用户名: 密码: 验证码:
长江口潮滩营养动态与稳定同位素指示研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨岸潮滩是地球表面圈层物质循环最为活跃的区域之一,其初级生产力与工业化农业相媲美,对营养物质和污染物的吸收、吸附、截留及其它过程延缓污染物向河口水体的释放,起到净化水质的生态功能。反之,河口富营养化及与潮滩物质的交换,加速了潮滩的富营养化,使潮滩由营养物质的“汇”转变为“源”,进而潮滩生境与生态功能发生转变。因此,滨海潮滩生态系统营养物质的生物地球化学循环及稳定同位素等生态指标研究具有重要的理论和实践意义。
     本论文在长江口及毗邻海域水质调查以及沿岸潮滩系统(包括崇明东滩、横沙东滩、奉贤边滩等)的季节采样基础之上,对潮滩植物吸收库、沉积物营养累积库以及间隙水与河口营养交换等多个湿地过程营养动态及其对河口富营养化的响应进行研究,并利用潮滩系统中植物、沉积物碳、氮含量以及稳定同位素的变化以及其在河口环境差异较大的潮滩崇明东滩与奉贤边滩两个生态系统的对比研究来探讨潮滩系统中营养物质循环及潮滩营养动态指标。结果如下:
     1.长江口潮滩植被是河口生态系统中重要的碳、氮储存库之一。互花米草、芦苇、海三棱藨草的碳、氮年净生产力分别达到17.44×104、4428.73t(这一统计结果偏低),其中这三种植物年净氮生产力分别是35.45、30.19和9.18g N·m-2·yr-1且三种植物均是地上生产力大于地下生产力,这一结果的重要意义在于通过收割等方式移除地上组织有利于大气与潮滩生态系统中碳、氮的移除,对河口富营养化环境产生积极净化功能。地下生物量/地上生物量比是潮滩环境变化的重要生态指标,海三棱藨草地下/地上生物量比大于其它潮滩植物、奉贤边滩的比值比其它两个潮滩高,表明地下生物量增加不仅是植物适应潮滩不稳定环境的生存策略与重要的能量、物质物质循环库,还是潮滩沉积物非生物环境的调控因子,其生态功能是今后研究的重点之一。
     2.潮滩沉积物是河口生态系统重要的碳源与氮汇。有机碳、氮的沉积速率分别是45-86g C·m-2·yr-1、4.74-6.17 g N·m-2·yr-1,除了海三棱藨草净地下碳生产力主要在土壤中沉积,芦苇、互花米草输出74%-82%地下净碳生产力;氮的沉积速率大于地下净生产力,海三棱藨带和互花米草带氮沉积有45%-55%来自外源氮的输入。三个潮滩沉积物TOC与TN间呈明显的线性关系,但奉贤边滩斜率与其它两个潮滩差异明显,即C/N差异明显,表明河口富营养化环境与沿岸排污对奉贤边滩影响显著。植物生长特别是互花米草入侵增加碳、氮沉积,对氮的截留作用超过了对碳的沉积。
     3.潮滩沉积物-水界面营养盐扩散通量计算结果表明沉积物对(NO3-+NO2-)N吸收量(-24.17μmol·m-2·h-1])大于NH4+-N的释放量(13.81μol·m-2·h-1),起到净化功能;SiO32--Si、NH4+-N、PO43--P由沉积物向水体输出有利于调节河口水体中营养盐结构,特别是有利于缓解夏季河口硅限制。NH4+-N是间隙水中主要氮盐,其浓度比(NO3-+NO2-)-N (0.38-36.13μmol·L-1高1-2个数量级,受潮滩植物影响明显,如崇明东滩大型维管束植被带(互花米草与芦苇)中的NH4+-N浓度比光滩与海三棱藨草带低一个数量级以上,且春、夏季植物生物量与间隙水营养盐呈明显的线性关系。潮滩营养盐与河口海水水质有着密切相关性,特别是奉贤边滩受杭州湾的严重富营养化影响,其潮滩营养盐浓度与通量高于崇明东滩与横沙东滩。植物生长对潮滩沉积物间隙水营养盐分布的影响:1)直接吸收,降低营养盐浓度;2)植物的存在引起沉积物中氧化还原环境变化,从而影响沉积物间隙水中营养盐形式。
     4.碳、氮稳定同位素分析表明潮滩植物分为三个组:C3植物(613C、δ15N分别是-24.3--30.0‰、1.6-8.3‰)、C4植物(δ13C、615N分别是-12.3--14.6‰、2.5-7.2‰)以及包括浮游植物与底栖藻类在内的潮滩藻类(613C、δ15N分别是-15.7--22.8‰、4.0-7.2‰)。但其潮滩差异主要表现为δ15N,植被δ15N变化与河口水体及间隙水氮营养盐的浓度有着显著的线性负相关关系。潮滩沉积库是包括盐沼C3植物、C4植物以及悬浮颗粒等多个来源有机质的混合库,其中两种植物的最大贡献对表层沉积物有机物的贡献分别是42.97%、19.21%,高于浅层沉积物(分别是42.04%、14.85%),表明互花米草入侵的生态影响增加。因强烈的物理环境、沉积物有机库输出-保存的平衡等因子影响了沉积物同位素对河口富营养化的响应。
     5.在长江口与杭州湾河口富营养化调查的基础上,比较崇明东滩与奉贤边滩营养动态及稳定同位素等生态指标变化,结果表明:潮滩间隙水营养富集主要表现为沉积物中C/N比与δ15N的变化,而植物指标则包括了地下/地上生物量、氮含量、δ15N及入侵物种的变化等。河口环境对潮滩的影响信号沿着间隙水、沉积物、植被逐级放大。另外,1)营养盐的来源;2)水体营养化程度;3)潮滩植物对营养盐的需求是影响潮滩同位素变化的重要因子,尤其是富营养化会影响植物与沉积物碳、氮含量与同位素作为生态指示性因子在潮滩有机物溯源及潮滩营养富集过程研究中应用。
     总体看来,长江口潮滩是河口生态系统重要的碳源和氮汇,不仅起到维持河口生态系统高生产力的重要作用,通过植物的生长、营养物质的沉积以及沉积物-水界面物质交换等过程延长营养物质在潮滩循环周期,起到净化功能,也是潮滩与河口环境响应的重要机制。碳、氮稳定同位素的应用不仅为潮滩有机质溯源研究提供有效的、敏感的技术手段,也是潮滩营养富集化过程研究的重要生态指标。今后将建立长时间尺度潮滩营养动态数据库与营养富集敏感指标体系,促进河口生态系统修复与健康。
Tidal flat is one of the most active ecosystems in surface sphere of the earth, and plays an important role in maintaining high primary production in coastal ecosystem. The uptake, adsorption, retention and other processes of tidal marsh delay the release of nutrient and contamination from marsh into estuary purifying water quality of estuarine ecosystem. Whereas, eutrophication in coastal water and the exchange between coast and marsh speed nutrient enrichment in tidal flat, and lead to the function shift from "sink" to "source" of marsh. Consequently, the variations occur in habitat and ecological function of marsh ecosystems. It is urgent to carry out the researches on the nutrient biogeochemical cycles and isotopes indicators in tidal flat of the Yangtze Estuary, one of the most important drivers of marine environment.
     On the basis of water quality survey of the Yangtze Estuary and the adjacent sea and seasonal sampling of tidal flats (including Chongming Dongtan, Hengsha Island and Fengxian flat), our objects were to determine 1) plant uptake, nutrient sediment pool and the nutrient flux between pore water and coastal water; 2) the response of those processes to eutrophication in coast; 3) nutrient cycle and ecological indexes of tidal flat ecosystem using carbon and nitrogen contents and stable isotopes of marsh plant and sediment. These results would aid in the sensitivity of environmental management on nutrient enrichment and the development of protection measures in tidal flat ecosystems. The results are as follows:
     1. Marsh vegetation was one of the carbon and nitrogen repositories in the Yangtze estuary. Carbon and nitrogen net annual production of Spartina alterniflora, Phragmites australis and Scripus mariqueter were 17.44×104、4428.73t in the Yangtze estuary respectively (this result was underestimated). Nitrogen annual production was 35.45、30.19 and 9.18 g N·m-2·yr-1 for these three marsh plant respectively. The aboveground production was larger than the belowground, meaning that carbon and nitrogen would be removed from atmosphere and marsh system by the harvest of the aboveground organism to purify water quality of the Yangtze estuary. The bellowground/aboveground biomass ratio in S. mariqueter was higher than that in other plant, and it was higher in Fengxian flat than other two flats. The results showed that the belowground biomass was not only a survival strategy for marsh plant to unstable environment, but also a factor to abiotic environment and nutrient of marsh sediment.
     2. Sediment pool was carbon source and nitrogen sink for coast ecosystem. Sedimentation rates of organic carbon and nitrogen were 45-86g C·m-2·yr-1、4.74-6.17 g N·m-2·yr-1 respetively. Except that net belowground carbon production of S. mariqueter was mainly deposited in sediment,74%-82% net belowground production of S. alterniflora and P. australis was exported from marshes. Meanwhile, nitrogen sedimentation rate was larger than the belowground production, and 45%-55% nitrogen of sediment under the S. mariqueter and S. alterniflora was imported from external source. TOC and TN showed significant linear relationship in three flats, but the slope of Fengxian flat, namely C/N, obviously differed from other two marshes, indicating the impact of coastal eutrophication and sewage discharge on Fengxian flat. The growth of marsh plant, especially the invasion of S. alterniflora, accelerated nutrient sedimentation, and nitrogen retention in sediment exceeded carbon sedimentation.
     3. The nutrient diffusive flux in sediment-water interface showed that the export flux of flux NH4+-N (-24.17μmol·m-2·h-1) was higher than the import of (NO3-+NO2-)-N (13.8μmol·m-2·h-1), resulting in the purification function on water quality. The export of SiO32--Si, NH4+-N and PO43--P from tidal marshes regulated nutrient level and composition, and specially lifted the silicon beyond potentidal element limitation in the coastal system in summer. Ammonium as the main form of DIN was 1-2 orders of magnitude higher than (nitrate+nitrite)-N (0.38-36.13μ.mol·L-1) in pore water. In Chongming Dongtan, ammonium concentrations of pore water in macrophyte (S. alterniflora and P. australis) zones were over one order of magnitude less than bare flat and S. mariqueter zone. Moreover, the linear regression analysis showed significant relationships between biomass in spring and summer growing seasons and nutrient concentrations (except SiO32--Si) in CM. The mechanisms could interpret the impact of marsh plants on pore water nutrient:1) the uptake directly decreases nutrient concentrations of marshes; 2) the variations of the redox environment in sediment by vegetation growth affect nutrient form in pore water.
     4. Marsh plants were binned into three groups in the Yangtze estuary:C3 plant (δ13C,δ15N were-24.3~-30.0%。,1.6-8.3%。respectively), C4 plant (δ13C,δ15N were-12.3~-14.6%。,2.5~7.2%o respectively) and marsh algae including phytoplankton and benthic algae (813C,δ15N were-15.7~-22.8%。,4.0~7.2%。respectively) by stable isotopes. Theδ15N values of marsh plant showed evident difference between Fengxian flat and other two flats, and had negative correlation with nutrient of coastal water and pore water. However, the organic of sediment was a mix of C3, C4 and suspended particulate matter. The contribution of C3 and C4 plants to organic matter of surface sediments were 42.97%,19.21% respectively, higher than that in shallow sediment (42.04%,14.85% respectively). This result indicates the increase impact of S. alterniflora on marsh sediment. The responses ofδ13C,815N values of sediment were overlapped by intense physical condition and export-save balance of organic pool to reflect nutrient enrichment in the estuaries. 5. Based on water quality survey of the Yangtze estuary and Hangzhou Bay, the comparisons of nutrient dynamic and stable isotopes showed that C/N ratio andδ15N of sediment effectively reflected nutrient dynamic in marshes, while the vegetation indexes included belowground/aboveground biomass, N content,δ15N and the distribution of invasive species. Therefore, the ecological signal of nutrient dynamic progressively enlargeed along pore water, sediment and marsh plant. In addition, the results indicated that isotope variations were effected by nutrient source, nutritional status of coast and plant physiology in tidal flat ecosystem. Specially, eutrophication might influence the application of carbon and nitrogen content and isotopes as ecological indexes to the biogeochemical cycle of wetland ecosystems.
     In summary, it is proved by our survey that tidal flats act as carbon source and nitrogen sink of the Yangtze estuary, and play important roles in maintaining high production and purifying water quality by plant growth, nutrient sedimentation and the exchange at sediment-water interface. Carbon and nitrogen stable isotopes are the effective and sensitive ecological indexes to identify organic sources and nutrient dynamic of estuarine ecosystem. Long-term data of nutrient dynamic and sensitive index of nutrient enrichment would be established in biogeochemistry of tidal flat environments.
引文
Adams, D.A.,1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology,44,445-456.
    An, Q., Wu, Y., Wang, J., Li, Z.,2009. Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea, China. Environ Monit Assess, DOI 10.1007/s10661-009-0883-z.
    Andrews, J.E, Greenaway, A.M., Dennis, P.F.,1998. Combined carbon isotope and C/N ratios as indictors of source and fate of organic matter in a poorly flushed, tropical estuary:Hunts Bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science,46,743-756.
    Anderson, I.C., Tobias, C.R., Neikirk, B.B., Wetzel, R.L.,1997. Development of a process-based nitrogen mass balance model for a Virginia (USA) Spartina alterniflora salt marsh:implications for net DIN flux. Marine Ecology Progress Series,159,13-27.
    Aranibar, J.N., Andersonm I.C., Epstein, H.E., Feral, C.J.W., Swap, R.J., Ramontsho, J., Macko, S.A.,2008. Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa. Journal of Arid Environments,72, 326-337.
    Arens, S., Herber, W.,1999. Development of salt marsh vegetation in the Leybucht from 1948 to 1996. Marine Biodivertity,29(Sup.1),7-11.
    Arnosti, C., J(?)rgensen, B.B., Sagemann, J., Thamdrup, B.,1998. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen comsumption, and sulfate reduction. Marine Ecology Progress Series,165,59-70.Arp, W.J., Drake, B.G., Pockman, P.S., Whigham, D.F.,1993. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegatatio,104/105, 133-143.
    Aranibar, J.N., Andersonm I.C., Epstein, H.E., Feral, C.J.W., Swap, R.J., Ramontsho, J., Macko, S.A.,2008. Nitrogenl isotope composion of soils, C3 and C4 plants along land use gradients in southern Africa. Journal of Arid Environments,72, 326-337.
    Augustine, D.J., McNaughton, S.J., Frank, D.A.,2003. Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecological Applications 13,1325-1337.
    Bannon, R.O., Roman, C.,2008. Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries. Ecological Applications.18(1),22-30.
    Barkowski, J.W., Kolditz, K., Brumsack, H., freund, H.,2009. The impact of tidal inundation on salt amrsh vegetation after de-embankment on Langeoog Island, Germany-six years time series of permanent plots. J Coast Conserv, DOI 10.1007/s11852-009-0053-z.
    Bart, D., Burdick, D., Chambers, R., Hartman, J.M.,2006. Human facilitation of Phragmites australis invations in tidal marshes: a review and synthesis. Wetland Ecology and Management,14,53-65.
    Beck, M., Dellwig, O., Liebezeit, G., Schnetger, B., Brumsack, H.J.,2008a. Spatial and seasonal variations of sulphate, dissolved organic carbon and nutrents in deep pore water of intertidal flat sediments. Estuarine, Coastal and Shelf Science,79, 307-316.
    Beck, M., Dellwig, O., Schnetger, B., Brumsack, H.J.,2008b. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochimica et Cosmochimica Acta,72,2822-2840.
    Berg, G., Esselink, P., Groeneweg, M., Kiehl, K.,1997. Micropatterns in Festuca rubra-dominated salt-marsh vegetation induced by sheep grazing. Plant Ecology, 132,1-14.
    Bernot, M.J., Bernot, R.J., Morris, J.T.,2009. Nutrient cycling relative to δ15N and δ13C natural abundance in a coastal wetland with long-term nutrient additions. Aquat. Ecol.43,803-813.Billerbeck, M., Werner, U., Polerecky, L., Walpersdort E., deBeer, D., Huettel, M.,2006. Surficial and deep pore water circulation governs spatial and temporoal scales of nutrient recycling in tintertidal sand flat sediment. Marine Ecology Progress Series,326,61-76.
    Blom, C.W.P.M., Voesenek, L.A.C.J.,1996. Flooding:The survival strategies of plants. Trends in Ecology and Evolution,11,290-295.
    Boddey, R.M., Peoples, M.B., Palmer, B., Dart, P.J.,2000. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems,57,235-270.
    Boorman, L.A.,1992. The environmental consequences of climatic change on British salt marsh vegetation. Wetlands Ecology and Management,2(1/2),11-21.
    Bornman, T.G., Adams, J.B., Bate, G.C.,2008. Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary, South Africa. South African Journal of Botany,74,685-695.
    Bouillon, S., Connolly, R.M., Lee, S.Y.,2008. Organic matter exchange and cycling in mangrove exosystems:Recent insights from stable isotope studies. Journal of Sea Research,59,44-58.
    Bouma, T.J., De Vries, M.B., Low, B., Kusters, L., Herman, P.M.J., Tanczos, Temmerman, T., Hesselink, A., Meire, P., van Regenmortel, S.,2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation:identifying general relationships for habitat characterizations. Hydrobiologia,540,259-274.
    Bowen, R., Stephens, N., Donnelly, P.,1995. SEPP-14 wetland protection and the role of mitigation. Wetlands (Australia),14,6-12.
    Bozek, C.M., Burdick, D.M.,2005. Impacts of seawalls on saltmarsh plant communities in the Great Bay Estuary, New Hampshire USA. Wetland Ecology and Management,13,553-568.
    Brenner, M., Whitmore, T., Curtis, J.H., Hodell, D.A., Schelske, C.L.,1999. Stable isotope (δ13C、δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolilmnology,22,205-221.
    Bridbakken, J. F., Ohlson, M., Hogberg, P.,2003.Boreal bog plants:nitrogen sources and uptake of recently deposited nitrogen. Enveronmental Pollution.126, 191-200.
    Brigham, S.D., Megonigal, J.P., Keller, J.K., Bliss, N.P., Trettin, C.,2006. The carbon balance of North American wetlands. Wetlands 26,889-916.
    Burdick D.M., Konisky, R.A.,2003. Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes. Estuaries, 26(2B),407-416.
    Burdige, D.J., Zheng, S.,1998. The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments. Limnol. Oceanogr.,43(8),1796-1813.
    Burnett, W.C., Bokuniewicz, H.Y., Huettel, M., Moore, W.S., Taniguchi, M.,2003. Groundwater and pore water inputs to the coastal zone. Bio geochemistry,66, 3-33.
    Cabrita, M.T., Brotas, V.,2000. Seasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus estuary, Portugal. Marine Ecology Progress Series,202,51-65.
    Cacdor,I., Costa, A.L., Vale, C.,2004. Carbon storagen in Tagus salt marsh sediment. Water, Air, and Pollution:Focus,4,701-714.
    Cacador, I., Tiberio, S., Cabral, H.N.,2007. Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia,587,205-211.
    Caffrey, T.M., Kemp, W.M.,1999. Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliaus and Zoetera marine. Ecol Prog Ser,66, 147-160.
    Caffrey, J.M., Murrell, M.C., Wigand, C., Mckinney, R.,2007. Effect of nutrient loading on biogeochemical and microbial processes in a New England salt marsh. Biochemistry,82,251-264.
    Canfield, D.E., Thamdrum, B., Hansen, J. W.,1993. The anaerobic degradation of organic matter in Danish coastal sediment: iron reduction, manganese reduction and sulfate reduction. Geochimica et Cosmochimica Acta,57,3867-3883.
    Cao, Y, Sun, G, Xing, G, Xu, H.,1991. Natural abundance of 15N in main N containing chemical fertilizers of China, Pedoshere,1,377-382.
    Cartaxana, P., Catarino, F.,1997. Allocation of nitrogen and carbon in an estuarine salt marsh in Portugal. Journal of coastal Conservation,3,27-34.
    Castilli, J.M., Leira-Doce, P., Rubio-casal, A.E., Figueroa, E.,2008. Estuarine, Coastal and Shelf Science,78,819-826.
    Castro, P., Valiela, I., Freitas, H.,2009. Sediment pool and plant content as indicators of nitrogen regimes in Portuguese estuaries. Journal of Experimental Marine Biology and Ecology,380,1-10.
    Cerling, T.E., Wittemyer, G., Rasmussen, H.B., Vollrath, F., Cerling, C.E., Robinson, T.J., Douglas-Hamilton, I.,2006. Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences USA 103,371-373.
    Chambers, R.M., Osgood, D.T., Bart, D.J., Montalto, F.,2003. Phragmites australis invasion and expansion in tidal wetlands interactions among salinity, sulfide and hydrology. Estuaries,26(2B),398-406.
    Chapman, P.M., Wang, F., Germano, J.D., Batley, G.,2002. Pore water testing and analysis:the good, the bad, and the ugly. Marine Pollution Bulletin,44,359-366.
    Chen, X., Peng, R., Chen, J., Luo, Y., Zhang, Q., An, S., Chen, J., Li, B.,2007. CH4 emission from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere,68,420-427.
    Chen, X., Chen, J., Luo, Y., Henderson, R., An, S., Zhang, Q.,2008. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma, 145,177-184.
    Chen, X., Luo, Y., Xu, Q., Lin, G., Zhang, Q., Chen, J., Li, B.,2009. Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil, DOI 10.1007/s11104-009-0033-y.
    Chen, Z., Li, B., Zhong, Y., Chen, J.,2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia, 528,99-106.
    Chen, Z., Guo, L., Jin, B., Wu, J., Zheng, G,2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River estuary, China. Estuarine, Coastal and Shelf Science,82,265-272.
    Cheng, X., Luo, Y., Chen, J., Lin, G., Chen, J., Li, B.,2006. Short-term C4 Spartina alterniflora invasions change the soil carbon in C3-plant-dominated tidal wetlands on a growing estuarine island. Soil Biology & Biochemistry,38,3380-3386.
    Cheng, X., Chen, J., Luo, Y.,Henderson, R., An, S., Zhang, Q., Chen, J., Li, B.,2008. Assessing the effects of short-term Spartina alterniflora invasions on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma,145,177-184.
    Cloern, J.E., Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol. Eceanogr.,47(3), 713-729.
    Chmura, G. L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C.,2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles,17(4), 1111, doi:10.1029/2002GB001917.
    Coelho, J.P., Pereira, M.E., Duarte, A.C., Pardal, M.A.,2009. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems:Possible effects of eutrophication. Marine Pollution Bulletin,58,358-365.
    Choi, Y., Wang, Y.,2004. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochemical Cycles,18, GB4016, doi:10.1029/2004GB002261.
    Cole, M.L., Valiela, i., Kroeger, K.D., Tomasky, G.L., Cebrien, J., Wigand, C., Mckinney, R.A., Grady, S.P., Carvalho da Silva, M.H.,2004. Assessment of a δ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystem. J. Environ. Qual.,33,124-132.
    Cole, M.L., Kroeger, K.D., McClelland, J. W.,2005. Valiela I. Macrophytes as indicators of land-derived wastewater: Application of a delta N-15 method in aquatic systems Water Resources Research,41 (1),1-14.
    Costanzo, S.D., O'Donohue, M.J.M., Dennison, W.C.,2003. Assessing the seasonal influence of sewage and agricultural nutrient inputs in a subtropical river estuary. Estuaries,26(4A),857-865.
    Costanzo, S.D., Udy, J., Longstaff, B., Jones, A.,2005. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years inn Moreton Bay, Australia. Marine Pollution Bulletin,51,212-217.
    Crain, C.M.,2007. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts,30(1),26-34.
    Craine, JM., Elmor, A.J., Aidar, M.P.M., Bustamante, M., Savson, T.E., Hobbie, E.A., Kahmen, A., Mack, M.C., Mclauchlan, K.K., Michelsen, A.,Nardoto, GB., Pardo, L.H., Peuelas, J., Berch, P.B., Schuur, E.A.G, Stock, W.D., Templer, P.H., Virginia, R.A., Welker, J.M., Wright, I.J.,2009. Global patterns of foliar nitrogen isotope and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations and nitrogen availability. New Phytologist,183,980-992.
    Currin, C.A., Newell, S.Y., Paerl, H.W.,1995. The role of standing dead Spartina alterniflora and benthic micro algae in salt marsh food webs:considerations based on multiple stable isotope analysis. Marine Ecology Progress Series,121,99-116.
    Currin, C.A., Paerl, H.W.,1998. Epiphytic nitrogen fixation associated with standing dead shoots of smooth cordgrass, Spartina alterniflora. Estuaries,21, 108-117.Dahl, T.E., Johnson, C.E.,1991. Status and trends of wetlands in the conterminous United States, mid-1970's to mid-1980's. U.S. Department of interior, Fish and Wildlife Service, Washington, D.C.
    Dai, J., Sun, M., Culp, R.A., Noakes, J.E.,2008. A laboratotry study on biochemical degradation and microbial utilization of organic matter comprising a marine diatom, land grass, and salt marsh plant in estuarine ecosystems. Aquat Ecol, DOI 10.1007/s10452-008-9211-x.
    Daleo, P., Iribarne, O.,2009. The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina denfiflora in SW Atlantic salt marshes. Journal of Experimental Marine Biology and Ecology,373,66-71.
    Darby, F.A., Turner, R.E.,2008. Below-and aboveground Spartina alterniflora production in a Louisiana salt marsh. Esturies and Coasts,:F CERF,31,223-231.
    Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer P.H., Tu, K.P.,2002. Stable isotope in plant ecology. Annu. Rev. Ecol. Syst.,33,507-559.
    Deborde, J., Anschutz, P., Auby, I., Gle, C., Commarieu, M.V., Maurer, D., Lecroart, P., Abril, G.,2008. Role of tidal pumping on nutrient cycling in a temperate lagoon (Arcachon Bay, France). Marine Chemistry,109,98-114.
    Deegan, L.A..,2002. Lessons learned:the effects of nutrientenrichment on the support of nekton by seagrass and salt marsh ecosystems. Estuaries,25(4b),727-742.
    de Jong, D.J., van der Pluijm, A.M.,1994. Consequences of a tidal reduction for the salt-marsh vegetation in the Oosterschelde estuary (The Netherlands). Hydrobiologia,282/283,317-333.
    Dhakar S P, Burdige D.,1996. A couple, non-clear, steady-state model for early diagenetic processes in Pelagic sediment. American Journal of Science,296, 296-330.
    Dillon, K.S., Chanton, J.P.,2008. Nitrogen stable isotopes of macrophytes assess stormwater nitrogen inputs to and urbanized estuary. Estuaries and Coastes:J CERF,31,360-370.
    Dounton, K.H., Hardegree, B., Whitledge, T.E.,2001. Response of Estuarine marsh vegetation to interannual variations in precipitation. Estuaries,24(6A),851-861.
    Duan,S., Liang, T., Zhang, S., Wang,L., Zhang, X., Chen, X.,2008. Seasonal changes in nitrogen and phosphorus transport in the lower changjiang River before the construction of the Three Gorges Dam. Estuarine,l Coastal and Shelf Science,79, 239-250.
    Edmond, J.M., Spivack, A., Grant, B.C., Hu, M.H., Chen, Z., Chen, S., Zeng, X., 1985. Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 4,17-36.
    Ejmankovd, E., Komarkovd, J., Rejmdnek, M.,2004.δ15N as an indicator of N2-fixation by cyanobacterial mats in tropical marshes. Biogeochemistry,67, 353-368.
    Evans R.D.,2001. Physiological mechanisms influencing plant nitrogen isotope compositin. Trends in Plant Science,6(3),121-126.
    Fellerhoff, C., Voss, M., Wantzen, K.M.,2003. Stable carbon and nitrogen isotope signatures of decomposing tropical macrophytes. Aquatic Ecology,37,361-375.
    Fourqurean, J.W., Escorcia, S.P., Anderson, W.T., Anderson, W.T., Zieman, J.C.,2005. Spatial and seasonal variability in elemental content,δ13C,δ15N of Thalassia testudinum from south Florida and its implications for Ecosystem studies. Estuaries,28(3),447-461.
    France, R.L., Schlaepfer, M.A.,2000.13C and 15N depletion in components of a foodweb from an ephemeral boreal wetland compared to boreal lakes:putative evidence for microbial processes. Hydrobiologia,439,1-6.
    Fukuhar, H., Nemoto, F., Takeuchi, Y., Toda, N.,2007. Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan:Analysis of nitrate retention using stable nitrogen isotope ratios. Hydrobiologia,584,49-58.
    Gao, J., Wang, Y., Pan, S., Zhang, R., Li,J., Bai, F.,2008. Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang estuary and its adjacent sea area. J. Geogr. Sci,18,46-58.
    Gao, L., Li, D.J., Ding, P.X.,2008. Nutrient budgets averaged overtidal cycles off the Changjiang (Yangtze River) estuary. Estuarine, Coastal and Science,77,331-336.
    Gao, L., Li, D., Wang, Y., Yu, L., Kong, D., Li, M., Li, Y., Fang, T.,2008. Benthic nutrient fluxes in the intertidal flat within the Changjiang (Yangtze River) Estuary. Chinese Journal of Geochemistry,27(1),58-71.
    Gardner, L.R., Gaines, E.F.,2008. A method of for estimating pore water drainage from marsh soils using rainfall and well records. Estuarine, Coastal and Shelf Science,79,51-58.
    Goni, M.A., Ruttenberg, K.C., Eglinton, T.I.,1998. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta,62(18),3055-3075.
    Gonneea, M.E., Paytan, A., Herrera-Silveira, J.A.,2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science,61,211-227.
    Goodwin, P., Mehta, A. J., Zedler, J. B.,2001 Coastal wetland restoration:An introduction. Journal of Coastal Research,27,1-6.
    Graham, M.C., Eaves, M.A., Farmer, J.G., Dobson, J., Fallick, A.E.,2001. A study of carbon and nitrogen stable isotope and elemental ratios as potential inditacators of source and fate of organic matter in sediments of the Forth Estuary, Scoland. Estuarine, Coastal and Shelf Science,52,375-380.
    Grassoff, K., Kremling, K., Ehrhardt, M.,1999. Methods of seawater analysis(3rd edn.). Wilery-VCH, Weinheim-New York-Chichester-Brisbane-Singapore-Toronto, pp600.
    Greer, K., Stow, D.,2003. Vegetation type conversion in Los Penasquitos Lagoon, California: an examination of the role of watershed urbanization. Environmental Management,31(4),489-503.
    Groenendijk, A.M., Vink-Lieavaart, M.A.,1987. Primary production and biomass on a Dutch salt marsh:emphasis on the belowground component. Vegetatio 70, 21-27.
    Gross, F.M., Hardisky, M.A., Wolf, P.L., Klemas, V.,1991. Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries,14(2),180-191.
    Hacker, S. D., Bertness, M. D.,1995. Morphological and physiological onsequences of a positive plant interaction. Ecology,76,2165-2175.
    Hadwen, W.L., Arthington, A.H.,2007. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent. Estuarine, Coastal and Shelf Science,71,347-358.
    Haines, E.B.,1976. Stable carbon isotope ratios in the biota, soils, and tidal water of a Georgia salt marsh. Estuarine, Coastal and Shelf Science,4,609-616.
    Hamersley, M. R., Howes, B.L.,2002. Control of denitrification in a septage-treating artificial wetland:the dual role of particulate organic carbo. Water Res,36, 4415-4427.
    Harvey, J.W., Odum, W.E.,1990. The influence of tidal marshes on upland grounerwater discharge to estuaries. Biochemistry,10,217-236.
    Hedges, J.I., Parker, P.L.,1976. Land-drived organic matter in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta,40,1019-1029.
    Hou, L.J., Liu, M., Xu, S.Y., Ou, D.N., Lu, J.J., Yu, J., Cheng, S.B., Yang, Y.,2005. The effects of semi-lunar spring and neap tidal change on nutrients cycling in the intertidal sediments of the Yangtze Estuary. Environ. Geol.,48,255-264.
    Jahnke, R., Richards, M., Nelson, J., Robertson, C., Rao, A., Jahnke, D.,2005. Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Continental Shelf Research,25, 1433-1452.
    Jensen, H.S., MccGlathery, K.J, Marino, R., Howarth, R.W.,1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol Ocanogr,43(5),799-810.
    Jiang, L.F., Luo, T.Q., Chen, J.K., Li, B.,2009. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine, Coastal and Shelf Science,81,74-82.
    Jutila, H.,1999. Effect of grazing on the vegetation of shore meadows along the Bothnian Sea, Finland. Plant Ecology,140,77-88.
    Kleyer, M., Feddersen, H., Bockholt, R.,2003. Secondary succession on a high salt marsh at different grazing intensities. Journal of Coastal Conservation,9,123-134.
    Koretsky, C.M., Haveman, M., Cuellar, A., Beuving L., Shattuck, T., Wagner, M., 2008. Influence of Spartina and Juncus on saltmrash sidiments. I.Pore water Geochemistry. Cehmical Geology,255,87-99.
    Krest, J., Moore, W., Gardner, L., and Morris, J.,2000. Marsh nutrient export supplied by groundwater discharge:Evidence from radium measurements. Global Biogeochem. Cycle,14(1),167-176.
    Kroger, R., Moore, M.T., Locke, M.A., Cullum, R.F., Steinriede Jr, R.W., Testa III, S., Bryant, C.T., Cooper, C.M.,2009. Evaluating the influence of wetland vegetation on chemical residence time in Missippi Delta drainage ditches. Agricultural Water Management,96,1175-1179.
    Kuijper, D.P.J., Bakker,J.P.,2003. Large-scale effects of a small herbivore on salt-marsh vegetation succession-A comparative study on three Wadden Sea islands. Journal of Coastal Conservation,9,179-188.
    Kuijper, D.P.J., Dubbeld, J., Bakker, J.P.,2005. Competition between two grass species with and without grazing over a productivity gradient. Plant Ecology,179, 237-246.
    Kunza, A.E., Pennings, S.C.,2008. Patterns of plant diversity in Georgia and Texas salt marshes. Estuaries and Coasts,31,673-681.
    Kuwae, T., Kibe, B., Nakamura, Y.,2003. Effect of emersion and immersion on the porewater mutrient dynaics of an intertidal sandflat in Tokyo Bay. Estuarine, Coastal and Shelf Science,57,929-940.
    Kwak, T.J., Zedler, J.B.,1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia,110,262-277.
    Laegdsgaard, P.,2006. Ecology, disturbance and restoration of coastal saltmarsh in Australia: a reiew. Wetlands Ecology and Management,14,379-399.
    Lallier-Verge's, E., Perrussel, B.P., Disnar, J., Baltzer, F.,1998. Relationships between environmental conditions and the diagenetic evolution of organic matter derived from higher plants in a modern mangrove swamp system (Guadeloupe, French West Indies). Organic Geochemistry,29,1663-1686.
    Lamb, A.L., Vane, C.H., Wilson, G.P., Rees, J.G., Moss-Hayes, V.L.,2007. Assessing δ13C and C/N ratios from organic material in archived cores as Hoelcene sea level and palaeoenvironmental indicators in the Humber Estuary, UK. Marine Geology, 244,109-128.
    Lefeuvre, J.C., Bouchard, V., Feuntern, E., Grare, S., Laffaille, P., Radureau, A.,2000. European salt marshes diversity and functioning:The case study of the Mont Saint-Michel bay, France. Wetlands Ecology and Management,8,147-161.
    Lee, J.S., IHM, B.S.,2004. Growth strategies of four salt marsh plants on Mankyung River estuary in Korea. Ecological Research,19,37-42.
    Leendertse, P.C., Roozen, A.J.M., Rozema, J.,1997. Long-term changes (1953-1990) in the salt marsh vegetation at the Boschplaat on Terschelling in relation ot sedimentation and flooding. Plant Ecology,132,49-58.
    Leonard, L.A, Luther, M.E.,1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography,40,1474-1484.
    Lepoint, G, Dauby, P., Gobert, S.,2004. Applications of C and N stable isotopes to ecological and environmental studies in seagerass ecosystems. Marine Pollution Bulletin,49,887-891.
    Levine, J.M., Brewer, J.S., Bertness, M.P.,1998. Nutrients competition and plant zonaion in a New England salt marsh. Journal of Ecology,86,285-292.
    Li, B., Liao, G., Zhang, X., Chen, H., Wang, Q., Chen, Z., Gan, X., Wu, J., Zhao, B., Ma, Z., Cheng, X., Jiang, L., Chen, J.,2009. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects. Ecological Engineering,35,511-520
    Li, D., Daler, D.,2004. Ocean pollution from Land-based sources:East China Sea, China. AMBIO,33(1-2),107-113.
    Li, X.,2000. Purification function of wetlands:Spatial modeling and pattern analysis of nutrient reduction in the Liaohe Delta. Doctoral Thesis Wageningen University-with ref.-with summary in Dutch and Chinses.pp9.
    Liao, C., Luo, Y., Jiang, L., Zhou, X., Wu, X., Fang, C., Chen, J., Li, B., 2007.Invasion of Spartina alterniflor enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems,10,1351-1361.
    Lilleb(?), A.I., Flindt, M.R., Pardal, M.A., Marques, J.C.,2006. The effect of Zostera noltii, Spartina maritima and Scirpus maritimus on sediment pore-water profiles in a temperate intertidal estuary. Hydrobiologia,555,175-183.
    Lindau, C.W., Delaune, R.D., Vegetative response of Sagittaria lancifolia to buring of applied crude oil. Water, Air, and Soil Pollution,121,161-172.
    Liu, M., Yang, Y., Xu, S., Liu, H., Hou, L., Ou, D., Liu, Q., Cheng, S.,2006a. HCHs and DDTs in salt marsh plants (Scirpus) from the Yangtze estuary and nearby coastal areas, China, Chemosphere,62,440-448.
    Liu, M., Hou, L.J., Xu, S.Y., Ou, D.N., Yang, Y, Yu, J., Wang, Q.,2006b. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Marine Pollution Bulletin,52,1625-1633.
    Liu, X., Yu, Z., Song, X., Cao, X.,2009. The nitrogen isotopic composition of dissolved nitrate in the Yangtze River (Changjiang) estuary, China. Estuarine, Coastal and Shelf Science,85,641-650.
    LOICZ,2005. Science plan and implementation strategry (IGBP report 51/IHDP report 18), from:www.loicz.org.
    Longhi, D., Bartoli, M., Viaroli, P.,2008. Decomposition of four macrophytes in wetland sediment: organic matter and nutrient decay and associated benthic processes. Aquatic Botany,89,303-310.
    Lund, L.J., Home, A.J., Williams A.E.,2000. Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios. Ecological Engineering, 14:67-76.
    Ma, Z., Li, B., Jing, K., Tang, S., Chen, J.,2004. Are artificial wetlands good alternatives to natural wetland for waterbirds?-A case study on Chongming Island, China. Biodiversity and Conservation,13,333-350.
    McArthur, J.M., Tyson, R.V., Thompson, J. Mattey, D.,1992. Early diagenesis of marine organic matter: alteration of the carbon isotopic composition. Marine Geology,105,51-61.
    Madureira, M.J., Vale, C., Simoes Goncalves, M.L.,1994. Effect of plants on sulphur geochemistry in the Tagus salt-marsh sediments. Marine Chemistry,58,27-37.
    Magni, P., Montani, S.,2006. Seasonal patterns of pore-water nutrient, benthic chlorophyll a and sedimentary AVS in a macrobenthos-rich tidal flat. Hydrobiologia,571,297-311.
    Maksymowska, D., Richard, P., Piekarkek-Jankowska, H., Riera, P.,2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuarine, coastal and Shelf Science,51,585-598.
    Marchand, C., Lallier-Verges, E., Baltzer, F.,2003. The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana. Estuarine, Coastal and Shelf Science,56,119-130.
    Maricle, B.R., Lee, R.W.,2002. Aerenchy development and oxygen trandsport in the estuarine cordgrasses Spartina alterniflora ans S. anglica. Aquatic Botany,74, 109-120.
    Marshall, J.D., Books, R., Lajtha, K.,2007. Source of variation in the stable isotopic composition of plants. In:Michener R., Lajtha, K.(editors), Stable isotopes in Ecology and Environmental Science(2nd edition). Blackwell publishin Ltd. pp22-60.
    Martinetto, P., Teichberg, M., Valiela, I.,2006. Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Walquoit Bay, Massachusetts, USA. Marine Ecology Progress Series,307,37-48.
    McCelland, J.W., Valiela, I.,1998. Linking nitrogen in estuarine producers to land-derived sources. Limnol. Oceanogr.43(4),577-585.
    Meyerson, L.A., Vogt,K.A., Chambers, R.M.,2000. Linking the success of Phragmites to the alteration of ecosystem nutrient cycles. In:Weinstein, M.P., Kreeger, Daniel A, Concepts and controversies in tidal marsh ecology. Spinger Netherlands, pp827-844.
    McNaughton, S.J., Banyikwa, F.F., McNaughton, M.M.,1997. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science,278,1798-1800.
    Middelburg, J.J., Nieuwenhuize, J., Lubberts, R.K., van de Plassche, O.,1997. Organic Carbon Isotope Systematics of Coastal Marshes. Estuarine, Coastal and Shelf Science,45,681-687.
    Middelburg, J.J., Nieuwenhuize, J.,2001. Nitrogen isotope tracing of dissolved inorganic nitrogen behaviour in tidal estuaries. Estuarine, Coastal and Shelf Science,53,385-391.
    Middelburg, J.J. Herman, P.M.J.,2007. Organic matter processing in tidal estuaries. Marine Chemistry,106,127-147.
    Milliman, J.D., Xie, Q.C., Yang, Z.S.,1984. Transport of particulate organic carbon and nitrogen from the Yangtze river to the ocean. American Journal of Science, 284,824-834.
    Millennium Ecosystem Assessment,2005. Ecosystems and human well-being: wetland and water synthesis. World resource institute, Washington, DC.
    Mitsch, W.J., Gosselink, J.G,2000. Wetlands (third edition). John Wiley 和 Sons, Inc., New York,35pp.
    Moller, I., Spencer, T., French, J.R., Leggett, D.J., Dixon, M.,1999. Wave transformation over saltmarshes:A field and numerical modeling study from North Norfolk, England. Estuary Coastal and Shelf Science,49,411-426.
    Muller, B., Berg, M., Yao, Z.P., Zhang, X.F., Wang, D., Pfluger, A.,2008. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Science of The Total Environment,402,232-247.
    Nedwell, D.B., Trimmer, M.,1996. Nitrogen fluxes through the upper estuary of the Greate Ouse, England: the role of the bottom sediments. Marine Ecology Progress Series,142,273-286.
    Odum, E.P.,1980. The suatus of three ecosystem-level hypothese regarding salt marsh estuaries:tidal subsidy, outwelling detritus-based food chains. In:Kennedy, V.S., Estuarine Perspectives. Academic Press, New York, pp485-495.
    Odum, E.P.,2002. Tidal Marshes as outwelling/pulsing system. In:Weinstein, M.P., Kreeger, D.A., Concepts and Controversies in Tidal Marsh Ecology. Springer Netherlands, pp3-7.
    Ogilvie, B., Nedwell, D.B., Harrison, R.M., Robinson, Q., Sage, A.,1997. High nitrate, muddy estuaries as nitrogen sinks:the nitrogen budget of the Colne River estuary (United Kingdom). Marine Ecology Progress Series,150,217-228.
    Olff, H., Bakker, J.P., Fresco, L.F.M.,1988. The effect of fluctuations in tidal inundation frequency on a salt-marsh vegetation. Vegetatio,78,13-19.
    Parker, P.L.,1964. The biogeochemistry of the stable isotopes of carbon in a marine bay. Geochim. Cosmochim. Acta,28,1155-1164.
    Parson, T.R., Maita, Y., Lalli, C.M.,1984. A manual of chemical and biological method for seawater analysis. Pergamon Press, Oxford, pp173.
    Pennings, S.G., Stanton, L.E., Brewer, J.S.,2002. Nutrient Effects on the Composition of salt marsh plant communities along the Southern Atlantic and gulf coasts of United States. Estuaries,25(6A),1164-1173.
    Persic, A.P., Roche, H., Ramade, F.,2004. Stable carbon and nitrogen isotope quantitative structural assessment of dominant species from the Vaccares lagoon trophic web (Camargue Biosphere Reserve, France). Estuarine, Coastal and Shelf Science,60,261-272.
    Pielou, E.C., Routledge, R.D.,1976. Salt marsh vegetation: latitudinal gradients in the zonation partterns. Oecologia,24,311-321.
    Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O. M., Minami, H., Sakagami, H.,2007. Chemical composition of pore waters of bottom sediments in different Baikal basins. Russian Geology and Geophysics,48,886-900.
    Pruell, R.L., Taplin, B.K., Lake, J.L., Jayaraman, S.,2006. Nitrogen isotope ratios in estuarine biota collected along a nutrient gradient in Narragansett Bay, Rhode Island, USA. Marine Pollution Bulletin,52,612-620.
    Quan, W.M., Han, J.D., Shen, A.L., Ping, X.Y., Qian, P.L., Li, C.J., Shi, L.Y., chen, Y.Q.,2007. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental research,64,21-37.
    Redfield, A.C., Ketchum, B.H., Richards, F.A.,1963. The influence of organisms on the composition of seawater. In:Hill, M. N., The Sea. John Wiley, New York,2, 26-77.
    Robinson, D.,2001.δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution,16(3),153-162.
    Rogers, K.M.,2003. Stable carbon and nitrogen isotopic signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Marine pollution Bulletin,46,821-827.
    Sagemann, J., Skowronek, F., Dahmke, A., Schulz, H.D.,1996. Pore-water response oon seasonal environmental changes intertidal sediments of the Weser Estuary, Germany. Environmental Geology,27,362-369.
    Sakamaki, T., Nishimura,0., Sudo, R.,2006. Tidal time-scale variation in nutrient flux across the sediment-water interface of an estuarine tidal flat. Estuarine, Coastal and Shelf Science,67,653-663.
    Sampaio, L., Freitas, R., Maguas, C., Rodrigues, A., Quintino, V.,2009. Coastal sediments under the influence of multiple organic enrichment sources:an evaluation suing carbon and nitrogen stable isotopes. Marine, Pollution Bulletin, doi:10.1016/j.marpolbul.2009.09.008.
    Sanderson, E.W., Ustin, S.L., Foin, T.C.,2000. The influence of tidal channels on the distribution of salt marsh plant species in Petaluma marsh, CA, USA. Plant Ecology,146,29-41.
    Sanger, D.M., Holland, A.F., Gainey, C.,2004. Cumulative impacts of dock shading on Spartina alterniflora in South Carolina Estuaries. Environmental Management, 33(5),741-748.
    Saunders, C.J., Megonigal, J.P., Reynolds, J.F.,2006. Comparison of belowground biomass in C3- and C4-dominated mixed communities in a Chasapeake Bay brackish marsh. Plant and Soil,280,305-322.
    Schulz, H.D.,2006. Quantification of early diagenesis:Dissolved constituents in pore water and signals in the solid phase. In Schulz, H.D., Zabel, M., Marine Geochemistry (Second edition). Berlin, Springer Berlin Heidelberg, pp 73-124.
    Scudlark, J.R., Church, T.M.,1989. The sedimentary flux of nutrients at a Delaware salt marsh site:A geochemical perspective. Biogeochemistry,7,55-75.
    Sebilo, M., Billen, G, Mayer, B., Billiou, D., Grably, M., Gamier, J., Mariotti, A., 2006. Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems,9,564-577.
    Shearer, G, Kohl, D.H.,1988. Estimates of N2 fixation in ecosystems:the nees for and basis of the 15N natural abundance method. In Rundel, P.W., Ehleringer, J.R., Nagy, K.A.(editor). Stable isotopes in ecological research. New York: Springer-Verlag New York Inc., pp342-374.
    Shumway, S. W., Bertness, M. D.,1992. Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia,92,490-497.
    Silvestri, S., Defina, A., Marani, M.,2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science,62,119-130.
    Simas, T.C., Ferreira, J.G,2007. Nutrient enrichment and the role of salt msrshes in the Tagus estuary (Portugal). Estuarine, Coastal and Shelf Science,75,393-407.
    Soto-Jimenez, M.F., Osuna, F., Bojorquez-Leyva,2003a. Nutrient cycling at the sediment-water interface and in sediments at Chiricahueto marsh:a subtropical ecosystem associated with agricultural land uses. Water Research,37,719-728.
    Soto-Jimenez, M.F., Paez-Osuna, F., Ruiz-Femandez, A.C.,2003b. Organic matter and nutrients in an altered subtropical marsh system, Chiricahueto, NW Mexico. Environmental Geology,43,913-921.
    Sousa, A.I., Lilleb(?), A.I., Cacador, I., Paral, M.A.,2008. Contribution of Spatina maritime to the reduction of eutrophication. Environment Pollution,156, 628-635.
    Sousa, A.I., Lillebo, A.I., Pardal, M.A., Cacador, I.,2010. Productivity and nutrient cycling in salt marshes:Contribution to ecosystem health. Estuarine, Coastal and Shelf Science,87,640-646.
    Stevens, R.E., Hedges, R.E.M.,2004. Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen,40,000 BP-present: palaoclimatic interpretations. Quaternary Science Reviews,23,977-991.
    Struyf, E, Dausse, A., Van Damme, S., Bal, K., Gribsholt, B., Boschker, H.T.S., Middelburg, J.J., Meire, P.,2006. Tidal marshes and biogenic silica recycling at the land-sea interface. Limnol Oceanogr,51(2),838-846.
    Stuck, U., Emeis, K.C., Voss, M., Christiansen, C., Kunzendorf, H.,2000. Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary organic matter. Marine Geology,164,157-171.
    Sulzman, E.W.,2007. Stable isotope chemistry and measurement:a primer. In: Michener R., Lajtha, K.(editors), Stable isotopes in Ecology and Environmental Science(2nd edition). Blackwell publishing Ltd. pp1-21.
    Sweeney, R.E., Kaplan, I.R.,1980. Natural abundances of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Marine Chemistry,9, 81-94.
    Tan, F.C., Cai, D.L., Edmond, J.M.,1991. Carbon isotope geochemistry of the Yangtze Estuary, Estuarine, Coastal and Shelf Science,38,219-233.
    Teal, J.M., Howes, B.L.,2002. Salt marsh values:ret rospection from the end of the century. In:Weinstein, M.P., Kreeger, D.A., Concepts and Controversies in Tidal Marsh Ecology. Springer Netherlands, pp9-19.
    Tolley, P. M., Christian, R. R.,1999. Effects of increased inudation and wrack deposition on a high salt marsh plant community. Estuaries,22,944-954.
    Triska, F.J., Pringle, C.M., Duff, J.H., Avanzino, R.J., Ramirez, A., Ardon, M., Jackman, A.P.,2006. Soluble reactive phosphorus trandport and retention in tropical, rainforest streams draining a volcanic and geothermally active landcape in Costa Rica: Long-term concentration pattern, pore water environment and response to ENSO events. Biogeochemistry,81,131-143.
    Turner, R.E., Swenson, E.M., Milan, C.S., Lee, J.M., Oswald, T.A.,2004. Below-ground biomass in healthy and impaired salt marshes. Ecological Research,19, 29-35.
    Ullman, W.J., Aller, R. C.1982. Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography,27,552-556.
    Valiela, I., Teal, J.M.,1979. The nitrogen budget of a salt marsh ecosystem. Nature, 280,652-656.
    Van Damme, S., Dehairs, F., Tackx, M., Beauchard, O., Struyf, E., Gribsholt, B., Van Cleemput, O., Meire, P.,2009. Tidal exchange between a freshwater tidal marsh and an impacted estuary:the Scheldt estuary, Belgium. Estuar Coast Shelf Sci,85, 197-207.
    van Hulzen, J.B., van Soelen, J., Bouma, T.J.,2007. Morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineer Spartina anglica (common cordgrass). Estuaries and Coasts,30(1),3-11.
    van Wijnen, H.J., Bakker, J.P.,1997. Nitrogen accumulation and plant species replacement in three salt marsh systems in the Wadden Sea. Journal of Coastal Conservation,3,19-26
    Voβ, M., Struck, U.,1997. Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Marine Chemistry,59,35-49.
    Voss, M., Larsen, B., Leivuori, M., Vallius, H.,2000. Stable isotope signals of eutrophication in Baltic Sea sediments. Journal of Marine Systems,25,287-298.
    Wada, E., Hattori, A.,1991. Nitrogen in the sea:forms, abundance, and rate processes. CRC Press, Boca raton, FL.
    Wainight, S.C., Weinstein, N.P., Able, K.W., Currin, C.A.,2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmites australis to brackish-marsh food webs. Marine Ecology Progress Series,200,77-91.
    Waldron, S., Tatner, P., Jack, I., Arnott, C.,2001. The impact of sewage discharge in a marine embayment:a stable isotope reconnaissance, Estuarine, Coastal and Shelf Science,52,111-115.
    Wan, S., Qin, P., Liu, J., Zhou, H.,2009. The positive and negative effects of exotic Spartina alterniflora in China, Ecological Engineering,35,444-452.
    Wang, B., Wang, X., Zhan, R.,2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science,58,127-136.
    Wang, D., Chen, Z., Wang, J., Xu, S., Yang, H., Chen, H., Yang, L., Hu, L.,2007a. Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary. Estuarine, Coastal and Shelf Science,73,43-53.
    Wang, D., Chen, Z., Xu, S., Da, L., Bi, C., Wang, J.,2007b, Denitrification in tidal flat sediment, Yangtze estuary. Science in China Series B:Chemistry,50(6),812-820.
    Wang, L., D'Odorico, P., Okin, G.S., Macko, S.A.,2009. Isotope composition and anion chemistry of soil profiles along the Kalahari Transect. Journal of Arid Environments,73,480-486.
    Wang, Q., Wang, C.H., Zhao, B., Ma, Z.J., Luo, Y.Q., Chen, J.K., Li, B.,2006. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invisibility of habitats. Biological Invasions,8,1547-1560.
    Wang, X C, Chen R F, Berry A.,2003. Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA):long-chain n-alkanes and stable carbon isotope compositions. Estuarine, Coastal and Shelf Science,58,917-928.
    Warren, R.S., Fell, P.E., Grimsby, J.L., Buck, E.L., Rilling, G.C., Fertik, R.A.,2001. Rate, patterns, and impacts of Phragmites australis expansion and effects of experimental control on vegetation, macroinvertebrates and fish within tidelands of the Lower Connecticut Rive. Estuaries,24(1),90-107.
    Watts, A.W., Ballestero, T.P., Gardner, K.H.,2006. Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora growth in contaminated sediments. Chemosphere,62,1253-1260.
    Wei, T., Chen, Z., duan, L., Gu, J., Saito, Y., Zhang, W., Wang, Y., Kanai, Y.,2007. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science,71,37-46.
    Weiss, J.S., Weiss, P.,2004. Metal uptake, trandport and release by wetland plants: implications for phytoremediation and restoration. Environment international,30, 685-700.
    Weis, P., Windham, L., Burke, D.J., Weis, J.S.,2002. Release into the environment of metals two vascular salt marsh plants. Marine Environmental Research,54, 325-329.
    West, J.B., Bowen, GJ., Cerling, T.E., Ehleringer, J.R.,2006. Stable isotopes as one of nature's ecological recorders. Trends in Ecology and Evolution,21(7),408-414
    White, D.S., Howes, B.L.,1994. Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnology and Oceanography,39, 1878-1892.
    Whritenour, C., Schulz, K.L.,2007. Ecological stoichiometry of the salt marsh:Si:N ratios and effects on the algal community. Section Ⅱ:19pp. in Waldman JR, Nieder WC (eds), Final Reports of the Tibor T. Polgar Fellowship Program,2006. Hudson River Foundation.
    Wigand, C., McKinney, R.A., Charpentier, M.A., chintala, M.M., Thursby, G.B.,2003. Relationships of nitrogen loadings, Residential development and physical characteristics with plant structure in New England salt marshes. Estuaries,26(6), 1494-1504.
    Wigand, C., Mickinney, R.A., Cole, M.L., Thursby, G.B., Cummings, I,2007. Varying stable nitrogen isotope ratios of different coastal marsh plants and their relationships with wastewater nitrogen and land use in New England, USA. Environ. Monit. Assess,131,71-81.
    Wilson, GP., Lamb, A.L., Len, M.L., Gonzalez, S., Huddart, D.,2005. Variability of organic δ13C and C/N in the Mersey Estuary, UK., and its implications for ses-level reconstruction studies, Estuarine, Coastal and Shelf Science,64, 685-698.
    Windham, L., and Ehrenfeld, J.G.,2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecological Applications, 13(4),883-897.
    Winter, P.E.D., Schlacher, T.A., Baird, D.,1996. Carbon flux between an estuary and the ocean:a case for outwelling. Hydrobiologia,337,123-132.
    Wolf, A.F., Baron, J.S., Cornett, R.J.,2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range(USA). Journal of Paleolimnology,25,1-7.
    Wooller, M., Smallwood, B., Jacobson, M., Fogel, M.,2003. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa(L.) (white mangrove) from Florida and Belize:implication for trophic level studies. Hydrobiologia,499, 13-23.
    Wu, Y., Zhang, J., Li, D.J., Wei, H., Lu, R.X.,2003. Isotope variability of particulae organic matter at the PN in the East China Sea. Biogeochemistry,65,31-49.
    Wu, Y., Zhang, J., Liu, S.M., Zhang, Z.F.,Yao, Q.Z., Hong, G.H., Cooper, L.,2007a. Source and distribution of carbon within the Yangtze River system. Estuarine, Coastal and Shelf Science,71,13-225.
    Wu, Y., Dittmar, T., Ludwichowski, K.U., Kattner, G., Zhang, J., Zhu, Z.Y., Koch, B.P.,2007b. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Marine Chemistry,107,367-377.
    Wu, Y.T., Wang, C.H., Zhang, X., Zhao, B., Jiang, L., Chen, J., Li, B.,2009. Effects of saltmarsh invasion Spartina alterniflor on arthropod community structure and diets. Biol Invasions,11,635-649.
    Yamamuro. M., Kanai, Y.,2005. A 200-year record of natural and anthrophogenic changes in water quality from coastal lagoon ssediments of Lake Shinji, Japan. Chemical Geology,218,51-61.
    Yang, S.L.,1998. The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine-grained sediment in the Yangtze Estuary. Estuarine, Coastal and Shelf Science,47,227-233.
    Yang, S.L., Eisma, D., Ding, P.X.,2000. Sedimentary processes on an estuarine marsh island within the turbidity maximum zone of the Yangtze River mouth. Geo-Marine Letters,20,87-92.
    Yang, S.L., Belkin, I.M., Belkina, A.I., Zhao, Q.Y., Zhu, J., Ding, P.X.,2003. Delta response to decline in sediment supply from the Yangtze River:evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science,57,689-699.
    Yang, S.L., Li, H., Ysebaert, T., Bouma, T.J., Zhang, W.X., Wang, Y.Y., Li, P., Li. M., Ding, P.X.,2008. Spatial and temporal variations in sediment grain size in tidal marshes, Yangtze Delta:On the role of physical and biotic controls. Estuarine, Coastal and Shelf Science,77,657-671.
    Yang, Z.S., Wang, H., Saito, Y., Milliman, J.D., Xu, K., Qiao, S., Shi, S.,2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea:the past 55 years and after the Three Gorges Dam. Water Resources Research,42:W04407, doi:10.1029/2005WR003970.
    Yin, K., Harrison, P.J.,2000. Influences of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat. Marine Ecology Progress Series,196,75-85.
    Yoneyama, T., Muraoka, T., Murakami, T., Boonkerd, N.,1993. Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil,153(2),296-304.
    Zedler, J.B., Covin, J., Nordby, C., Williams, P., Boland, J.,1986. Catastrophic events reveal the dynamic nature of salt-marsh vegetation in Sourthern California. Estuaries,9(1),75-80.
    Zedler, J.B., Callaway, J.C., Desmond, J.S., Vivian-Smith, G, Williams, G.D., Sullivan, G., Brewster, A.E., Bradshaw, B.K.,1999. Californian salt-marsh vegetation:An improved model of spatial pattern. Ecosystems,2,19-35.
    Zhang, J.,1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research,16,1023-1045.
    Zhang, J., Wu, Y, Jennerjahn, T.C., Ittekkot, V., He, Q.,2007. Distribution of organic matter in the Changjiang(Yangtxe River) Estuary and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics. Marine Chemistry,106(1-2),111-126.
    Zhou, H., Liu, J., Zhou, J., Qin, P.,2008. Effects of an alien species Spartina alterniflor Loisel on biogeochemical processes of intertidal ecosystem in the Jiangsu coastal region, China. Pedosphere,18(1),77-85.
    Zhou, J., Wu, Y., Zhang, J., et al.,2006. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere,65,310-317.
    Zhou, J., Wu, Y, Kang, Q., Zhang, J.,2007. Spatial variations of carbon, nitrogen, phosphoprous and sulfur in the salt marsh sediments of the YanBFze Estuary in China. Estuarine, Coastal and Shelf Science,71,47-59.
    Zhou, M., Shen, Z., Yu, R.,2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research,28,1483-1489.
    蔡德陵,张淑芳,唐启升,孙耀,2003.鲈鱼新陈代谢过程中的碳氮稳定同位素分馏作用.海洋科学进展,21(3),308-317.
    蔡德陵,李红燕,周卫健,刘卫国,曹蕴宁,2004.无定河流碳氮稳定同位素研究.地球化学,33(6),619-626.
    蔡德陵,李红燕,唐启升,孙耀,2005.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果.中国科学C辑:生命科学,35(2),123-130.
    陈吉余主编,1988.上海高海岸带和海涂资源综合调查报告.上海:上海科学技术出版社.
    陈庆强,周菊珍,孟翊,胡克林,顾靖华,2007a.长江口盐沼滩面演化的有机碳累积效应.自然科学进展,17(5),614-623.
    陈庆强,周菊珍,孟翊,顾靖华,胡克林,2007b.长江口盐沼土壤有机质更新特征的潮面趋势.地理学报,62(1),72-80.
    陈庆强,孟翊,周菊珍,顾靖华,胡克林,2007c.长江口盐沼滩面演化的沉积和地球化学特征.海洋学报,29(6),45-52.
    陈振楼,王东启,许世远,张兴正,刘杰,2005.长江口潮滩沉积物-水界面无机氮交换通量.地理学报,60,328-336.
    董厚德,全奎国,邵成,陈中林,1995.辽河河口湿地自然保护区植物群落生态的研究.应用生态学报,6(2),190-195.
    杜景龙,姜俐平,杨世伦,2007.长江口横沙东滩近30年来自然演变及工程影响的GIS分析.海洋通报,26(5),43-48.
    高建华,杨桂山,欧维新,2006.苏北潮滩湿地植被对沉积N、P含量的影响.地理科学,26(2),224-230.
    高建华,汪亚平,潘少明,张瑞,李军,白风龙,2007.长江口外海域沉积物中有机物的来源及分布.地理学报,62(9),981-991.
    高磊,2006.长江口潮滩湿地主要生源要素的动力学过程研究.华东师范大学博士论文.
    高占国,张利权,2006,.应用间接排序识别湿地植被的光谱特征:以崇明东滩为例.植物生态学报,30(2),252-260.
    葛晨东,王颖,Pedersen,T.F., Slaymaker,O.,2007海南岛万泉河口沉积物有机碳、氮同位素的特征及其环境意义.第四纪研究,27(5),845-852.
    龚士良,杨世伦,2007.长江口口岸带冲淤及后备土地资源的沉降效应—以上海崇明东滩为例.水文,27(5),78-82.
    顾宏堪,熊孝先,刘明星,李延,1981.长江口附近氮的地球化学Ⅰ.长江口附近海水中的硝酸盐.山东海洋学院学报,11(4),37-46.
    郭旭鹏,李忠义,金显仕,戴芳群,2007.采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究.海洋学报,29(2),98-104.
    黄华梅,2009.上海滩涂盐沼植被的分布格局和时空动态研究.博士论文,上海:华东师范大学.
    黄华梅,张利权,高占国,2005.上海滩涂植被资源遥感分析.生态学报,25(10),2686-2693.
    黄华梅,张利权,袁琳,2007.崇明东滩自然保护区盐沼植被的时空动态[J].生态学报,227(10),4166-4172.
    李贺鹏,张利权,王东辉,2006.上海地区外来种互花米草的分布现状.生物多样 性,14(2),114-120.
    李华,杨世伦,2007.潮间带盐沼植物对海岸沉积动力过程影响的研究进展.地球科学进展,22(6),583-591.
    李华,杨世伦,Ysebaert, T.,王元叶,李鹏,张文祥,2008.长江口潮间带淤泥沉积物粒径空间分异机制.中国环境科学,28(2),178-182.
    李忠义,金显仕,庄志猛,苏永全,唐启升,2007.南黄海春季鳀与赤鼻棱鳀的食物竞争.中国水产科学,14(4),630-636.
    林雪玲,2008.广州市湿地植物群落特征与分布演替分析.防护林科技,4,115-118.
    刘敏,侯立军,许世远,等2001.河口海岸潮滩沉积物-水界面N、P的扩散通量.海洋环境科学,20(3),19-23.
    刘学炎,肖化云,刘丛强,李友谊,2007.碳氮稳定同位素指示苔藓生境特征以及树冠对大气氮沉降的吸收.地球化学,36(3),286-294.
    刘学炎,肖化云,刘丛强,肖红伟,2008.贵阳地区主要大气氮源的沉降机制与分布:基于石生苔藓氮含量和氮同位素的证据.地球化学,37(5),455-461.
    茅志昌,沈焕庭,徐彭令,2000.长江河口咸潮入侵规律及淡水资源利用.地理学报,55(2),243-250.
    茅志昌,郭建强,虞志英,2008.杭州湾北岸岸滩冲淤分析.海洋工程,26(1),108-113.
    茅志昌,2009.滩涂湿地资源的动态变化.In:陈吉余主编,21世纪的长江河口初探.北京:海洋出版社.pp 96-102
    梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J].应用生态学报,2007,18(4):933-936.
    全为民,李春鞠,沈盎绿,钱蓓蕾,平仙隐,韩金娣,施利燕,陈亚瞿,2006.崇明东滩湿地营养盐与重金属的分布与累积.生态学报,26(10),3324-3331.
    全为民,沈盎绿,钱蓓蕾,平先隐,韩金娣,李春鞠,施利燕,陈亚瞿,2007a.长江口盐沼植物对营养盐和重金属的吸收、分布与滞留研究.海洋环境科学,26(1),14-18.
    全为民,2007b.长江口盐沼湿地食物网的初步研究:稳定同位素分析.复旦大学博士论文.pp29-44.
    桑永尧,虞志英,金寥,2003.长江河口横沙东滩自然演变及工程影响.东海海洋,21(3),14-23.
    上海市海洋局,2007.2006年上海市海洋环境质量公报-陆源污染入海状况,http://www.eastsea.gov.cn/Module/Show.aspx?id=5197.
    商栩,管卫兵,张国森,张经,2009.互花米草入侵对河口盐沼湿地食物网的影响.海洋学报,31(1),132-142.
    沈焕庭,朱建荣,1999.我国海岸带陆海相互作用研究。海洋通报,18(6),11-17.
    沈焕庭等,2001.长江河口物质通量.北京:海洋出版社.pp 42-118
    沈永明,曾华,王辉,刘泳梅,陈子玉,2005.江苏典型淤长岸段潮滩盐生植被及其土壤肥力特征.生态学报,25(1),1-6.
    沈志良,刘群,张淑美,苗辉,张平,2001.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼,32(5),663-671.
    宋要伟,李明财,李来兴,易现峰,张晓爱,2007.高寒草甸消费者种群稳定碳、氮同位素组成的海拔分异.动物学杂志,26(1),40-45.
    唐廷贵,张万钧,2003.论中国海岸带大米草生态工程效益与生态入侵.中国工程科学,5(3),15-20.
    王东启,陈振楼,许世远,达良俊,毕春娟,王军,2007.长江口潮滩沉积物反硝化作用及其对时空变化特征.中国科学B辑:化学,37(6),604-611.
    王卿,2007.长江口盐沼植物群落分布动态及互花米草入侵的影响.博士论文,上海:复旦大学.
    王治祯,柏景方,2007.灰色系统及模糊数学在环境保护中的应用.哈尔滨为业大学出版社.
    吴登定,姜月华,贾军远,蔡鹤生,2006.运用氮、氧同位素技术判别常州地区地下水氮污染源.水文地质工程地质,3,11-15.
    吴敬禄,林琳,刘建军,高光,2005.太湖沉积物碳氮同位素组成特征与环境意义.海洋地质与第四纪地质,25(2),25-30.
    吴莹,张经,张再峰,任景玲,曹建平,2002.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼,33(5),546-552.
    谢世禄,2000.杭州湾北岸(上海段)岸滩保护和开发研究(续一).上海水务,2,19-23.
    邢光熹,曹亚澄,施书莲,孙国庆,杜丽涓,朱建国,2001.太湖地区水体氮的污染源和反硝化.中国科学(B辑),录31(2),130-137.
    阎理钦,王森林,郭英姿,王金秀,2006.山东渤海湾滨海湿地植被组成优势种分析. 山东林业科技,4,45-46.
    闫芊,何文珊,陆健健,2006.崇明东滩湿地植被演替过程中生物量与氮含量的时空变化,生态学杂志,25(9),1019-1023.
    闫芊,陆健健,何文珊,2007.崇明东滩湿地高等植被演替特征.应用生态学报,18(5),1097-1101.
    杨世伦,徐海根,1994.长江口长兴、横沙岛潮滩沉积特征及其影响机制.地理学报,发行49(5),449-456.
    杨世伦,时钟,赵庆英,2001.长江口潮沼植物对动力沉积过程的影响.海洋学报,23(4),75-80.
    杨世伦,2003.海岸环境和地貌过程导论.北京:海洋出版社.
    于砚民,2000.长江口地区湿地生态环境调查与保护对策.首都师范大学学报(自然科学版),21(3),81-86.
    袁兴中,陆健健,2002a.长江口潮滩湿地大型底栖动物群落的生态学特征.长江流域资源与环境,11(5),414-450.
    袁兴中,陆健健,刘红,2002b.河口盐沼植物对大型底栖动物群落的影响.生态学报,22(3),326-333.
    张翠云,王昭,程旭学,2004.张掖市地下水硝酸盐污染源的氮同位素研究.干旱区资源与环境,18(1),79-85.
    赵常青,茅志昌,虞志英,徐海根,李九发,2008.长江口崇明东滩冲淤演变分析.海洋湖沼通报,3,27-34.
    赵建春,戴志军,李九发,2008.强潮海湾近岸表层沉积物时空分分布特征及水动力响应—以杭州湾北岸为例.沉积学报,26(6),1043-1051.
    中国湿地植被编辑委员会编著,1999.中国湿地植被.北京:科学出版社.
    庄武艺,谢佩尔,1991.海草对潮滩沉积作用的影响.海洋学报,13(2),230-239.
    朱鸣鹤,丁永生,郑道昌,陶平,吉云秀,公维民,丁德文,2005.潮滩盐沼植物翅碱蓬对常见重金属的累积吸收及其机制.环境污染与防治,27(2),84-87.
    朱鸣鹤,丁永生,方飚雄,丁德文,2009.盐沼植物翅碱蓬对沉积物中磷环境化学行为影响.海洋环境科学,28(3),275-278.
    周俊丽,吴莹,张经,孙承兴,2006.长江口潮滩先峰植物藨草腐烂分解过程研究.海洋科学进展,24(1),44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700