用户名: 密码: 验证码:
黄土丘陵沟壑区生态恢复背景下土地利用变化对河川径流泥沙影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是我国水土流失最严重的地区,特别是黄土丘陵沟壑区,严重的水土流使得原本十分脆弱生态环境更加恶化,制约着当地生态和社会经济的可持续发展。本论文以黄土丘陵沟壑区典型流域——无定河流域、延河流域、清涧河流域作为研究对象,基于各流流域水文站长期观测所得的水文资料(1960-2009年),结合不同时期的土地利用数据(1985年、1995年、2000年和2008年),运用数理统计分析和GIS与RS空间分析等技术,借助景观生态学、数量生态学方法,以定性描述与定量分析相结合的方法,对黄土丘陵沟壑区无定河、延河、清涧河流域径流和泥沙特性进行时空分析总结;同时以黄土高原生态恢复为背景,分析了流域尺度上土地利用动态转移和土地利用景观格局时空演变;在此基础上进一步探讨生态恢复背景下土地利用格局演变对径流泥沙过程变化的影响,揭示流域径流泥沙过程变异的土地覆被格局,为我国黄土丘陵沟壑区优化配置水土资源和有效改善区域生态环境提供理论基础与决策依据。主要研究结论如下:
     (1)黄土丘陵沟壑区流域径流泥沙时变过程存在明显的不均匀性,且空间差异大。分析表明:除无定河流域泥沙和径流年内分布分别表现为单、双峰曲线外,延水河、清涧河流域径流和泥沙年内分布均表现为单峰曲线。
     (2)流域径流泥沙年际时空变异规律明显,且不同生态恢复时段不同流域差异较大。分析表明:黄土丘陵沟壑区流域年平均径流量和年输沙总量的年际变化整体呈现下降趋势,减水减沙幅度随时空尺度不同而异,上世纪80年代后和2000年后是流域径流泥沙演变的特征时段,其中延水河流域径流量减少较为明显,无定河流域减沙量和减沙幅度较大。流域径流泥沙关系密切,其拟合关系曲线随流域及其径流特征不同而异。
     (3)在生态恢复背景下,不同土地利用类型流转频繁,耕地向林、草地转移是流域土地利用动态的主要形式。在不同流域,耕地转出明显,林、草地新增明显,且其流转速率在2000年后进入加速期。在植被恢复驱动下,流域土地利用重心空间漂移明显,漂移轨迹主要表现为耕地的重心均向东部偏移,林地的重心均向西北方向偏移,草地的重心均向北部偏移。
     (4)在生态恢复驱动下,土地利用及其时空动态导致流域景观格局发生明显变化。在斑块类型水平上,相对于水域、城镇及工矿建设用地等,耕地、林地和草地斑块特征变化较为明显。生态恢复不仅加大了耕地和林地景观的破碎化程度,同时也增大了林地斑块性状的复杂化。特别是随着退耕还林还草工程的实施,耕地平均斑块面积及比例不断降低,草地则相反;在景观水平上,各流域景观破碎度总体趋于上升,而景观连接度却在不断降低,同时延河流域、清涧河流域景观多样性整体上呈下降的趋势,无定河流域整体上呈上升趋势。流域土地利用结构调整和植被恢复使得一些景观类型的优势度不断增强,均匀度不断下降,且向着单一景观类型发展。
     (5)流域尺度上,土地利用格局的相对状况与水沙时变过程关系密切。分析表明,耕地是黄土丘陵沟壑区土地利用的核心景观要素,也是流域土壤侵蚀泥沙的主要来源区。以地面积作为土地利用的核心预测因子,径流深和输沙模数的4年平均值对土地利用时变的响应程度最大。
     (6)不同景观类型,影响流域径流深度的因子不同。其中,耕林草斑块的空问邻接状态和核心斑块面积大小是影响流域径流深度变化的共同因素。耕地斑块特征指数对流域径流泥沙过程的影响最大,草地次之,林地最小;但相比而言,耕林草斑块特征对流域输沙过程的预测能力要高于对径流过程的预测能力。而在景观水平上,在不同植被恢复时段中,影响流域径流泥沙过程的特征指标不同,景观边缘密度、景观连接度与径流深、输沙模数始终存在显著的正相关关系。
     (7)以耕林草为主导的景观格局与流域径流泥沙过程的时空分异与关系十分密切。分析表明,耕地景观格局特征变化对流域径流泥沙过程变异扮演重要角色,但随着退耕还林还草工程的实施与推进,其指示作用逐渐被林地和草地景观格局特征所代替。
     (8)在退耕还林还草工程驱动下,黄土丘陵沟壑区流域减水减沙效益明显。研究表明,9年来,流域平均输沙模数降低54%,流域平均径流深下降15%。
Loess Plateau is the most influenced area of China's water and soil loss region, especially in the hilly area of Loess Plateau. The serious water and soil loss not only worsens the very fragile ecological environment but also restricts the local ecological and socio-economic sustainable development.
     In this thesis, the representative basins of the hilly area of Loess Plateau were the investigated as objects, including Wuding River Basin, Yan River Basin and Qingjian River Basin.
     At first, according to the long-term (1960-2009) observation hydrological data obtained from the hydrological stations, different periods of Land Use Data (1985,1995,2000 and 2008), the runoff and sediment properties of the above three basins were analyzed spatio-temporally, which use the qualitative, quantitative and mathematical statistics analysis, GIS and RS spatial analysis techniques with the help of Landscape Ecology and quantitative ecology methods.
     Second, taking the ecological restoration of loess plateau as the background, the dynamic transfer of the land utilization and the spatio-temporal evolution of landscape pattern were analyzed on the basin scale. On this basis, the impact of evolution of land use pattern on the change of runoff and sediment process was further explored, and the land cover pattern process of the variation of runoff and sediment basin was also revealed.
     The study provides the theoretical foundation and the decision-making basis for the optimal allocation of water resources and the effectively improvement of the regional ecological environment of China's Loess Plateau. The main conclusions are listed as follows:
     (1) The obvious heterogeneity existed in the time-varying process of the runoff and sediment in the hilly area of Loess Plateau and its spatial difference was significant. The Analysis shows that the annual runoff and sediment distributions in Yan River Basin and Qing Jian River Basin were single peak curves, while these of Wu ding River Basin were a single peak curve and a double peak curve, respectively.
     (2) The inter-annual spatio-temporal variations of the runoff and sediment were significant and the divergences between different basins at different ecological restoration times were different. The analysis shows that annual changes of the average flow and annual sediment load in the hilly area of Loess Plateau were in the downward trend. The reduction rates of water and sediment varies with time and space. The characteristic periods of the sediment runoff evolution were the years after 1980s and after 2000. The flow reduction of Yan River Basin was more obvious. Additionally, the flow reduction and the amplitude of the reduction of Wu ding River Basin were much larger. The relation between runoff and sediment was close and the fitting curves varied with different basins and their runoff characteristics.
     (3) Taking the ecological restoration as the background, the different types of land use transformed frequently, in which farmland to forestland and the grassland transformation were the main forms. In different basins, not only the transformation of farmland but also the newly increase of forestland and grassland were apparent, and the transformation entered the accelerated period after 2000. Driven by the vegetation, the spatial drift of the land use focus was obvious and the trajectory demonstrated that the focus of farmland shifted to the east, forestland to the northwest and grassland to the north.
     (4) Driven by the ecological restoration, land use and its spatial and temporal dynamics resulted in the significant changes of the landscape pattern. At the pattern class level, the characteristic changes of farmland, forestland and grassland were more obvious, compared with the water area, urban, mining and construction land. The ecological restoration increased not only the landscape fragmentation level of farmland and forestland, but also the complexity of forestland characteristics. With the implementation of the Grain for Green Project, the proportion of the average farmland area continued dropping. On the contrary, the grassland increased. The degree of fragmentation of different basins rose overall at landscape level, while landscape connectivity was reduced continuously. In addition, the landscape diversity (SHDI) of Qing jian River Basin showed a downward trend overall, while Yan River Basin were on the rise. Land use and vegetation restoration of structural adjustment had led some type of landscape dominance growing and landscape evenness degree constantly decreasing, and both developed towards to a single landscape type.
     (5) The relationship between the relative situation of land use pattern and the time-varying water and sediment processes were closed on the basin scale. The analysis shows that farmland was not only the core landscape element of land use in the hilly area of Loess Plateau, but also the main source area of soil erosion and sediment. With the area as the core predictive factor of land use, the impact of the 4-year average density of runoff and sediment yield on the time-varying response degree of land use was maximum.
     (6) Different landscape types had different density of runoff affecting factors, among which the spatial adjacency of farmland, forestland, grasslands patches and the size of core patch area were the common factors which influenced the density of runoff. The impact of the characteristics index of farmland patch on runoff and sediment processes was the biggest, followed by grassland, and forestland was the minimum. However, the predictive ability of the impact of patch characteristics of farmland, forestland and grassland on the sediment transport was higher than that of the runoff process. In the landscape level, the characteristic index impacting of runoff and sediment process differed in different revegetation period. In addition, there was always a significant positive correlation between landscape edge density, landscape connectivity, the runoff density of runoff and sediment yield.
     (7) The spatio-temporal relations between landscape pattern and sediment runoff process, dominated by the farmland, forestland and grasslands, were very intense. The analysis indicates that landscape pattern change of farmland played an important role in the process of the runoff and sediment variation, but with the implementation and the advancement of the Grain for Green Project, its indicative function was gradually replaced by the landscape patterns of forestland and grassland.
     (8) The benefits from water and sediment reduction were obvious in the hilly area of Loess Plateau driven by the Grain for Green Project. The studies shows that the average sediment yield reduced by 54% and the average density of runoff decreased by 15% in the recent nine years.
引文
[1]摆万奇,张永民,阎建忠,等.大渡河上游地区土地利用动态模拟分析[J].地理研究,2005,24(2):206-213.
    [2]毕华兴,朱金兆,张学培.晋西黄土区小流域场暴雨径流泥沙模型研究[J].北京林业大学学报,1998,20(6):14-19.
    [3]蔡庆,唐克丽.植被对土壤侵蚀影响的动态分析[J].水土保持学报,1992,(2):47-51.
    [4]蔡强国,陆兆熊.黄十丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报,1996,51(2):108-117
    [5]陈利顶,傅伯杰,赵文武.“源”“汇”景观理论及其生态学意义.生态学报,2003,26(5):2406-2413;5441-9441
    [6]陈月红等.黄土高原吕二沟流域土地利用及降雨强度对径流泥沙影响初探.中国水土保持科学[J],2009,7(1)8-1
    [7]陈永宗.黄河粗泥沙来源及侵蚀产沙机理研究文集.北京:气象出版社,1989
    [8]陈永宗.黄土高原现代侵蚀与治理.北京:科学出版社.1987
    [9]陈军峰,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,(16):474-80.
    [10]陈松林.基于GIS的土壤侵蚀与土地利用关系研究[J].福建师范大学学报(自然科学版),2000,16(1):106-109.
    [11]陈文波,肖笃宁.景观指数分类、应用及构建研究[J].应用生态学报,2002,13(1):121-125.
    [12]陈静谊,张志强,王新杰,黄土高原清水河流域植被景观动态变化研究[J].水土保持研究,2008,1550:53-56
    [13]陈静谊,黄土高原清水河流域植被景观格局变化与水土流失的影响研究[D].北京林业大学硕十论文,2008.
    [14]陈伴勤.国际全球变化核心计划(M).北京·气象出版社,1994:1-16.
    [15]邓慧平,李秀彬,陈军锋,等.流域土地覆被变化水文效应的模拟-以长江上游源头区梭磨河为例[J].地理学报,2003,58(1):53-62.
    [16]丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析[J].地理学报,1999,54(5):431-37.
    [17]段增强,VERBURGPH,张凤荣,等.土地利用动态模拟模型的构建及其应用—以北京市海淀区为例[J].地理学报,2004,59(6):1037-1047
    [18]傅伯杰.景观生态学原理及应用[M].北京:科学出版社,2001.
    [19]傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响.地理学报,2002,57(6):717-722
    [20]傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响——以延安市羊圈沟流域为例.地理学报,1999,54(3):241-246
    [21]傅伯杰,陈利顶,王军,等.土地利用结构与生态过程.第四纪研究,2003,23(3):247-255
    [22]傅伯杰,赵文武,陈利顶.地理—生态过程研究进展与展望.地理学报,2006,61(11):1123-1131
    [23]傅伯杰.黄十区农业景观空间格局分折.生态学报,1995,15(2):113-120
    [24]付会芳,张兴昌.植被过滤带对坡地径流泥沙浓度的影响(译文)[J].水土保持研 究,1998,(4).
    [25]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2005,19(1):93-96.
    [26]国润才,莲花,赵玉柱,等.卓资县退耕还林(草)工程效益浅析[J].内蒙古农业大学学报,2005,26(3):12-16.
    [27]顾文书.黄河水沙变化及其影响的综合化分析报告//汪岗,范昭.黄河水沙变化研究.第一卷.郑州:黄河水利出版社,2002:1-45
    [28]黄河中游水文水资源局.黄河中游水文:河口镇至龙门区间.郑州:黄河水利出版社,2005
    [29]黄进勇,严力蛟,王兆骞.红壤小集水区不同景观类型方式下的水土流失特征.浙江大学学报,2002,28(1):78-82.
    [30]黄志霖,傅伯杰,陈利顶.恢复生态学与黄土高原生态系统的恢复与重建问题[J].水土保持学报,2002,16(3):122-125
    [31]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展.生态学报,2003,23(3):580-587
    [32]侯喜禄,杜成祥.不同植被类型小区的径流泥沙观测分析[J].水十保持通报,1985,(6).
    [33]侯喜禄,杜成祥.不同植被类型小区径流泥沙观测试验[J].泥沙研究,1985,(4).
    [34]郝惠梅,任志远.基于RS和GIS的包头市土地利用动态及其生态效益定量研究[J].水土保持学报,2006,20(2):139-143.
    [35]孔凡哲,李莉莉.利用DEM提取河网时集水面积阈值的确定.水电能源科学,2005,23(4):65-67
    [36]金林.山西省森林植被对径流泥沙影响的研究[J].西北水资源与水工程,2002,(3).
    [37]金林,李养龙,.森林植被对河川径流及泥沙影响的分析[J].人民长江,2008,(1).
    [38]景可,王万忠,郑粉莉.中国土壤侵蚀与环境.北京:科学出版社,2005
    [39]景可,陈永宗,李凤新.黄河泥沙与环境.北京:科学出版社,1993
    [40]贾仰文,高辉,牛存稳,等.气候变化对黄河源区径流过程的影响[J].水利学报,2008,(391):52-58.
    [41]李道峰.黄河河源区径流对气候和土地覆被变化的响应[D].北京师范大学博士学位论文,2003.
    [42]李慧卿.乌兰布和沙漠东固沙植被恢复重建与资源利用中的几个问题分析[J].生态学杂志,2004,23(6):182-185.
    [43]李凤民,徐进章,孙国钧.半干旱黄土高原生态系统的修复与生态农业发展[J].生态学报,2000,23(9):1902-1909.
    [44]李文华,何永涛,杨丽锡.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398-406.
    [45]李文华.长江洪水与生态建设[J].自然资源学报,1999,140):1-8.
    [46]李嘉峻,许有鹏,桑银江.GIS支持下的土壤侵蚀动态变化研究:浙江一例[J].南京大学学报,2005,41(3):297-303.
    [47]李向阳.水文参数优选及不确定性分析方法研究.大连理工大学博士学位论文,2005.
    [48]李月臣,何春阳,中国北方土地利用/植被覆盖变化的情景模拟与预测[J].科学通报,2008,(06):713-723
    [49]李铁键,王光谦,薛海,等.黄土沟壑区产输沙特征的空间尺度效应研究.中国科学E 辑:技术科学,2009,39(6):1095-1103
    [50]李晓文,胡远满,肖笃宁.景观生态学与生物多样性保护.生态学报,1999,19(3):399-407
    [51]梁玉轩,徐尚辉,.互助县不同植被类型小区的径流泥沙观测试验[J].现代农业科技,2009,(18).
    [52]梁伟,白翠霞,孙保平,等.黄十丘陵沟壑区退耕还林(草)区十壤水分-物理性质研究[J].中国水土保持,2006(3):17-18.
    [53]刘昌明,曾燕.植被变化对产水量影响的研究[J].中国水利,2002,10:112-117.
    [54]刘昌明,郑红星,王中根,等.流域水循环分布式模拟[M].河南郑州:黄河水利出版社,2007.
    [55]刘昌明,钟俊襄.黄土高原森林对年径流量影响的初步分析[J].地理学报,1978,33(2):112-126.
    [56]刘昌明等.黄河中游黄土高原森林减沙效应研究的梗概[J].地理研究,1982,1-13.
    [57]刘十余,降雨与植被变化对赣西北大坑小流域水文特征的影响研究[D].北京林业大学博十论文,2008.
    [58]刘世荣等,中国森林生态系统水文生态规律[M].北京:中国林业出版社,1996,61-62.
    [59]刘新卫,陈百明,史学止.国内LUCC研究进展综述[J].土壤,2004,36(2):132-135.
    [60]刘国彬,杨勤科,郑粉莉.黄土高原小流域治理与生态建设[J].中国水土保持科学,2004,3(1):11-15.
    [61]廖义善,蔡强国,卓慕宁,等.不同时空尺度下沟壑对流域侵蚀产沙的影响——以黄土丘陵沟壑区岔巴沟流域为例.地理科学进展,2009,28(1):47-54
    [62]刘宝元,谢云,张科利.土壤侵蚀预报模型.北京:中国科学技术出版社,2001
    [63]柳长顺,齐实,史明昌.十地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报,2001,15(5):10-13.
    [64]卢金发.黄河中游流域地貌形态对流域产沙量的影响.地理研究,2002,21(2):171-178
    [65]鲁克新,黄土高原流域生态环境修复中的水沙响应模拟研究[D].西安理工大学,2006
    [66]罗伟样,白立墙,宋西德.不同覆盖度林地和草地的径流量和冲刷量[J].水土保持学报,1990),4(1):30-34.
    [67]罗龙海,胡庭兴,万雪琴.天全县几种退耕还林类型林地土壤理化性质年际动态变化研究[J].浙江林业科技,2006,26(1):18-22.
    [68]罗海波,钱晓刚,刘方.喀斯特山区退耕还林(草)保持水土生态效益研究[J].水土保持学报,2003,17.
    [69]马博虎,刘毅,李世清,等.黄土高原生态环境建设与土壤质量演变[J].生态经济,2007(3):39-46.
    [70]马跃先,王丰,李世英,杨天平.淮河流域干江河年径流演变特征及动因分析[M].水文,2008,28(1):77-80.
    [71]满明俊,罗剑朝.陕西省退耕还林工程生态效益评价[J].安徽农业科技,2006,34(18):4735-4737.
    [72]孟庆华,傅伯杰,邱杨.黄土丘陵沟壑区不同土地利用方式的经流及磷流失研究.自然科学进展,2002,12(4):393-397
    [73]南英,尉思凤,南梅.内蒙古黄土丘陵区小流域径流泥沙特征分析[J].内蒙古水利,2001(4):72-73.
    [74]邱扬,傅伯杰.异质景观中水土流失的空间变异与尺度变异.生态学报,2004,24(2):330-337
    [75]邱扬,傅伯杰.土地持续利用评价的景观生态学基础.资源科学,2000,22(6):1-8
    [76]冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙及减蚀作用研究[J].水利学报.2004(5):7-14.
    [77]冉大川,柳林旺,赵力仪,等.黄河中游河口镇至龙门区间水十保持与水沙变化.郑州:黄河水利出版社,2000
    [78]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [79]史德明.土壤侵蚀与人类生存环境恶化.土壤侵蚀与水土保持学报,1995,1(1):26-33
    [80]史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀响应.武汉:华中农业大学,2003
    [81]水利部水利信息中心.SD138-85水文情报预报规范[S].北京:中国水利水电出版社,2000.
    [82]水利部水文信息中心.国家“十·五”科技攻关专题(2001-BA611B-02-04)气候变化对我国淡水资源的阈值影响及综合评价[R].2003.
    [83]水利部黄河水沙变化研究基金会.黄河水沙变化及其影响的综合化分析报告//汪岗,范昭.黄河水沙变化研究.第二卷.郑州:黄河水利出版社,2002:1-106
    [84]索安宁,李金朝,王天明,葛剑平.黄土高原流域土地利用变化的水土流失效应,水利学报,2008,39(7),767-772.
    [85]唐志平,黄水生.白盆珠水库库区坡面径流泥沙流失初探,水土保持研究,1997,4(1),129-170.
    [86]万荣荣,杨桂山.流域土地利用/覆被变化的水文效应与洪水响应研究[J].湖泊科学,2004,16(3):258-264.
    [87]汪有科,森林植被保持水土功能评价[J].水土保持研究,1994,1(3):24-30.
    [88]王根绪,张钮,刘桂民,等.马营河流域1967-2000年土地利用变化对河流径流的影响[J].中国科学D辑地球科学,2005,35(7):671-681.
    [89]王盛萍.典型小流域土地利用与气候变异的生态水文响应研究[D].北京林业大学博士论文,2007.
    [90]王海龙,余新晓,武思宏,等SWAT模型灵敏度分析模块在黄土高原典型流域的应用[J],北京林业大学学报,2007,29(增刊2),238-242.
    [91]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究.水土保持通报,1996,16(5):1-20
    [92]王万忠.黄土地区降雨特性与土壤流失关系的研究Ⅲ——关于侵蚀性降雨标准的问题.水土保持通报,1984,4(2):58-62.
    [93]王应刚,张秋华,张峰.黄士高原北部地区生态退化与恢复研究进展[J].水土保持研究,2007,14(1):57-59.
    [94]王兆印,王光谦,李昌志,等.植被侵蚀动力学的初步探索和应用.中国科学:D辑,2003,33(10):1013-1023
    [95]王礼先.水土保持学.北京:中国林业出版社,1995:129
    [96]王晗生,刘国彬.植被结构及其防止土壤侵蚀作用分析.干旱区资源与环境,1999,13(2):62-68.
    [97]王飞,李锐,谢永生.历史时期黄土高原生态环境建设分析[J].水土保持研究,2001,8(2):138-142.
    [98]王应刚,张秋华,张峰.黄土高原北部地区生态退化与恢复研究进展[J].水土保持研究,2007,14(1):57-5
    [99]卫伟,陈利顶,傅伯杰,等.黄土丘陵沟壑区极端降雨事件及其对径流泥沙的影响[J].干早区地理.2007,30(6):896-901.
    [100]卫红等.黄土丘陵沟壑区极端降雨事件及其对径流泥沙的影响.干旱区地理[J],2007,
    [101]吴发启,赵晓光,刘秉正,等.黄土高原南部缓坡耕地降雨与侵蚀的关系[J].水土保持研究,1999,6(2):53-60
    [102]邬建国.景观生态学[M].北京:高等教育出版社,2002.
    [103]邬建国.景观生态学—格局、过程、尺度与等级.北京:高等教育出版社,2000
    [104]吴礼福.黄土高原土壤侵蚀模型及其应用.水土保持通报,1996,16(5):29-35
    [105]吴秀芹,蔡运龙.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展,2003,22(6):576-584.
    [106]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(2):23-28.
    [107]仙巍.嘉陵江中下游地区近30年土地利用与覆被变化过程研究[J].地理科学进展,2005,24(2):114-121.
    [108]肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性[J].生态学报,1997,17(5):453-461
    [109]肖笃宁,李秀珍,高峻,等.景观生态学[M].北京:科学出版社,2003
    [110]肖笃宁,李秀珍.景观生态学的学科前沿与发展战略[J].生态学报,2003,23(8):1615-1621
    [111]肖笃宁,赵翌,孙中伟.沈阳西郊景观格局变化的研究[J].应用生态学报,1990,1(1):75-84
    [112]信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学).2007,37(11):1504-1514.
    [113]熊贵枢,徐建华,顾弼生,等,黄河上中游水利水保工程减沙作用的预估[J],人民黄河,1988,1,3-7.
    [114]许炯心.无定河流域侵蚀产沙过程对水土保持措施的响应[J].地理学报,2004,59(6):972-981
    [115]徐建华,李晓宇,陈建军,等.黄河中游河口镇至龙门区间水利水保工程与暴雨洪水泥沙影响研究[J].郑州:黄河水利出版社,2009
    [116]徐建华,吴发启,等.黄土高原产流产沙机制及水土保持措施对水资源和泥沙影响的机理研究,黄河水利出版社[M].2005,10,30.
    [117]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11
    [118]谢红霞,李锐,杨勤科,等.退耕还林(草)和降雨变化对延河流域土壤侵蚀的影响[J].中国农业科学,2009,42(2):569-576
    [119]杨雨行,韩熙春.山西省吉县清水河流域森林动态变化对水沙影响的初报[J].北京林业大学学报,1991,13(2),59-67.
    [120]杨孟,李秀珍,杨兆平,等.岷江上游小流域景观格局对土壤侵蚀过程的影响[J].应用 生态学报,2007,(11):2512-2519
    [121]杨光,丁国栋,赵廷宁等.黄土丘陵沟壑区退耕还林的水土保持效益研究—以陕西省吴旗县为例.[J].内蒙古农业大学学报,2005,26(2):20-23.
    [122]杨建波,王利.退耕还林生态效益评价方法[J].中国土地科学,2003,17(5):54-58.
    [123]杨文治,余存祖.黄土高原区域治理评价[M].北京:科学技术出版社,1992.
    [124]叶佰生,赖祖铭,施雅风.气候变化对天山伊犁河上游河川径流的影响[J].冰川冻土,1996,18(1):29-36.
    [125]叶青超.黄河流域环境演变与水沙运行规律研究[M].济南:山东科技出版社,1995:58-115
    [126]殷水清,谢云.黄土高原降雨侵蚀力时空分布.[J]水土保持通报,2005,25(4):29-33
    [127]游珍,李占斌.黄土高原小流域景观格局对土壤侵蚀的影响——以黄家二岔流域为例.中国科学院研究生院学报,2005,22(4):447-453
    [128]喻权刚.遥感信息研究黄土丘陵区地利用与水土流失.土壤侵蚀与水土保持学报,1996,2(2):24-31
    [129]袁建平,雷廷武,蒋定生,等.不同治理度下小流域正态整体模型试验——工程措施对小流域径流泥沙的影响[J].农业工程学报,2000,16(1):22-25.
    [130]张树文,张养贞等著.东北地区土地利用/覆被时空特征分析[M].北京:科学出版社,2006.
    [131]张志强,王盛萍,孙阁,谢宝元.流域径流泥沙对多尺度植被变化响应研究进展[J].生态学报,2006,(7).
    [132]张清春,刘宝元,翟刚.植被与水土流失研究综述.水土保持研究,2002,9(4):96-101.
    [133]张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展.地理科学进展,2005,24(6):116-123.
    [134]张学权,胡庭兴.退耕地不同植被恢复模式对坡面径流的影响[J].四川林业科技,2005,26(1):28-31.
    [135]张科利,蔡永明,刘宝元,等.黄土高原地区土壤可蚀性及其应用研究.生态学报,2001,21(10):1686-1695
    [136]张科利,秋吉康弘,张兴奇.坡面径流冲刷及泥沙输移特征的试验研究[J].地理研究,1998,17(2):163-170.
    [137]张蕾娜.白河流域土地覆被变化水文效应的分析与模拟[D].北京:中国科学院地理科学与资源研究所博士学位论文,2004.
    [138]张胜利,李悼,赵文林.黄河中游多沙粗沙区水沙变化原因及发展趋势.郑州:黄河水利出版社,1998:142-178
    [139]张志玲,范吴明,郭成久,等.模拟降雨条件下坡面水流流速与径流输出特征研究[J].水土保持研究,2008,15(6):32-34.
    [140]张永民,赵士洞,VERBURGPH.CLUE-S模型及其在奈曼旗土地利用时空动态变化模拟中的应用[J].自然资源学报,2003,18(3):310-318
    [141]赵文武,傅伯杰,陈利顶.陕北黄土丘陵沟壑区地形因子与水土流失的相关性分析.水土保持学报,2003,17(3):66-69
    [142]曾辉,崔海亭,黄润华.西北干旱区脆弱景观的生态整治对策[J].自然资源,1997,(5):1-7.
    [143]中国大百科全书(农业Ⅱ).北京:中国大百科全书出版社,1990
    [144]中国大百科全书(水利).北京:中国大百科全书出版社,1992
    [145]朱连奇,许叔明,陈沛云.山区土地利用/覆被变化对土壤侵蚀的影响.地理研究,2003, 22(4):432-438
    [146]Anderberg.Industrial metalbolism and the linkages between economics, ethics and the environment[J].Ecological Economics,1998,24(2-3):311-320
    [147]Antrop M. The language of landscape ecologists and planners:a comparative content analysis of concepts used in landscape ecology. Landscape and Urban Planning,2001,55: 163-173
    [148]Antrop M. Landscape change and the urbanization process in Europe. Landscape and Urban Planning,2004,67:9-26
    [149]Arnoldus H M J. An approximation of the rainfall factor in the USLE. In Assessment of Erosion, De Boodt M, Gabriels C (eds). Wiley. Chichester,1980.
    [150]Aspinall R. and Pearson D. Integrated geographical assessment of environmental condition in water catchments:Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management,2000,59,299-319
    [151]Brater E F and King, H W. Handbook of Hydraulics for the Solution of Hydraulic Engineering Problems. New York, McGraw-Hill Book Company,1976
    [152]Bronick C J, Lal R. Soil structure and management:a review. Geoderma,2005,124,3-22
    [153]Cigizoglu H K. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J.2003,48(3),349-361
    [154]Culling W E H. Theory of erosion on soil-covered slopes. Journal of Geology,1965,73: 230-245
    [155]Cushman S A, McKelvey K S, Hayden J and Schwartz M K. Gene flow in complex landscapes:testing multiple hypotheses with causal modeling. American Naturalist,2006, 168,486-499
    [156]D'Asaro F, D'Agostino L, Bagarello V. Assessing changes in rainfall erosivity in Sicily during the twentieth century. Hydrological Processes,2007,21:2862-2871
    [157]Dickinson A, and Collins R. Predicting erosion and sediment yield at the catchment scale. In:F.W.T. Penning de Vries, Soil Erosion at Multiple Scales, Principles and Methods for Assessing Causes and Impacts, edited by F. Agus and J. Kerr, Oxon, New York,1998
    [158]Diodato N, Ceccarelli M. Processes using multivariate geostatistics for mapping interpolation of climatological precipitation mean in the Sannio Mountains (Southern Italy). Earth Surface Processes and Landforms,2005,30:259-268
    [159]Diodato N. Estimating RUSLE's rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences,2004a,8:103-107
    [160]Elkie P C, Rempel R S. Detecting scales of pattern in boreat forest landscapes. Forest ecology and management,2001,47:253-261
    [161]Erskine W D, Mahmoudzadeh A and Myers C. Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia, CATENA, 2002,49(4):271-287
    [162]Eswaran H, Lal R, Reich P F. Land degradation:An overview. In Response to Land Degradation, Bridges EM, Hannam ID, Oldeman LR, Penning de Vries FWT, Scherr SJ, Sombatpanit S (eds). Science Publishers, Inc:Enfield, New Hampshire, USA; pp.20-35, 2001
    [163]Ferro V, Porto P, Yu B. A comparative study of rainfall erosivity estimation for Southern Italy and southeastern Australia. Hydrol Sci J,1999,44(1):3-24
    [164]Ferro V.& Minacapill M. Sediment delivery processes at basin scale. Hydrol. Sci. J.1995, 40(6),703-717
    [165]Ferro V.& Porto P. A sediment delivery distributed (SEDD) model. J. Hydrol Engng ASCE, 2000,5(4),411-422
    [166]Ferro V.'Further remarks on a distributed approach to sediment delivery'. Hydrol. Sci. J, 1997,42,633-647
    [167]Ferro V, Giordano G & Iovino M. Isoerosivity and erosion risk map for Sicily, Journal of Hydrological Sciences,1991,36(6),549-564
    [168]Fleckkenstein J. Using GIS to derive Velocity Fields and Travel Times to Route Excess Rainfall in a Small-Scale Watershed, Univ. of California Davis.1998, URL: http://scs. ucdavis.edu
    [169]Forman R T T. Some general principles of landscape and regional ecology. Landscape Ecology,1995,10,133-142
    [170]Franoise B, Jacques B. Landscape Ecology:Concepts, Methods and Applications. New Hampshire:Science Publishers, Inc.,2003
    [171]Fu B J, Liu S L,Chen L D, et al. Soil quality regime in relation to land cover and slope position cross a highly modified slope landscape. Ecol Res,2004,19:111-118
    [172]Fu B J, Zhao W W, Chen L D, Zhang Q J, Lii Y H, Gulinck H, Poesen J. Assessment of soil erosion at large watershed scale using rusle and GIS:a case study in the Loess Plateau of China. Land Degradation & Development,2005,16:73-85
    [173]Fu B J, Zhao W W, Chen L D, Liu Z F and Lu Y H. Eco-hydrological effects of landscape pattern change. Landscape Ecological Engeering,2005,1:25-32
    [174]Fu G B, Chen S L and McCool D K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil and Tillage Research, 2006,85(12):38-49
    [175]Glymph L M. Studies of sediment yields from watersheds. In:Assemblee General de Rome 1954,173-191. IAHS Publ. no.36
    [176]Gupta V K, Waymire E and Wang C Y. A representation of an instantaneous unit hydrograph for geomorphology, Water Resour. Res,1980,16,855-862
    [177]Heathcote I.W. Integrated Watershed Management:Principles and Practice, New York: John Wiley and Sons, Inc.1998
    [178]Horton R E. Erosional development of streams and their drainage basins:Hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull.,56,275-370,1945
    [179]Istok J D, Boersma L. Effect of antecedent rainfall on runoff during low-intensity rainfall. Journal of Hydrology, Amsterdam,1986,88,329-42
    [180]IIASA Modeling land-use and land-cover changes in Europe and Northern Asia[R].1999 Research Plan,1998
    [181]Jayawardena A W and Rezaur R B. Drop size distribution and kinetic energy load of rainstorms in Hong Kong. Hydrological Processes,2000,14,1069-1082
    [182]]Jordan G A. Van Rompaey P S, Csillag G, Mannaerts C and Woldai T. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agriculture, Ecosystems & Environment,2005,108(2):119-133
    [183]Kamphorst E C, Jetten V, Guerif J et al. Predicting depressional storage from soil surface roughness, Soil Sci. Soc. Am. J.,2000,64(5):1749-1758
    [184]King A.Translating models across scales in the landscape. In:Turner M G, Garder R H,et al.Quanitative Methods in Landscape Ecology, New York:Springer Verlag,1991:479-517
    [185]Kinnell P I A. Sediment delivery ratios:a misaligned approach to determining sediment delivery from hillslopes. Hydrological Processes,2004,18:3191-3194
    [186]Kisi O. Suspended sediment estimation using neuro-fuzzy and neural network approaches, Hydrol. Sci. J.,2005,50(4),683-696
    [187]Klaghofer E, Summer W, Villeneuve J P. Some remarks on the determination of the sediment delivery ratio. IAHS Publ. No.1992,209:113-118
    [188]Knisel W G. CREAMS:A Field Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. USDA.1980
    [189]Kouli M, Soupios P, Vallianatos F. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete. Greece Environmental Geology,2009,57 (3),483-497
    [190]Laflen J M, Lane L J, Foster G R. WEPP:A new generation of erosion prediction technology. Journal of Soil and Water Conservation,1991,46,34-38
    [191]Lal R. Soil Erosion Research Methods. Ankeny, Iowa:Soil & Water Conservation Association.244 pp.Landscape Ecology,1988,10,133-142
    [192]Lane J L, Hernandez M, Nichols M. Processes controlling sediment yield from watersheds as functions of spatial scale. Environmental Modeling and Software,1997,12:355-369
    [193]Lausch A, Herzog F. Applicability of landscape metrics for the monitoring of landscapechange:issues of scale, resolution and interpretability. Ecological Indicators,2002, 2:3-15
    [194]Le Bissonnais Y, Renaux B, Delouche H. Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils. Catena,1995, 25:33-46
    [195]Lenhart T, Van Rompaey A, Steegen A, Fohrer N, Frede H-G and Govers G. Considering spatial distribution and deposition of sediment in lumped and semi-distributed models. Hydrol. Process,2005,19(3):785-794
    [196]Levin S A. The problem of pattern and scale in ecology. Ecology,1992,73(6):1943-1967
    [197]Linden D. R. and van Doren, D M. Parameters for characterizating tillage induced soil surface roughness. Soil Sci. Soc. Am. J.,1986,50,1560-1565
    [198]Lioubimtseva E. An evaluation of VEGETATION-1 imagery for broad-scale landscape mapping of Russia:effects of resolution on landscape pattern. Landscape and Urban Planning,2003,65:187-200
    [199]Liu Y B, Gebremeskel S, De Smedt F, Hoffmann L and Pfister L. A diffusive transport approach for flow routing in GIS-based flood modeling, J. Hydrol.,2003,283,1-4,91-106
    [200]Liu Y, Nearing M A, Shi P J and Jia Z W. Slope length effects on soil loss for steep slopes. Soil Sci. Soc. Am. J.,2000,64,1759-1763
    [201]Lu H, Moran C J, Sivapalan M. A theoretical exploration of catchment scale sediment delivery. Water Resources Research,2005,41:W09415
    [202]Ludwig B, Boiffin J, Chadaeuf J Auzet A V. Hydrological structure and erosion damage caused by concentrated flow in cultivated catchments. Catena,1995,25(1-4):227-252
    [203]Lufafa A, Tenywa A M, Isabirye M, Majaliwa MJG & Woomer PL. Prediction of soil erosion in Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems,2003,76:883-894
    [204]Maidment D R. Handbook of Hydrology, McGraw-Hill, New York,1993
    [205]Makhzoumi J M. Landscape ecology as a foundation for landscape architecture:application in Malta. Landscape and Urban Planning,2000,50:167-177
    [206]Marten, G. Environmental tipping points:a new paradigm for restoring ecological security. Journal of Policy Studies (Japan),2005,20:75-87
    [207]Meentemeyer V. Geographical perspectives of space, time and scale. Landscape Ecology, 1989,3(3-4):163-173
    [208]Mihara, Raindrops and soil erosion. Bulletin of the National Institute of Agricultural Science, Series Al, Japan,1951,48-51
    [209]Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers. Journal of Geology,1992,100:525-544.
    [210]Moglen G E, Eltahir E A B and Bras R L. On the sensitivity of drainage density to climate change. Water Resour. Res.,1998,34,855-862
    [211]Montes S. Hydraulics of Open Channel Flows, ASCE Press, Reston, VA,1998
    [212]Moore I D, Gessler P E, Nielsen G A & Peterson G A. Soil attribute prediction using terrain analysis. Soil Science Society of American Journal.1993,57,443-452
    [213]Morris G L, Fan J. Reservoir Sedimentation Handbook. Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use. McGraw Hill Book Co., NY, USA,1997
    [214]Mutua B M, Klik A. Development of a Physically based Model for Estimation of Spatial Sediment Delivery Ratio for Large Remote Catchments. Journal of Spatial Hydrology,2005, 5:45-59
    [215]Mwendera E J and Feyen J. Effects of tillage and rainfall on soil surface roughness and properties. Soil Technology,1994,7:1,93-103
    [216]Nicks A D. Lane L J and Gander G A. Chapter 2-Weather Generator. In:Flanagan, C. and Nearing, M.A., Editors,1995. USDA-Water Erosion Prediction Project (WEPP):Hillslope Profile and Watershed Model DocumentationNSERL Report No.10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana.1995
    [217]Novotny V. Diffuse pollution from agriculture:A worldwide outlook. Water Science and Technology,1995,39:1-13
    [218]O'Brien J S. FLO-2D Users Manual, Tetra Tech ISG, Nutrioso, AZ,1999
    [219]O'Neill R V, Krumme J R, Gardner R H, et al. Indices of landscape pattern. Landscape Ecology,1988,1(3):153-162
    [220]O'Neill R V, DeAngelis D L, Waide J B, et al. A Hierarchical Concept of Ecosystems. Princeton, NJ:Princeton University Press,1986
    [221]Olson T C and Wischmeier W H. Soil erodibility evaluations for soils on the runoff and erosion stations. Soil Science Society of American Proceedings,1963,27(5):590-592
    [222]Palmieri A, Shah F and Dinar A. Economics of reservoir sedimentation and sustainable management of dams. Journal of Environmental Management,2001,61(2):149-163.
    [223]Parsons A J, Wainwright J, Brazier R E and Powell D M. Is Sediment Delivery a Fallacy? Earth Surface Processes and Landforms,2006,31:1325-1328
    [224]Parysow P, Wang G, Gertner G Z, Anderson A B. Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. Catena,2003,53:65-78
    [225]Pickett S T A, Cadanasso M L. Landscape ecology:spatial heterogeneity in ecological systems. Science,1995,269(21):331-334
    [226]Pimentel D, Kounang N. Ecology of soil erosion in ecosystems. Ecosystems,1998,1, 418-426
    [227]Poesen J, Nachtergaele J, Verstraeten G, Valentin C. Gully erosion and environmental change:importance and research needs. Catena,2003,50(2-4):91-133
    [228]Renard K G, Fremund J R. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology,1994,157:287-306
    [229]Renard K G, Foster G R, Weesies G A & Porter J P. RUSLE-revised universal soil loss equation. Journal of Soil and Water Conservation,1991,46(1),30-33
    [230]Renard K G, Foster G R, Weesies G A, McCool D K and Yoder D C. Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No.703., U. S. Department of Agriculture, Washington, D.C.,1997
    [231]Ritchie J C, McCarty G W, Venterisr E R and Kaspar T C. Soil and soil organic carbon redistribution on the landscape. Geomorphology,2007,89,163-171
    [232]Roehl J E. Sediment source areas, delivery ratios and influencing morphological factors. In: Symposium of Bari,202-213. IAHS Publ. no.59.1962
    [233]Silva A M. Rainfall erosivity map for Brazil. Catena,2004,57:251-259
    [234]Singh V P. Hydrologic Systems, Rainfall±Runo Modeling (Volume 1). Prentice-Hall:New Jersey,1988
    [235]Strahler A N. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America,1952,63,1117-1142
    [236]Summerfield M A, Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research,1994,99:871-883
    [237]Takken I, Beuselinck L, Nachtergaele J, Govers G, Poesen J, Degraer G. Spatial evaluation of a physically-based distributed erosion model (LISEM). Catena,1999,37 (3-4),431-447
    [238]Tarboton D G. and Ames D P. Advances in the mapping of flow networks from digital elevation data. World Water and Environmental Resources Congress, Orlando, Florida, 2001
    [239]Tarboton D G, Bras R L and Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data, Hydrol. Processes,1991,5(1),81-100
    [240]Trimble S W and Crosson P. U.S. Soil Erosion Rates-Myth and Reality. Science 2000, 289(5477):248-250
    [241]Troll C. Luftbild plan und okologische Bodenforschung. Zeitschriftder Gesellschaft fur erdkunde zu Berlin,1939,241-298
    [242]Tseng P H, Lee T C. Numerical evaluation of exponential integral:Theis well function approximation, Journal of Hydrology,1998,205:38-51
    [243]Turner M G, Gardner R H. Quantitative Methods in Landscape Ecology. New York: Springer-Verlag.1991
    [244]Turner B L. Skole D, Sanderson S., et al Land use and Land cover Change: Science&Research Plan[R]. IGBP Report No.35 and HDP Report No.7 Stockholm and Geneva,1995.
    [245]US-SGCR/CENR. Our Changing Planet the FY 1995 US Global Change Research Program[R]. Washington D C, USGCRIO,1995.
    [246]Van der Sande, C J, de Jong S M and de Roo A P J. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment, International Journal of Applied Earth Observation and Geoinformation,2003,4:217-229
    [247]Van Dijk A I J M, Meester A G C A, Schellekens J, Bruijnzeel L A. A two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion modelling. Journal of Hydrology,2005,300:155-171
    [248]Van Dijk A I J M, Bruijnzeel L A, Rosewell, C J. Rainfall intensity-kinetic energy relationship:a critical literature appraisal. J. Hydrol.,2002,261,1-23
    [249]Van Oost K, Govers G, Desmet P. Evaluating the effects ofchanges in landscape structure on soil erosion by water and tillage, Landscape Ecol,2000,15,577-589
    [250]Van Remortel R, Hamilton M, Hickey R. Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data within Arclnfo Grid. Cartography, 2001,30:27-35
    [251]Van Rompaey A, Krasa J, and Dostal T. ModeLocation-weighted landscape contrast indexng the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy,2007,24(3):576-583
    [252]Ven Te Chow. "Open Channel Hydraulics." McGraw-Hill,1959
    [253]Verhoeven J T A, Arheimer B, Yin C and Hefting M M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol.2006,21:96-103
    [254]Verstraeten G, Prosser I P and Fogarty P. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology,2007,334(3-4):440-454
    [255]Walling D E, Webb B W. Erosion and sediment yield:A global overview. In:Walling D E, Webb B W (eds.). Erosion and Sediment Yield:Global and Regional Perspectives. International Association of Hydrological Sciences Special Publication,1996,236:3-19
    [256]Walling D E. The sediment delivery problem. Journal of Hydrology,1983,65,209-237
    [257]Wattenbach M, Hattermann F, Weng R, Wechsung F, Krysanova V and Badeck F. A simplified approach to implement forest eco-hydrological properties in regional hydrological modelling, Ecol. Model.,2005,187,40-59
    [258]Williams J R and Renard K G. A new method for assessing erosion's effects on soil productivity, J. Soil Water Conserv.1983,38,381-383
    [259]Williams J R, Jones C A, Dyke P T. The EPIC model. United States Department of Agriculture (USDA) Technical Bulletin No.1768.1990
    [260]Williams J R, Berndt H D. Sediment yield computed with universal equation. Proc. ASCE. 1972, Vol.98, HY12
    [261]Wischmeier W H, Smith D D. Predicting rainfall erosion losses:A guide to conservation planning. USDA Agric. Handb.537. U.S. Gov. Print. Office, Washington, DC.1978
    [262]Wolman M G. Changing needs and opportunities in the sediment field. Wat. Resour. Res. 1977,13,50-54
    [263]Wu J G, Qi Y. Dealing with scale in landscape analysis:An overview. Geographic Information Sciences,2000,6(1):1-5
    [264]Wu J G, Hobbs R. Key issues and research priorities in landscape ecology:an idiosyncratic synthesis. Landscape Ecol,2002,17:355-365
    [265]Yin S, Xie Y, Nearing M A, Wang C. Estimation of rainfall erosivity using 5-to 60-minute fixed-interval rainfall data from China. Catena,2007,70,3:306-312
    [266]Yu B, Hashim G M, Eusof Z. Estimating the r-factor with limited rainfall data:A case study from peninsular Malaysia, J. Soil Water Conserv.,2001,56,101-105
    [267]Zhang X K, Xu J H, Lu X Q, Deng YJ, Gao D W. A study on the soil loss equation in Heilongjiang province, Bull. Soil Water Conserv.1992,12 (4),1-9
    [268]Zhao W, Fu B, Meng Q, Zhang Q, Zhang Y. Effects of land-use pattern change on rainfall-runoff and runoff-sediment relations:a case study in Zichang watershed of the Loess Plateau of China. Journal of Environmental Sciences,2004,16(3):436-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700