用户名: 密码: 验证码:
基于近红外光谱分析的土壤水分信息的提取与处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分是反映土壤-植物-大气系统能量流动与物质交换的重要参数,是气候、水、生物和土壤资源与环境形成、开发、利用和保护的重要影响因素,是生物赖以生存的重要物质源泉和环境条件,是影响农事操作措施如耕作、作物栽种、农膜覆盖、灌溉排水、施肥喷药等措施和精准农业技术系统管理效果的重要影响因素,也是农田水利工程和土木工程实施效果的重要影响因素,还是有关农业、土壤、环境、工程技术科学研究的必备参数。因此,进行土壤含水量的监测,适时、准确地掌握上壤水分含量及其动态是非常重要的。当前,世界水资源越来越短缺,水资源时空分配又极不平衡,水环境变差。中国的水资源和人均水资源量少,同时由于水资源质量上受到污染、空间上分布不均、时间上分配不当,其有效水资源量更显贫乏。在水资源极缺的情况下,水资源的浪费又非常大,特别是作为占社会总耗水量的绝大部分的农业用水,其水资源有效利用率和生产率都较低。因此为确保水资源的合理开发、利用和保护及其可持续发展,不断提高水资源的利用率和生产率,保障农业节水技术体系的实施,急需研究一种适合生产中推广应用的、控制面积大、监测速度快、准确、有效、连续、自动、无损土体,不污染环境的、经济的土壤水分检测技术,这是国内外长期追求的目标,亦是当前国内外研究的热点。而目前已在应用的土壤水分检测技术尚不能达到这一要求。本研究的选题即是围绕这一要求开展近红外光谱检测土壤水分的研究,其研究结果对农业生产、水利建设、生态环境建设以及一些工业生产、科学研究有着重要的意义。
     本项研究的主要研究结果是:
     (1)确证了土壤的光谱特性是土壤中多因子作用的结果,土壤水分含量是其中某些特征波段土壤光谱特性的控制因子。首次用添加土壤组成物质(土壤有机质和相关类型粘土矿物)的模拟试验和其它模拟试验(国际制土壤质地分类粒级分级颗粒、水稳性团聚体、土壤容重)的方法研究了土壤有机质、土壤颗粒大小、土壤粘士矿物类型与含量、土壤水稳性团聚体、土壤容重对土壤水分光谱的影响。结果表明,随着土壤中供试粘土矿物与有机质含量的增加和水稳性团聚体直径的增大与土壤容重的减小,其土壤光谱反射率减小;土壤颗粒中随着颗粒直径的减小,其反射率增大,但至粘粒(<0.002mm)以后,其反射率又减小。
     (2)就土壤含水量变化过程中土壤容重与含盐量浓度变化对土壤光谱反射率的影响,以及土壤pH值变化对土壤反射率的影响进行了试验,研究结果表明在土壤含水量引起容重与含盐量浓度变化的情况下,其土壤反射率亦发生变化,这时随着土壤变干,容重增大,其反射率也增大;土壤含水量较高,即土壤含盐量浓度较低时,随着含盐量浓度加大,其反射率减小,但当土壤变干土壤中盐分析出结晶时,随着含盐量的增加,其光谱反射率加大。本试验研究还表明,在改良红壤酸性使之由酸性或微酸性变为中性的范围内,土壤酸度的变化不会引起土壤光谱反射率的明显变化。这些结果为构建包含土壤组成成分与性质影响的土壤反射率反演土壤含水量的模型和实施土壤改良措施提供科学依据。土壤容重变化还强烈影响土壤水分形态类型、土壤水分存在状况、土壤水分运动和土壤水分利用状况的变化。
     (3)研究了变容重土壤含水量与土壤容重变化关系模型的构建,建立了变容重土壤容重随土壤含水量变化的指数模型和三直线模型,并对供试土壤三直线模型的特点进行了分析。首次研究了变容重土壤含水量-容重-光谱反射率相伴变化关系,构建了两类模型,一类为随容重变化的土壤体积含水量与光谱反射率之间的指数模型;另一类为通过土壤光谱反射率受土壤含水量和容重双函数影响的机理分析建立的土壤含水量与光谱反射率和容重之间的曲面模型。变容重土壤随容重变化的体积含水量与土壤光谱反射率关系的指数模型,反映了容重变化对土壤含水量与光谱反射率关系的影响;曲面模型为同时反映反射率受土壤含水量和容重双函数影响的情况下,变容重土壤重量含水量与容重均在变化时反射率反演土壤含水量的模型,它为变容重土壤反射率反演土壤含水量的机理分析和模型构建提供了理论基础。
     (4)在土壤水分信息提取方面,比较研究了几种光谱数据的预处理方法,其中包括剔除噪声较大的波段、平滑滤波(移动平均平滑、中值滤波平滑、SG卷积平滑、小波变换消噪法)、求导数等方法,结果表明:利用小波变换消噪法结合求一阶导数法,在土壤光谱数据的预处理方面较其它方法能获得更好的滤波效果,同时能保留有用信号的细节特征。
     (5)选择了能良好反映土壤水分光谱特征的特征波段,在1100nm-2400nm的光谱范围内,通过对其中的11个待定特征波段进行筛选,最终选定1400nm、1900nm、2050nm、2200nm4个波段作为土壤水分光谱的特征波段,其中,在随土壤含水量降低而得的光谱反射率增大的区域中于1400nm和1900nm处出现明显吸收峰值,当土壤含水量较低时于2200nm处亦出现明显吸收峰值。
     (6)探索了土壤含水量与光谱反射率表示方法对其二者关系建模的影响,筛选出较好的匹配方法。在含水量方面选择重量含水量、定容重体积含水量、变容重体积含水量,在光谱反射率方面选择实测反射率、相对反射率、减土反射率和归一化减土反射率等表示方法比较,结果表明,以变容重体积含水量和相对反射率与减土反射率匹配较好,变容重体积含水量与归一化减土反射率匹配更好。在土壤反射率反演土壤含水量的模型构建所用含水量与反射率的表示方法中,首次提出和采用变容重土壤含水量与减土反射率、归一化减上反射率的概念,试验表明其表述方法较好。
     (7)采用BP神经网络和支持向量机两种建模方法研究了土壤含水量与反射率之间关系模型的构建,并对土壤含水量与反射率之间关系模型的适应性进行了研究。在土壤反射率反演土壤含水量的模型构建方面,利用小波变换在时频两域对信号进行特征值提取,从而能够更全面地反映信号特征;为了消除土壤其它性状对土壤反射率反演土壤含水量的影响,对信号特征进行了相对干土特征矢量的变化量归一化处理,构建了三种特征矢量:原信号相对特征值变化量、一阶导数信号相对特征值、一阶导数相对特征值变化量;利用遗传算法对BP神经网络和支持向量机两种模型的参数进行了有效优化,并利用三种特征矢量对两种模型进行了建模和仿真,结果表明,在小样本条件下,利用一阶导数相对特征值变化量作为输入信号特征矢量,遗传算法优化参数的支持向量机法进行近红外光谱反射率反演上壤重量含水量和体积含水量模型的构建,效果较好。
Soil moisture is not only an important parameter to reflect energy flow and material exchange in the soil-plant-atmosphere system, but also an importance factors for formation, development, utilization and protection of climate, water, biological and soil resources and environment, which is an important material source and environmental conditions of biological survival. Soil moisture is an important factor affecting agricultural operations such as tillage, crop planting, plastic sheeting cover, irrigation, fertilization effect of spraying etc, and important for agricultural water-saving technology and precision agriculture technology. Soil moisture is also a necessary parameter related to agriculture, soil, environmental, engineering for scientific research. Therefore, the monitoring of soil moisture, extracting information of soil moisture content and dynamic state timely and accurately is very important. At present, as the world's growing shortage of water resources, water has a very uneven spatial and temporal distribution of water environment deterioration. China's water resources and water resources per capita is less, and because the quality of the water pollution, the uneven spatial distribution, misallocation of time, its effective water resources even more scarce. In the case of scarcity of water resources, water waste is very large, especially agricultural water use as the majority of community's total water consumption which efficiency and productivity are all low. Order to ensure the rational exploitation,utilization, protection and sustainable development of water resources, continuously improve water resources utilization and productivity, protection of agricultural water-saving technology system implementation, urgently promote a suitable practice use, control large area, high monitoring speed, accurate, effective, continuous, automatic, non-destructive soil, do not pollute the environment, economic new soil moisture detection technology, which is a long-term goal at home and abroad, and also a hot research key at home and abroad. But at present, soil moisture has been detected in the application of technology can not reach this requirement. The topics of this research is carried out around this requirement of soil moisture based on near infrared spectroscopy study, its findings have important significance on agricultural production, water conservancy, ecological environment construction and some industrial production, scientific research.
     The key findings of this study are::
     (1) Confirmed the spectral characteristics of soil are the result of multi-factors affections, soil moisture content is the control factor of the soil spectral characteristics in some characteristic bands. First use of adding soil composition material (soil organic matter and related types of clay minerals) analog testing and other analog methods (international system of classification of soil texture classification of grain size particles, water stable aggregates, soil bulk density) to research the affection of soil organic matter, soil particle size, soil clay mineral type and content, water stable aggregates, soil bulk density on soil moisture spectrum. The results showed that with the tested soil clay minerals and organic matter content increase,the diameter of water stable aggregates increase,the diameter of the soil bulk density decrease, the decrease of soil reflectance; with soil particles decrease, the reflectivity increases, but to the clay (<0.002mm) their reflectivity decrease.
     (2) It is designed testing of soil bulk density and salt content concentration on the impact of soil reflectance with change in soil moisture, and the affection for soil reflectance by variable soil pH. The test results are showed that in the case of bulk density and salt concentration caused changes by soil water content, the soil reflectance is also changed, with the soil drier, bulk density increases, the reflectivity also increases; soil moisture high, that is, soil salinity concentration is low, as the salt concentration increased, the reflectivity decreases, but when soil dries out of salt crystallization, with the increase of salt,its spectral reflectance increases. The experimental study also showed that the modified red soil acidity to make it into a little acid from the acid or neutral range, the change will not cause soil acidity soil spectral reflectance changed significantly. These results provide scientific basis for building the model of inversion soil moisture content from soil reflectance which take accounts of the effects of soil composition and the nature and implementation of soil modifications for soil improvement. Changes in soil bulk density is also strongly influenced the changes of soil moisture patterns types, soil moisture exist conditions, soil water movement and soil water utilization.
     (3) Research on implementation the relationship model of variable bulk density soil moisture and soil bulk density, confirms three-line model and exponential model to describe the relationship between soil moisture and bulk density changes,and analyze the tested soil characteristics by use of three-line model.Firstly research on the accompanied varying relationship among variable bulk density soil water content-bulk density-spectral reflectance, building two types of model, one is the exponential model for soil volume moisture content and spectral reflectance with the bulk density changes; the other is the surface model for the soil water content,spectral reflectance and bulk density based on the mechanism analysis of dual function affection of soil water content and bulk density for spectral reflectance. The former is reflected the affection of bulk density change on the relationship between soil water content and spectral reflectance; the latter is reflected that in the case of spectral reflectance influenced by dual-function of soil water content and bulk density, soil moisture inversion models by reflectance with change bulk density and soil water,which provides a theoretical basis for mechanism analysis and model construction of soil moisture content inversion by variable bulk density reflectance.
     (4) In the case of extraction information of soil water, comparatively study of several spectral data preprocessing methods, which include the elimination of noisy band, filtering (moving average smoothing, median smoothing filter, SG convolution smoothing, wavelet transform de-noising method), the derivative method etc. The results showed that:the use of combination of wavelet de-noising method and first order derivative to preprocess spectral data can achieve better filtering results than other methods, and also to keep the details of the desired signal characteristics.
     (5) Chosen the features band spectral to reflect well of soil moisture characteristics in the 1100nm-2400nm spectral range, through selecting of 11 features bands to be determined, the final selection of 1400nm,1900nm,2050nm,2200nm 4 bands as a soil water features spectrum band。Among which, in the area with soil moisture decrease, the reflectivity increasing,occurs the 1400nm and 1900nm apparent absorption peak; when the soil moisture is low, a significant absorption peak in the 2200nm also exist.
     (6) Explored the impact of soil water content and spectral reflectance representation on these two relationship modeling, and choose better matching method. About water content,choice of the weight water content, invariable bulk density volumetric water content, variable bulk density volumetric water content; about spectral reflectance, choice of measured spectral reflectance, relative reflectance, reduced soil reflectance and normalized reduced soil reflectance.With the comparison, results show that variable bulk density volumetric water content is matched well with the relative reflectance and reduced soil reflectance, while variable bulk density volumetric water content is matched better with normalized reduced soil reflectance. In construction model for inversion soil reflectance to soil moisture, first proposed and the use of variable bulk density soil moisture, reduced soil reflectance and normalized reduced soil reflectance, and the experiments results indicated this representation is acquired good affection.
     (7) Using two modeling methods of BP neural network and support vector machines to research on model construction for the relationship between soil water content and reflectance, and to study the model adaptability for the relationship between soil water content and reflectance. In the case of soil moisture content inversion model construction from soil reflectance, using the wavelet transform to extract signal characteristics in both time- and frequency domain, and thus can more fully reflect the signal characteristics; to remove the other characters of soil effect on the soil reflectance inversion soil water content,the change in signal characteristics are normalized by relatively dry soil feature vector and constructed three feature vectors:the relative characteristics of the original signal value variation, the first order derivative signal corresponding characteristics, the relative first order derivative signal characteristics variation; using Genetic algorithm in BP neural network and support vector machine parameters effective optimization, and use three kinds of feature vectors in the two models modeling and simulation results show that using the relative characteristics change of the first order derivative signal feature vector as input signals, genetic algorithm optimized support vector machine parameters is better for model construction of soil weight water content and volumetric water content prediction based on NIRS in the case of small sampling group.
引文
[1]Deans JD, Milne R. An Electrical Recording Soil Moisture Tensimeter[J]. Plant and Soil,1978,50(2):509-510
    [2]Lowery B, Datiri BC, Aandraski BJ. An Electrical Read -out System for Tensiometer[J]. Soil Sci. Soc. Am. J.1986,50(2):494-496
    [3]Gardner W, D Kirkham. Determination of Soil Moisture by Neutron Scattering[J]. Soil Sci.1951,73:391-401
    [4]Tyler SW. Neutron Moisture Meters Calibration in Large Diameter Boreholes[J]. Soil Sci. Soc. Am. J.1988,52(3):890-893
    [5]Chanasyk DS, Mckenzie RH. Field Calibration of a Neutron Probe[J]. Canadian J. of Soil Sci,1986,66(1):173-176
    [6]Reginato RJ, Nakayama FS. Neutron Probe Calibration Based on Plastic Transfer Standards[J]. Soil Sci,1988,145(5):381-384
    [7]Nakayama FS, Reginato PJ. Simplifying Neutron Moisyure Meter Calibration[J]. Soil Sci,1982,133(1):265-269
    [8]Stone JF, Nofziger DL. Calibration of Neutron Moisture Probes by Transfer through Laboratory Media:1. Principles [J]. SoilScience,1995,160(3):155-162
    [9]Vauclin M, Haverkamp R, Vachaud M. Error Analysis in Estimating Soil Water Content from Neutron Probe Measurements:2. Spatial Standpoint[J]. Soil Sci,1984, 137(3):141-148
    [10]Wilson DJ. Neutron Moisture Meters:the Eerror in the Derived WaterDensity[J]. Australian J. of Soil Res,1988,26(1):97-104
    [11]毛飞,任三学,刘庚山等.中子仪测量水分精度的比较研究[J].中国生态农业学报,2005,13(4):103-106
    [12]Evett SR, Steiner JL. Precision of Neutron Scattering and Capacitance Type Soil Water Content Gauges from Field Calibration[J]. Soil Sci. Soc. Am. J.,1995,59(4): 961-968
    [13]Wilson DJ, Rbohe AIM. Neutron Moisture Meters:the Detendence of Their Response on Soil Parameters[J]. Australian J. of Soil Res,1986,24(1):11-23
    [14]常冬梅,郭红霞,林东生.双能射线穿透法测量土壤密变和水含量[J].核电子学与探测技术,1998,18(5):375-378
    [15]Wheeler PA, Morrison RG Soil Moisture Monitoring using Gamma Attenuation Techniques[J]. Am. Soc. of Agric. Eng.1984,65:291-298
    [16]Fahad AA. A Computer Controlled Dual Gamme Scanner for Measurement of Soil Water Content and Bulk Density and Assessment of its Field Performance[J]. Int. J. of Radia Appli. And Instrum,1989,40(4):340-342
    [17]Hainsworth JM, Aylmore LG The use of Computer-assisted Tomography to Determine Spatial Distribution of Soil Water Content[J]. Australian J. of Soil Res., 1983,21(4):435-443
    [18]Anderson SH, Gantzer CJ, et al. Rapid Nonstructure Bulk Density and Soil-water Content Determination by Temography[J]. Soil Sci. Soc. Am. J.,1988,52(1):35-40
    [19]Phogat VK, Aylmore LAG, Schuller RD. Simultaneous Measurement of the Spatial Distribution of Soil Water Content and Bulk Density[J]. Soil Sci. Soc. Am. J.,1991, 55(4):908-915
    [20]Brown GO, Stone ML, et al. Accuracy of Gamma Ray Computerized Tomography in Porous Media[J]. Water Resour. Res.,1993,29(2):479-486
    [21]全九,王文焰等.田间非饱和土壤水分运动参数测定[J].农业L程学报,1998,14(2):149-159
    [22]王文焰,张建丰,汪志荣.动力水文实验研究[M].西安:陕西科技出版社,1991:98-105
    [23]Topp GC, Davis JL, Annan AP. Electromagnetic Determination of Soil Water Content using TDR:1. Applications to Wetting Fronts and Steep Gradients[J]. Soil Sci. Soc. Am. J.1982a,46:672-678
    [24]Topp GC, Davis JL, AP Annan. Electromagnetic Determination of Soil Water Content using TDR:Ⅱ. Evaluation of Installation and Configuration of Parallel Transmission Lines[J]. Soil Sci. Soc. Am. J.1982b,46:678-684
    [25]Topp GC, Davis JL, Baailey WG, et al. The Measurement of Soil Water Content using a Portable TDR Hand Probe[J]. Can. J. Soil Sci.1984,64:313-321
    [26]Amato M, Ritchie JR. Small Spatial Scale Soil Water Content Measurement with Time-domain-reflectometry[J]. Soil Sci. Soc. Am. J.,1995,59:325-329
    [27]Baker JM, Lascano RJ. The Spatial Sensitivity of Time-domain reflectometry[J]. Soil SCI.,1989,147:378-384
    [28]Knight JH. Sensitivity of Time Domain Reflectometry Measurements to Lateral Variations in Soil Water Content[J]. Water Resour. Res.,1992,28:2345-2352
    [29]Peterson LW, A Thomson, P Moldrup, et al. High-resolution Time Domain Reflectometry:Sensitivity Dependency on Probe-design[J]. Soil Sci.,1995,159: 149-154
    [30]Spaans EJA, Baker JM. Exmining the Use of Time Domain Reflectometry for Measuring Liquid Water Content frozen soil[J]. Water Resour. Res.,1995,31: 2917-2925
    [31]Bridge BJ, Sabbury J, Habash KO, et al. The Dielectric Behaviour of Clay Soils and its Application to Time Domain Reflectometry[J]. Aust. j. Soil Res.,1996,34: 825-835
    [32]Drungil CBC, Abt K, Gish TJ. Soil Moisture Determination in Gravelly Soil with Time Domain Reflectometry[J]. Transaction of the ASAE.,1989,32(1):177-180
    [33]Rothe A, W Weis, K Kreutzer, et al. Chances in Soil Strcture Caused by the Installtion of Time Demain Refilectometry Probes and Their Influence on the Measurement of Soil Water[J]. Water Resour. Res.,1997,33:1585-1593
    [34]Baumgartner N, Parkin GW, Elrick DE. Soil Water Content and Potential Measured by Hollow Time Domain Reflectometry Probes[J]. Soil Sci. Soc. Am. J.,1994,58: 315-318
    [35]Heimovaara JJ. Design of Triple-wire Time Domain Reflectometry Probes in Practice and Thory[J]. Soil Sci. Soc. Am. J.,1993,57:1410-1417
    [36]Noborio K, Mclnnes KJ, Heilman JL. Measurement of Soil Water Content, Heat Capacity, and Thermal Conductivity with a Single TDR Probe[J]. Soil Sci.,1996, 161(1):22-28
    [37]HH Nissen, Moldrup P, Henriksen K. High-resolution Time Reflectometry Coil Probe for Measuring Soil Water Content[J]. Soil Sci. Soc. Am. J.,1998,62: 1203-1211
    [38]Kelly SJ, Selker JS, Green JL. Using Short Soisture Probes with High-bandwidth Time Domain Reflectometry Measurements[J]. Soil Sci. Soc. Am. J.,1995,59: 97-102
    [39]Selker JS, Graff L, Steenhuis T. Noninvasive Time Domain Reflectometry Moisture Measurement Probe[J]. Soil Sci. Soc. Am. J.,1993,57:934-936
    [40]Zegelin SJ, White I, Kenkins DJ. Improved Field Probes for Soil Water Content and Electrical Conductivity Measurement using Time Domain Reflectometry[J]. Water Resour. Res.,1989,25:2367-2376
    [41]Magnus Persson, Sahar Haridy. Estimating Water Content from Electrical Conductivity Measurements Wath Short Time-domain Reflectometry Probes[J]. Soil Sci. Soc. Am. J.,2003,67:478-482
    [42]Dirksen C, Dasberg S. Improved Calibration of Time Domain Reflectometry Soil Water Content Measurements [J]. Soil Sci. Soc. Am. J.,1993,57:660-667
    [43]Malicki MA, Plagge R, Roth CH. Improving the Calibration of Dielectric TDR Soil Moisture Determination Taking into Account the Solid Soil[J]. Euro. J. Soil Sci., 1996,47:357-366
    [44]Keng JC, Topp GC. Measuring Water Content of Soil Columns in the Laboratory:A Comparison of Gamma Ray Attenuation and TDR Techniques[J]. Can. J. Soil Sci., 1983,63:3-43
    [45]Kirk. W. Weiler, Tammo S. Steenhuis, Jan Boll, et al. Comparison of Ground Penetrating Radar and Time-domain Reflectometry as Soil Water Sensors[J]. Soil Sci. Soc. Am. J.,1998,62:1237-1239
    [46]龚元石,李志忠.探针两种埋设方式下土壤水分的剂定及其比较[J].农业工程学报,1997,13(2):242-244
    [47]龚元石,龚元石,曹巧红.土壤容重和温度对时域反射仪测定土壤水分的影响[J].土壤学报,1999,36(2):145-153
    [48]周凌云,陈志雄,李卫民.TDR法测定土壤含水量的标志研究[J].土壤学报,2003,40(1):59-64
    [49]郭卫华,李波,张新时等.FDR系统在上壤水分连续动态监测中的应用[J].干旱区研究,2003,20(4):247-251
    [50]吕国华,李子忠,赵炳祥等.频率反射仪测足土壤含水量的校正与田间验证[J].干旱地区农业研究,2008,26(4):33-37
    [51]Wang Yiming, Zhao Yandong, Stady on the Measurement of Soil Water Content Based on the Principle of Standing-wave Ratio[J]. Proceeding of International Conference on Agriculture Engineering,1999(12):14-17
    [52]孙宇瑞,赵燕东,王一鸣.一种基于阻抗变换原理的土壤水分测定仪[J].中国农业大学学报,1999,4(4):22-24
    [53]赵燕东,王一鸣.基于驻波率原理的土壤水分测量方法研究[J].农业机械学报,2002(4):109-111
    [54]Waston K, Rowen LC, Offield TW. Application of Thermal Modeling in the Geologic Interpretation of IR Images[J]. Remote Sensing of Environment.1971,3: 2017-2041
    [55]Pratt A, Ellyett CD. The Thermal Inertia Approach to Mapping of Soil Moisture and Geology[J]. Remote Sensing of Environment,1979,8(2):151-168
    [56]张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式[J].中国科学(B缉),1986(7):776-784
    [57]田国良.土壤水分的遥感监测方法[J].环境遥感,1991,6(2):89-98
    [58]肖乾广,陈维英,盛永伟等.用气象卫星监测土壤水分的试验研究[J].应用气象学报,1994,5(3):312-318
    [59]蔡焕杰,熊运章,李培德.遥感红外温度估算农田土壤水分状况研究[J].西北农业大学学报,1994,22(1):113-118
    [60]隋洪智,田国良,李付琴.农田欺散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,1(3):220-224
    [61]刘培君,张琳.卫星遥感估测土壤水分的一种方法[J].遥感报,1997,1(2):135-139
    [62]陆家驹,陆家驹,张和平.应用遥感技术连续监测地表土壤含水量[J].水科学进展,1997,8(3):281-287
    [63]郭铌,陈添宇,雷建勤等.用NOAA卫星可见光和和红外资料估算甘肃省东部 农田区土壤湿度[J].应用气象学报,1997,8(2):212-218
    [64]陈怀亮,冯定原,邹春辉等.周遥感资料估算深层土壤水分的方法和模型[J].应用气象学报,1999,10(2):232-237
    [65]王晓云,郭文利,奚文等.利用”3S”技术进行北京地区土壤水分监测应用技术研究[J].应用气象学报,2002,13(4):422-429
    [66]李建龙,蒋平等.利用遥感光谱法进行农田土壤水分遥感动态监测[J].生态学报,2003,23(8):1498-1504
    [67]邓孺孺,田国良,柳钦火等.粗糙地表土壤含水量遥感模型研究[J].遥感学报,2004,8(1):75-80
    [68]张成才,吴泽宁,余洪婧.遥感计算上壤含水量方法的比较研究[J].灌溉排水学报,2004,23(2):69-72
    [69]张鹰,张东,胡平香.海岸带潮滩土壤含水量遥感测量[J].海洋学报,2008,30(5):29-34
    [70]Tollner E, Rollwitx WL. Nuclear Magnetic Resonance for Moisture Analysis of Meals and Soils[J]. Transactions of the ASAE,1988,31(5):1608-1615
    [71]Paetzold RF, Santes A, Matzkanin GA. Pulsed Nuclear Magnetic Resonance Instrument for Soil Water Content Measurement:Sensor Configurations. Soil Sci. Soc. Am. J.,1987,51(2):287-290
    [72]Nelson NT, Brusseau ML, Carlson TD. A Gas-phase Partitioning Tracer Method for the in Situ Measurement of Soil-water Content[J]. Water Resour. Res.,1999,35(12): 3699-3707
    [73]Carlson TD, Costanza-Robinson MS, Keller J, et al. Intermediate-scale Tests of the Gas-phase Partitioning Tracer Method for Measuring Soil-water Content[J]. Soil Sci. Soc. Am. J.,2003,67(2):483-486
    [74]马孝义,熊运章,王庆玺等.智能化田间土壤水分测定仪的研制[J].水土保持通报,1995,15(1):32-38
    [75]陈效民,毕德义,茚泽圣等.应用光电法测定盐渍土土壤水分的研究[J].土壤通报,1995,26(1):43-44
    [76]裘正军,何勇,葛晓峰等.基于GAS定位的土壤块速测量仪的研制[J].浙江大 学学报(农业与生命科学版),2003,29(2):135-138
    [77]杨绍辉,王一鸣,冯磊.土壤水分空间分布快速测试仪器的开发[J].中国农业大学学报,2005,10(2):23-25
    [78]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978
    [79]李学垣主编.土壤化学及实验指导[M].北京:中国农业出版社,1997
    [80]Bowers SA, Hanks RJ. Reflection of Rediant Energy from Soil[J]. Soil Science, 1965,100:130-138
    [81]Skidmore EL, Dickerson JD, Schimmelpfennig H. Evaluating Surface-soil Water Content by Measuring Reflectance[J]. Soil Sci. Soc. Amer. pro,1975,39:238-242
    [82]Neema DL, Shah A, Patel AN. A Statistical Optical Model for Light Reflection and Penetration through Sand[J]. Internayional J. of Remote Sensing,1987,8(8): 1209-1217
    [83]朱永豪,邓仁达,卢亚非等.不同湿度条件下黄棕壤光谱反射率的变化特征及其遥感意义[J].土壤学报,1984,21(2):194-202
    [84]Liu Weidong, F Baret, Gu X. Relating Soil Surface Moisture to Reflectance[J]. Remote Sensing of Environment,2002,81(2-3):238-246
    [85]徐彬彬,季耿善,朱永豪.中国陆地背景和土壤光谱反射特性的地理分区的初步研究[J].环境遥感,1991,6(2):141-151
    [86]刘伟东,FREDERIC B,张兵等.高光谱遥感土壤湿度信息提取研究[J].土壤学报,2004,41(5):700-706
    [87]何挺.土壤水分光谱特征研究[J].土壤学报,2006,43(6):1027-1032
    [88]刘焕军.黑土土壤水分光谱响应特征与模型[J].中国科学院研究生院学报,2008,25(4):503-506
    [89]Ben-Dor E, Banin A. Quantitative Analysis of Convolved TM Spectra of Soils in the Visible Near Infrared and Short-wave Infrared Regions(0.4-2.5)[J]. Int. J. Remote Sensing,1995,18:3509-3528
    [90]Ben-Dor E, Banin A. Visible and Near Infrared (0.4-1.1) Analysis of Arid and Semi ared Soils[J]. Remote Sens. Environ,1994,48:261-274
    [91]Couillard A, Turgeon AJ, Shenk JS, et al. Near Infrared Reflectance Spectroscopy for Analysis of Turf Soil Properties[J]. Crop Science,1997,37:1554-1559
    [92]Bullock PR, Li X, Leonardi. Near-infrared Spectroscopy for Soil Water Determination in Small Soil Volumes[J]. Canadian Journal of Soil Science,2004, 84(3):333-338
    [93]Kano Y, Mcclure WF, Skaggs RW. A Near Infrared Reflectance Soil Moisture Meter[J]. Transactions of the ASAE,1985,28(6):1852-1855
    [94]Kaleita AL, Tian LF, Hirchi MC. Relationship between Soil Moisture Content and Soil Surface Reflectance[J]. Transactions of the ASAE,2005,48(5):1979-1986
    [95]Mouazen A. M. Characterization of Soil Water Content using Measured Visible and Near Infrared Spectra[J]. Soil Sci. Soc. Am. J.,2006(70):1295-1302
    [96]Slughter DC, Pelletier MG. Upadhyaya S. K. Sensing Soil Moisture using NIR Spectroscopy[J]. Applied Engineering in Agriculture,2001,17(2):241-248
    [97]Zhan ZM, Qin QM, Ghulan A, et al. NIR-red Spectral Space Based New Method for Soil Moisture Monitoring[J]. Science in China Series D; Earth Science,2006,50(2): 283-289
    [98]Price JC. On the Information Content of Soil Reflectance Spectra[J]. Remote Sens. Environ,1990,33:113-121
    [99]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,216(4):528-542
    [100]齐洪祥.几种在线分析仪表的特点及其在我国石化工业中的应用[J].科学仪器,2004(6):3-5
    [101]严衍禄,赵龙莲等.近红外光谱分析基础与应用[M].中国轻工业出版社,2005
    [102]史永刚,冯新泸.近红外光谱及其在石油产品分析中的应用[M].北京:中国石化出版社,2002
    [103]陆婉珍,袁洪福,徐广通等.现代近红外光谱分析技术[M].北京:中国石油化学出版社,2000
    [104]陈华才,陈星旦.近红外光谱在药物领域的应用与研究进展[J].中国计量学院学报,2003,14(4):260-267
    [105]徐广通,袁洪福,陆婉珍.现代近红外分析技术及应用进展[J].2000,20(2):134-142
    [106]Al-Abbas AH, Swain PH, BaumgardnerMF. Relating or Ganic Matter and Clay Content to Mutispectral Radiance[J]. Soils. Soil Sci.,1972,114:477-485
    [107]季耿善,徐彬彬.遥感波段的解译特性[J].土壤专报,1987,41:114-128
    [108]冯云山,吴培祥,刘亚娟等.土壤光谱特性的研究[J].吉林农业大学学报,1989,11(2):72-76
    [109]彭杰,张杨珠,周清等.去除有机质对土壤光谱特性的影响[J].土壤,2006,38(4):453-458
    [110]张娟娟,田永超,朱艳等.不同类型土壤的光谱特性及其有机质含量预测[J].中国农业科学,2009,42(9):3154-3163
    [111]周清,周斌等.成土母质对水稻土高光谱特性及其有机质含量光谱参数模型影响的初步研究[J].土壤学报,2004,41(6):905-911
    [112]彭玉魁,张建新,何绪生等.土壤水分、有机质和总氮含量的近红外光谱分析研究[J].土壤学报,1998,35(4):553-559
    [113]贺军亮,蒋建军,周生路等.土壤有机质含量的高光谱特性及其反演[J].中国农业科学,2007,40(3):638-643
    [114]Dalal RC, Henry RJ. Simultaneous Determination of Moisture Organic Carbon, and Total Nitrogen by Near-infrared Reflectance Spectrophotometry[J]. Soil Science Society of America Journal,1986,50(1):120-123
    [115]Ben-Dor E, Inbar Y, Chen Y. The Reflectance Spectra of Organic Matter in the Visible Near-infrared and Short Wave Infrared Region (400-2500nm) during a Controlled Decomposition Process[J]. Remote Sens. Environ,1997,61:1-15
    [116]Hummel JW, Sudduth KA, Hollinger SE. Soil Moisture and Organic Matter Prediction of Surface and Subsurface Soils using an NIR Soil Sensor[J]. Computers and Electronics in Agriculture,2001,32:149-165
    [117]Sudduth KA, Hummel J. Soil Organic Matter, CEC and Moisture Sensing with a Portable NIR Spectrophotometer[J]. Transactions of the ASAE,1993,36(6): 1571-1582
    [118]季耿善,陆彬彬.主要粘土矿物的近红外反射特性[J].土壤专报,1987,41:77-88
    [119]徐彬彬,季耿善.土壤光谱反射特性与理化性状的相关分析[J].土壤专报,1987,41:66-76
    [120]何挺,王静,程烨等.土壤氧化铁光谱特性研究[J].地理与地理信息科学,2006,22(2):30-34
    [121]Leger RG. The Effects of Organic Matter, Iron Oxides and Moisture on the Color of Two Agricultural Soils of Quebec[J]. Can. J. Soil Sci.,1979,59,191-202
    [122]Torrent, J. et al. Quantitative Relationships between Soil Color and Hematite Content[J]. Soil Sci.,1983,136,354-358
    [123]Mouazen AM, Karouia R, Deckersb J, et al. Potential of Visible and Near-infrared Spectroscopy to Derive Color Groups Utilizing the Munsel Soil Color Charts[J]. Biosystems Eninering,2007(9):131-143
    [124]Post DF, Fimbres A, Matthias AD, et al. Predicting Soil Albedo from Soil Color and Spectral Reflectance Data[J]. Soil Sci. Soc. Am.,2000:1027-1034
    [125]季耿善,徐彬彬.土壤阳离子交换量与光谱反射率的相关研究[J].土壤专报,1987,41:89-94
    [126]孙毅,刘亚琴,何吉人等.土壤光谱特性及光谱反射率与苏打盐渍土含盐量的相关[J].吉林农业科学,1992(1):53-56
    [127]宋海燕,何勇.基于OSC和PLS的土壤有机质近红外光谱测定.农业机械学报,38(2):113-115
    [128]毕卫红,陈俊刚,白立春.基于近红外光谱技术预测土壤中的全氮含量[J].分析仪器,2006(3):47-49
    [129]邵明安.不同方法测定基质势差别与准确性的初步研究[J].土壤通报,1985,16(5):223-226
    [130]YanJun DU, Sheng LI, Shigenoi Hayashi. Sweelling-Shrinkage Properties and Soil Improment of Compacted Expansive Soil. NI-LING Highway, China. Engineering Geolegy,1999,53:351-358
    [131]仇荣亮,熊德祥,黄瑞采.变性土的膨胀收缩特点及影响因素[J].南京农业大 学学报,1994,17(1):71-77
    [132]Maio C Di, Santoli LI, Pschavone. Volume Change Behaviour of Clays:The Influence of Mimeral Compasition, Pore Fluid Composition and Stress State[J]. Mechainics of Materials,2004,36:435-451
    [133]Reeve MJ, Hall D. GM, Bullok P. Shrinkage in Clayey Subsoils of Contrasting Structure[J]. Soil Sci,1978,29:315-323
    [134]Reeve MJ, Hall D. GM, Bullok P. The Effect of Soil cComposition and Environmental Factors on the Shrinkage of Some Clay British Soils[J]. Soil Sci., 1980,31:429-442
    [135]邵明安,吕殿青.土壤收缩特性曲线的实验研究[J].土壤学报,2003,40(3):471-474
    [136]吕殿青,邵明安.土壤干缩特征研究进展[J].土壤通报,2003,34(3):225-228
    [137]熊东红,周红艺,杜长江.土壤裂缝研究进展[J].土壤,2006,38(3):249-255
    [138]D McGarry, K Malafant WJ. The Analysis of Volume Change in Unconfined Units of Soil[J]. Soil sci. soc. Am. J.,1987,51:290-297
    [139]Nelder JA. The Fitting of a Generalization of the Logistic Curve[J]. Biometris,1961, 17:89-110
    [140]Nelder JA. An Alternative form of a Generalized Logistic Equation [J]. Biometris. 1962,18:614-616
    [141]Giraldez JV, G Sposito, C Delgado. A General Soil Volume Change Equation:Ⅰ:The Two-Parameter Model[J]. soil sci. soc. Am. J.,1983,47:417-422
    [142]Giraldez JV, sposito G, Delgado C. A General Soil Volume Change Equation:Ⅱ. Effect of load pressure[J]. soil sci. soc. Am J.,1983,47:422-425
    [143]Kim DJ, Vereecken H, Feyen J, et al. On the Characterization of Properties of an Unripe Marine Clay Soil.1:Shrinkage Processes of an Unripe Marine Clay Soil in Relation to Physical Ripening. Soil Sci.,1992,153(6):471-481
    [144]Kim DJ, Vereecken H, Feyen J, et al. On the Characterization of Properties of an Unripe Marine Clay Soil. Ⅱ. A Method on the Determination of Hydraulic Properties[J]. Soil Sci.,1992,154(1):59-71
    [145]Alan R Mitchell, Van Genuchten M. Th. Shrinkage of Bare and Cultivated Soil[J]. Soil Sci. Soc. Am. J,1992,56:1036-1042
    [146]Crescimanno Giuseppina, Provenzano Givseppe. Soil Shrinkage Characteristic Curve in Clay Soil:Measurement and Prediction[J]. Soil Sci. Soc. Am J.,1999,63: 25-32
    [147]Mitchell Alan R. Van Genuchten M TH. Shrinkage of Bare and Cultivated Soil[J]. Soil Sci. Soc. Am J.,1992,56:1036-1042
    [148]Allbrook RE Shrinkage of some New Zealand Soils and its Implications for Soil Physics[J]. Aust. J. Soil Res.,1992,31:111-118
    [149]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-538
    [150]高荣强,范世福,严衍禄.近红外光谱的数据预处理研究[J].光谱学与光谱分析,2004,24(12):1563-1565
    [151]郑咏梅,张军,陈星旦等.基于逐步回归法的近红外光谱信息提取及模型研究[J].光谱学与光谱分析,2004,24(6):675-678
    [152]郑咏梅,张铁强,张军等.平滑、导数、基线校正对近红外光谱定量分析的影响研究[J].光谱学与光谱分析,2004,24(12):1546-1548
    [153]刘蓉,吕丽娜,陈文亮等.净信号在近红外光谱分析中的应用研究[J].光谱学与光谱分析,2004,24(9):1042-1046
    [154]刘广军,戴冬梅,高洪涛.正交信号校正算法及其在光谱处理中的应用[J].山东建筑工程学院学报,2005,20(2):83-91
    [155]夏柏杨,任芊.近红外光谱分析技术的一些数据处理方法的讨论[J].光学实验室,2005,22(3):629-634
    [156]李小昱,肖武,培武等.基于近红外傅立叶特征提取方法的土壤含水率检测[J].农业机械学报,2009,40(5):64-67
    [157]Stoner ER, Baumgardner MF. Characteristic Variations in Reflectance of Surface Soils[J]. Soil Sci. Soc. Am. J,1981,45:1161-1165
    [158]王昌佐,王纪华,王锦地等.裸土表层含水量高光谱遥感的最佳波段选择[J].遥感信息,2003(4):3-36
    [159]David LB, Gregory PA. Moisture Effects on Soil Reflectance[J]. Soil Science Society of America Journal,2002,66:722-727
    [160]张德丰.MATLAB小波分析[M].北京:机械工业出版社,2009
    [161]田高友,袁洪福,刘慧颖等.小波变换在近红外光谱分析中的应用进展[J].光谱学与光谱分析,2003,23(6):1111-1114
    [162]田高友,袁洪福,褚小立等.结合小波变换与微分法改善近红外光谱分析精度[J].光谱学与光谱分析,2005,25(4):516-520
    [163]张德丰,周燕.详解MATLAB在统计与工程数据分析中的应用[M].北京:电子工业出版社,2010
    [164]徐广通,袁洪福,陆婉诊等.近红外光谱定量校正模型适用性研气[J].光谱学与光谱分析,2001,21(4):459-463
    [165]袁洪福、陆婉诊.现代光谱分析中常用的化学计量学方法[J].现代科学仪器,1998(5):6-9
    [166]王惠文.偏最小二乘回归回归方法及其应用[M].北京:国防工业出版社,1999
    [167]王芳,陈达,邵学广.小波变换和偏最小二乘法在烟草常规成分预测中的应用[J].烟草科技,2004(3):31-34
    [168]Bowers SA, Smith SJ. Spectrophtometric Determination of Soil Water Content[J]. Soil Sci. Soc. Am. Proceedings,1972,36:978-980
    [169]Muller E, Decamps H. Modeling Soil Moisture to Reflectance[J]. Remote Sonsing Environ,2001.76(2):173-180
    [170]郑立华,李民赞,潘娈等.基于近红外光谱技术的土壤参数BP神经网络预测[J].光谱学与光谱分析,2008,28(5):1160-1164
    [171]沈润平,丁国香,魏国栓等.基于人工神经网络的土壤有机质含是高光谱反演[J].土壤学报,2009,46(3):391-397
    [172]金龙,罗莹等.农田土壤湿度的人工神经网络预报模型研究[J].土壤学报,1999,35(1):25-32
    [173]刘焕军.黑土土壤水分光谱响应特征与模型[J].中国科学院研究生院学报,2008,25(4):503-509
    [174]刘洪斌.土壤水分预测神经网络模型和时间序列摸型比较研究[J].农业工程学报,2003,19(4):33-36
    [175]Whiting ML, Li L, Ustin SL. Predicting Water Content using Gaussin Model on Soil Spectra[J]. Remote Sensing of Environment,2004,89(4):535-552
    [176]Haubrock SN, Chabrillat S, Lemmnitz C, et al. Surface Soil Moisture Quantification Models from Reflectance Data under Field Conditions[J]. International Journal of Remote Sensing,2005,29(1):3-29
    [177]Chang CW, Laird DA, Mausbach MJ. et al. Near-infrared Reflectance Epectroscopy-principal Components Regression Analysis of Soil Properties[J]. Soil Sci. Soc. Am. J.,2001,65:480-490
    [178]褚小立,袁洪福,骆献辉等.支持向量机回归建立测定醇烯比的近红外光谱校正模型[J].光谱学与光谱分析,2008,28(6):1227-1231
    [179]潘立登,李大字,马俊英.软测量技术原理与应用[M].北京:中国电力出版社.2009
    [180]MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700