积[M].北京:气象出版社,2003,199-123.
    [143]赵敏,丁慧勇,高峻.城市森林固CO2价值评估[J]. 生态经济2007(8):143-145.
    [144]应天玉,李明泽,范文义.哈尔滨城市森林碳储量的估算[J].东北林业大学学报,2009(37):33-35.
    [145]Brown S, Pearson T. Methods Manual for Measuring Terrestrial Carbon[M]. Winrock International.2005
    [146]金峰,杨浩,蔡祖聪等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38:522-528
    [147]中国科学院南京土壤研究所.土壤理化分析[M].上海:科学技术出版社,1978.
    [148]李志洪,赵兰坡,窦森.土壤学[M].北京:化学工业出版社.2005,80-86.
    [149]杨丁丁,罗承德,宫渊波,等.退耕还林区林草复合模式土壤养分动态[J].林业科学,2007,43(增刊1):101-105.
    [150]许联芳,王克林,朱悍华,等.桂西北喀斯特移民区土地利用方式对土壤养分的影响[J].应用生态学报,2008,10(5):1013-1018.
    [151]中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社.1978,508-509.
    [152]田大伦,朱小年,蔡宝玉,等.会同杉木小集水区环境背景值的研究[J].中南林学院学报,1989,9(sup):85-91.
    [153]刘铭,田大伦,方晰,等.药用植物血水草生长的土壤化学元素含量特征[J].中南林业科技大学学报,2009,29(2):34-38.
    [154]李法云,曲向荣,吴龙华.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2006.
    [155]谌小勇,彭元英,康文星.亚热带常绿阔叶林黄杷木荷群落生物量和生产力的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993:68-72.
    [156]田大伦,赵坤.杉木人工林生态系统凋落物的研究Ⅰ凋落物的数量、组成及动态变化[J].中南林学院学报,1989,p(增刊):38-44.
    [157]东北林学院主编.森林生态学[M].北京:中国林业出版社,1981.
    [158]项文化,田大伦,蔡宝玉,等.不同密度湿地松林凋落物量及养分特性的研究[J].林业科学,1997,33(sp2):175-180.
    [159]潘维俦,田大伦,文仕知,等.森林生态系统物质循环研究中的生物地球化学方法和实验技术[J].中南林学院学报,1984,4(1):1-13.
    [160]潘瑞炽,董愚得.植物生理学[M],北京:人民教育出版社,1979,175-177.
    [161]廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003,12-13.
    [162]潘维俦,田大伦,雷志星,等.杉木人工林养分循环的研究(二)丘陵区速生杉木林的养分含量、积累速率和生物循环[J].中南林学院学报,1983,3(1):1-17.
    [163]黄健辉,陈灵芝.北京百花山附近杂灌丛的化学元素含量特征[J].植物生态学报,1991,15(3):224-232.
    [164]田大伦,高耀明,朱小年.天然榕木混交林养分循环的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993,144-151.
    [165]骆文华,黄士训,李瑞棠,等.不同栽培基质对石山珍稀濒危植物苗期生长的影响[J].农村生态环境,2001,17(4):12-16.
    [166]刘世荣,蔡体元,柴一新.落叶松人工林生态系统营养元素生物循环规律的研究[A].见:周晓峰主编.森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1991,179-191.
    [167]沈国舫,董世仁,聂道平.油松人工林养分循环的研究Ⅰ营养元素含量及分布[J].北京林学院学报,1985,7(4):1-13.
    [168]冯宗炜,陈楚莹,王开平.亚热带杉木纯林生态系统中营养元素的积累分配和循环的研究[J].植物生态学与地植物丛刊,1985,9(4):245-256.
    [169]聂道平,沈国舫,董世仁.油松人工林养分循环的研究Ⅲ养分元素的生物循环和林分的养分平衡[J].北京林业大学学报,1986,8(2):8-18.
    [170]张成林.天然次生白桦林生态系统营养元素的积累、分配和循环的研究[A]见:周晓峰主编.森林生态系统定位研究[C].哈尔滨:东北林业大学出版社1991,160-170.
    [171]刘煊章,田大伦,朱小年,等.天然次生白栎林营养元素的生物循环[J]林 业科学,1997,33(sp.2):148-156.
    [172]Wu G, Wei J, Deng HB, et al. Nutrient Cycling in an Alpine tundra ecosystem on Changbai Mountain, Northeast China[J]. Applied soil Ecology,2006,32(2): 199-209.
    [173]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科技,1981,(2):1-2.
    [174]温肈穆,梁宏温,黎跃,等.杉木成熟乔木层营养元素生物循环研究[J].植物生态学与地植物学学报,1991,15(1):36-45.
    [175]方精云,刘国华,徐嵩龄.中国陆地生态系统碳循环.见:王庚晨,温玉璞主编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996:109-128.
    [176]Fang J Y, Chen A P. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,262:2320-2323.
    [177]Marland G. The prospect of solving the carbon dioxide problem forestation. U.S. Department of Energy. DOE/NBB-0082, OaK Ridge National caboratory. TN,1998.
    [178]Kokhugina. Tatyana P, Ted S. Vinson. Comparison of two methods to assess the carbon budget biomass in the former soviet Union[J]. Water. air. And soil pollution,1993,70:207-221.
    [179]阮宏华,姜志林,高苏铭.苏南丘陵区主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [180]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [181]王效科,冯宗炜.中国森林生态系统中植被固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [182]方精云,陈安平.中国森林植被碳库的动态变化及意义[J].植物学报,2001,43(9):967-973.
    [183]方晰,田大伦,项文化.速生杉木人工林碳素含量、贮量和分布[J].林业科学,2002,38(3):14-19.
    [184]Ambient M. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes[J]. Agricultural and Forest Meteorology,2001,108(4): 293-315.
    [185]毛子军.森林生态系统碳平衡估测方法及其研究进展[J].植物生态学报,2002,26(6):731-738.
    [186]莫江明,方运霆,彭少麟,等.鼎湖山南亚热带常绿阔叶林碳素积累和分配特征[J].生态学报,2003,23(10):1970-1976.
    [187]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [188]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律[J].中南林学院学报,2005,25(1):4-8.
    [189]孙玉军,张俊,韩爱惠,等.兴安落叶松(Iarixgmelini)幼中龄林的生物量与碳汇功能[J].生态学报,2005,27(5):1756-1761.
    [190]肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].植物生态学报,2002,26(6):731-738.
    [191]沈文德,马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317.
    [192]郑金兴,刘小飞,高人,等.福建南平35a生楠木林生态系统碳库及分配[J].亚热带资源与环境学报,2009,4(4):59-65.
    [193]黄从德,张健,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):1644-1650.
    [194]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量[J].中南林学院学报,2004,24(2):1-5.
    [195]田大伦,方晰,项文化.湖南会同杉木人工林生态系统的碳素含量[J].生态学报,2004,24(11):2382-2386.
    [196]张国庆,黄从德,郭恒,等.不同密度马尾松人工林生态系统碳储量空间分布格局[J].浙江林学院学报,2007,27(6):10-14.
    [197]Dixon R K, Brown S, Houghton RA, et al. Carbon pools and flux of global forest ecosystems[J]. science,1994,263:185-190.
    [198]Silver WL, Ostertang R, Lugo AE. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands[J]. Restoration Ecology.2000,8:394-407.
    [199]Christopher S G, Robert B J. Risks to forest carbon offset projects in a changing climate[J]. Forest Ecology and Management,2009,257:2209-2216.
    [200]康冰,刘世荣,蔡道雄,等.南亚热带杉木林生态系统生物量和碳素积累及空间分布特征[J].林业科学,2009,45(8):147-153.
    [201]徐飞,刘为华,任文玲,等.上海城市森林群落结构对固碳能力的影响[J].生态学杂志,2010,29(3):439-447.
    [202]管东生,陈玉娟,黄芬芳.广州城市绿地系统碳的贮存、分布及其在碳氧平衡中的作用[J].中国环境科学,1998,18(5):437-441.
    [203]刘常富,赵爽,李玲,等.沈阳城市森林固碳和污染物净化效益初探[J].西北林学院学报,2008,23(4):56-61.
    [204]彭立华,陈爽,刘云霞,等.Citygreen模型在南京城市绿地固碳与削减径流效益评估中的应用[J].应用生态学报,2007,18(6):1293-1298.
    [205]Brack CL. Pollution mitigation and carbon sequestration by an urban forest[J]. Environmental Pollution,2002,116:195-200.
    [206]Nowak DJ, Crane DE. Carbon storage and sequestration by urban tree in the USA[J]. Environmental pollution,2002,116:381-389.
    [207]康文星,赵仲辉,田大伦,等.广州市红树林和滩涂湿地生态系统与大气氧化碳交换[J].应用生态学报,2008,19(12):2605-2610.
    [208]雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究[J].生态学杂志,2004,23(4):25-30.
    [209]李晓曼,康文星.广‘州市城市森林生态系统碳汇功能研究[J].中南林业科技大学学报,2008,28(1):9-13.
    [210]苏继申,庄家尧,顾叶,等.南京城市森林固碳制氧效益研究[J].林业科林开发,2010,24(3):49-52.
    [211]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100.
    [212]彭镇华.林网化与水网化—中国城市森林建设理念[J].中国城市林业,2003,2:4-5.
    [213]吴际友,叶道碧,王旭军.长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性[J].东北林业大学学报,2010,38(3):97-99.
    [214]黄从德,张健,杨万勤,等.四川森林土壤有机碳储量的空间分布特征[J].生态学报,2009,29(3):1217-1225.
    [215]La I R. Soil carbon sequestration inpacts on global climate change and food security[J]. Science.2004,304:1623-1627.
    [216]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356.
    [217]La I R. Forest soils and carbon sequestration[J]. Forest Ecology and Management,2005,220:242-258.
    [218]Baties NH. Total carbon and nitrogen in the soils of the World[J]. European Journal of soil science.1996,47:151-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700