用户名: 密码: 验证码:
鄂尔多斯盆地三叠系延长组超低渗透大型岩性油藏成藏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地延长组发育低孔渗大型岩性油藏。近几年,油气勘探获得了重大突破,发现了西峰、姬塬、华庆大油田及塔儿湾、合水含油富集区。目前已形成了东北、西南、西北和湖盆中部4大富油区的石油分布格局。其中湖盆中部以发育大型超低渗透油藏为主,已发现多个探明地质储量超过亿吨的含油区块。超低渗透大型岩性油藏成藏条件复杂,研究难度大。开展超低渗油藏成藏机理研究可为鄂尔多斯盆地的进一步增储上产、勘探开发决策提供科学依据,同时对类似盆地油气发现与生产具有重要的借鉴意义。本次研究重点分析大型超低渗透岩性油藏的沉积类型、储层成岩致密史、输导体系类型及特征、油气运聚动力及规律,探讨超低渗透油藏形成的主控因素,总结成藏规律。主要在以下几个方面取得了新的认识:
     提出早印支运动控制了晚三叠世沉积演化,多幕构造控制了盆地多旋回充填特征。利用磷灰石裂变径迹、锆石U—Pb微区测年等综合分析技术,通过对盆地周缘岩浆岩体和盆地腹部延长组凝灰岩年代测试,识别了印支运动构造期次,明确了受西秦岭造山运动的影响,长8末存在一次显著的构造事件,该事件导致盆地格局、沉积演化和生物面貌等方面发生重大变革。
     构建了湖盆中部延长组厚层砂体沉积模式。长6、长7油层组厚层深水砂岩主要由深水三角洲、砂质碎屑流、滑塌、浊积岩等沉积类型组合形成,为大型三角洲—重力流复合储集体。重力流砂体复合连片,平行于相带界线带状展布,深水三角洲砂体主要分布在白豹及其北部地区,呈带状或朵状分布。
     恢复了生排烃高峰期储层物性。明确了石英加大边中的烃类包裹体代表了生排烃高峰期石油充注。以该认识为基础,探讨了生排烃高峰期古物性恢复方法,计算主成藏期长6—长8储层孔隙度平均12%-20%,渗透率可达到10×10-3μm2以上。提出含铁碳酸盐胶结是造成储层致密化的最终决定因素,生排烃高峰期储层尚未致密化。
     探讨了不同类型的输导体在石油运移中的作用。主成藏期,连通的、尚未致密化的砂体是油气运移的主要通道,有油气运移痕迹的、强烈充填的北北东向裂缝和弱充填的近东西向裂缝形成于喜山期和燕山末期,它们沟通了延长组上部和侏罗系储层与长7优质烃源岩,侏罗系古河为延长组上部和延安组石油成藏提供了运移通道。
     划分了延长组成藏动力系统,明确了不同子系统中流体运移特征。延长组中下部整体为超压流体动力系统。根据岩性、物性和过剩压力特征,进一步划分了西南和东北2个动力子系统。陇东子系统以纵向运移为主,纵向过剩压差低值区为成藏有利区,陕北子系统既有纵向运移,又有横向运移,横向过剩压力低值区为成藏有利区。
     建立了鄂尔多斯盆地中生界的成藏序列。延长组成藏序列为“延长组成藏序列为“烃源岩上覆浮力、超压驱动型油藏→烃源岩下伏超压驱动型油藏→长3以上裂缝沟通、古河输导型油藏”的成藏序列。可划分早期浮力、超压驱动充注,后期裂缝调整的两个成藏阶段。
     总结了延长组石油富集规律。优质烃源岩的范围控制了低孔渗大型岩性油藏的分布;湖盆中部三角洲前缘和重力流砂体为超低渗透油藏发育的主要相带;三角洲前缘存在相对高渗区,为有利的成岩相带;过剩压力(压差)低值区为延长组中下部油气运移聚集的有利地区;前侏罗纪古地貌控制了延长组上部和侏罗系油藏的分布。
Large oil reserviors with low permeability are well developed in Ordos basin. Oil exploration and major breakthroughs have been achieved. Large oil pools, such as Xifeng, Jiyuan and Huaqing oil pools and some oil riched regions as Taerwan and Heshui have been found in the last ten years. So far, four large-scale hydrocarbon riched accumulations have taken shape, located in the northeast, the southwest, the northwest and the depocenter in Ordos basin respectively. The physical property of large-sized lithogical reservior is poor in the depositional center. It belongs to ultra-low permeability reservior. Some oil-riched area with submited proved-geological-oil-reserves exceeding 100 millions tons, have been discovered. Complex accumulation process makes it difficult to study. The research of accumulation machanism on ultra-low-permeability reserviors in the depositional center of Ordos basin will provide scientific basis for production and reserve increasing in the basin, and will perform enlightenment for similar investigation in other hydrocarbon riched bearing basins in future. Aiming at exploring the key parameters of reservior and sumerizing hydrocarbon migration and accumulation rules, this research emphasizes on the sedimental type, diagenesis and densification of reservior, hydrocarbon transporting systems and petroleum migration and accumulation dynamic. Some new views are promoted as follow:
     It is presented that early Indosinian movement dominant the evolution of Ordos basin and the characteristics of multi-cycle sedimentary evolution is the consequence of polycyclic tectonic movement. The tectonic epochs is identified on the base of comprehensive analysis of apatite fission track and a LA-ICP-MS U-Pb chronological study of zircons, sampled from magmatic rock around the basin and the tuff rock at the bottom of chang7 member in Yanchang formation in the basin. A new option is advanced that affacted by west Qingling orogenesis, a intense tectonic event happened at the end of sedimental phase of Chang8 strata. It made graet change on basin framwork, depositional feature and biological character.
     New modle of thick deep-water sandstone is built. Stretching along the facies lines in depositional centre of Ordos basin, the thick deep-water sandstone of Chang6 and Chang7 oil bearing formation consists of deep-water delta, debrite, slide and turbidite, and can be named as large delta-gravity complex. The compound sandbody, origining from gravity-flow, parallels the faces borderlines, and deep-water delta sandbody takes on the shape of lobe and belt, distributing at Baibao and its northern areas.
     The reservior porosity at premium stage of hydrocarbon generation is uncovered. It is suggested that hydrocarbon inclusions cathched in quartz overgrowths stand for the oil injection occurred at premium stage of hydrocarbon generation and expulsion. Probing into the computational method of reservior porosity at premium stage of hydrocarbon generation and expulsion, it shows that the average porosity of Chang6-Chang8 was mainly arranged from 12%to 20%, and the permeability should exceed 10x10-3μm2 at the stage. Ironed carbonate cement made the reservior compacted eventually and the sandstone peroperty at that time was raletively better than that at present.
     The role of different transporting passages in oil migeration is argued. Interconnected and uncompletely densified sandbodies palyed as the main passages for migration and accumulation at the phase of oil-pools forming. Fractures and joints with calcium intense filling, which extend along the direction of NNE-SSW, were formed at the Himalayan period or at the end of Yanshanian period. Some of them remain the trail of petroleum transit. They connected the premium oil source of Chang7 member and the reserviors of upper Yanchang formation or Yan'an formation. Early Jurrasic river channel did as one of the important transport passage for oil accumulation at upper Yanchang formation and Yan'an formation.
     The hydrocarbon dynamic system is divided and fluid migeration feature in different systems and sub-systems is discussed. Middle and lower Yanchang formation was a excess pressure hydrodynamic system during the deepes-depth period. According to lithology, property and overpressure, it can be divided into two subsystems, i.e. the southwest dynamic subsystem and the northeast dynamic subsystem. As to the southwest hydrodynamic subsystem, the higher the altitude, the more seriously compacted the reservoir is. Vertical hydrocarbon migeration played a dominant role during the process of pool forming. The areas with low overpressure-difference or the areas with relative low overpressure-difference in high overpressure-difference region are the preferential places for oil migeration. As to the northeast hydrodynamic subsystem, oil migerated not only vertically but also transversely through the layered carrier bed. The areas with low overpressure are the faverable places for oil accumulation in the northeast dynamic subsystem.
     Accumulation sequence of Mesozoic Yanchang formation and Yan'an formation in Ordos basin is set up. The sequence is:①reserviors above the source rock, drivern by buoyancy and excess pressure;②eserviors underneath the source rock, drivern by excess pressure;③eservior of Chang3 and its upper strata, connected by fractures and joints and oil tranporting in Jurrasic river channels. The enrichment regularity of petroleum in Yanchang formation is summarized. It is shown that the delta-front and gravity-flow sediment are the main areas for the ultra-low-permeability reserviors. The raletive higher permeability reserviors located in the delta front and it domimants the distribution of oil-riched area and high yield area:the places with relative low overpressure or relative low overpressure-difference are the preferential places for oil migeration and accumulation at the middle and low part of Yanchang formation. Pre-Jurrassic palaeo-geomorphology controls the reservior distribution of upper Yanchang formation and Jurrassic.
引文
[1]Baker J C, Havord P J, Martin K R, et al. Diagenesis and petrophysics of early Perminan Moogooloo sandstone, sothern Carnarvon basin. Westen Austrilia[J], AAPG.2000,84(2):250-265
    [2]Bathurst R G C. Carbonate sediments and their diagenesis[J]. Developments in sedimen-tology, Amsterdam:Elsevier,1971:620
    [3]Balmc B E. Fossil in situ spores and pollen grains:an annotated catalogue[J]. Rev. Palaeobot. Palynol, 1995,87:81-323
    [4]Bodnar R J. Petroleum migration in the Miocene Monterey Formation, California, USA:constraints fromfluid2inclusion studies[J].1990, Mineralogical Magazine,54:295-304
    [5]Carothers W W and Kharaka Y K. Aliphatic acid anions in oil-field water implications for origin of natural gas[J]. AA PG Bulletin,1978,62:441-453
    [6]Coustau H. Formation water sand hydrodynamics[J]. Journal of Geochemical Exploration,1977,7: 213-241
    [7]Curtis C D. Link between aluminum mobility and destruction of secondary porosity[J]. AAPG Bulletin,1983,67:380-393
    [8]Dixon S A, Summers D M, Surdam R C. Diagenesis and preservation of porosity in Norphlet Formation(Upper Jurassic)[J], southern Alabama. AAPG Bulletin,1989,73:707-728
    [9]Dutkiewicz A, Rasmussen B and Buick R. Oil preserved in fluid inclusions in Archaean sandstones[J]. Nature,1997.395(6705):885-888
    [10]Dutton S P. Diagenesis and porosity distribution in deltaic sandstone, Strawn series (Pennsylvanian), north-central Texas:Gulf Coast [J]. Association of Geological Societies Transactions,1977,27: 272-277
    [11]Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:Examples fromthe Norwegian continental shelf[J]. AAPG Bulletin,1993, 77(7):1260-1286
    [12]Goldstein, R. H., Reynolds, T J, Systematics of fluid inclusionsin diagenetic minerals[J]. SEPM Short Course,1994,31:69-85
    [13]Hall D, Shentwu Wand Sterner M. Using fluid inclusions to explore for oil and gas. Petro-leum Engineer International,1997,70(11):29-34
    [14]Heald M T, Larese R E. Influence of coatings on quartz cementation[J], Journal of Sedimentary Petrology,1974,44:1269-1274
    [15]Hooper E C D. Fluid migration along growth faults in compaction sediments[J]. Journ Petrol Geol, 1991,14(2):181-196
    [16]Houseknecht D W, Hathon L A. Relationships among thermal maturity, sandstone diagenesis, and reservoir quality in Pennsylvanian strata of the Arkoma basin[J]. AAPG Bulletin,1987,71:568-569
    [17]Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990,74:1-12
    [18]Keith M H &Weber J N. Isotopic compositon and environmental classification of selected limestones and fossils[J]. Geochin Cosmochim Acta.1964,28:1787-1816
    [19]Karlsen D A, Nedkvitne T and Larter S R. Hydrocarbon Composition of authigenic inclusions: Application elucidation of petroleum reservoir filling history[J]. Geochim. Cosmochim. Acta,1993, 57:3641-3659
    [20]Liu Keyu, Peter Eadington. Quantitative fluorescence techniques for detecting residual oils and reconst ructing hydrocarbon charge history[J]. Organic Geochemistry,2005,36:1023-1036
    [21]Litwin R J. Fertile organs and in situ spores of ferns from the Late Triassic Chinle Formation of Arizona and New Mexico, with discussion of the associated dispersed spores[J], Rev. Palaeobot. Palynol,1985,44:101-146
    [22]Lowe D R. Sediment gravity flows:Depositional models with special reference to the deposits of high-density turbidity currents[J]. Sediment Res,1982,152(1):279-297
    [23]Mowers T T and Budd D A.1996. Quantification of porosity and permeability reduction due to calcite cementation using computer assisted petrographicimage analysis techniques [J]. AAPG Bulletin, 80(3):309-322
    [24]Mutti E, Ricci Lucchi F.Turbidite facies and facies associations. In:E. Mutti et al. eds. Examples of Turbidite Facies and Associations from Selected Formations of the Northern Apennines. Field Trip Guidebook A-ll,9th Internatinal Association of Sedimentologists Congr., Nice,1975,21-36
    [25]Mutti E. Turbidite Sandstones[M]. Milan.Italy:AGIP Special Publication,1992:275
    [26]Pikering K T, Stow D A V, Watson M P, Hiscott R N. Deep water facies, process and models:a review and classification schem for modern and ancient sediments. Earth Science Review,1986,23: 75-174
    [27]nz I A, Iden K, Johansen H and Vagle K. The fluid regime during fracturing of the Embla field, central through NorthSea[J]. Marine and Petroleum Geology,1998,15(8):751-768
    [28]Munz, I A, Petroleum inclusions in sedimentary basins:Systematics, analytical methods and applications[J]. Lithos.2001,55:195-212
    [29]Nedkvitne T, Karlsen D A, Bjorlykke K et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea[J].Mar. Petrol.Geol,1993,10:255-270
    [30]Parnell J, Carey P, Monson B. Timing and temperature of decollement on hydrocarbon source rock beds incyclic lacustrine successions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1998, 140(1-4):121-134
    [31]Petrychenko O, Peryt T M and Roulston B. Seawater composition during deposition of visean evaporites in the Moncton subbasin of new brunswick as inferred from the fluid inclusion study of halite[J]. Can. Jour. Earth Sci.,2002,39(2):157-167
    [32]Pittman E D. recent adcances in sandstone diagenesis[J]. Annual Review of Earth and Planetary Sciences.1979,7:39-62
    [33]Price N J.1966. Fault and joint development in brittle and scmibrittle rock[M]. London:Pergamon Press,175
    [34]Rogers K M and Savard M M. Geochemistry of oil inclusions in sulfide related calcites fingerprinting the source of the sulfate reducinghydrocarbons of the Pb Zn carbonate hosted Jubilee deposit of Nova Scotia,Canada[J]. Applied Geochemistry,2002,17(2):69-77
    [35]Rose Itansen J and Konnerup Modsen J. Advances and trend in fluid inclusion research in Danmark. 1995, APIFIS Newsletter,68-77
    [36]Ruble T E, George S C, Lisk M N and Quezada R A. Organic compounds trapped in aqueous fluid inclusions[J]. OrganicGeochem.,1998,29(1—3):195-205
    [37]Schmidt V, McDonald D A, Platt R L. Pore geometry and reservoiraspects of secondary porosity in sandstones [J]. Bulletin of Canada Petroleum Geology,1977,25:271-290
    [38]Schmidt V and MacDonald D A. Secondary reservoir porosity in the course of sandstone diagenesis[J]. AAPG Continuing Course Note Series 1982,12,1-65
    [39]Schmoker J W and Gautier D L. Sandstone porosity as function of thermal maturity —an approach to porosity comparison and prediction[J]. Geology,1988.16(11):1697-1703
    [40]Shanmugam G, Lehtonen L R, Straume T, Syversten S E, et al. Slump and debrisfow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61°-67N°):implications for sand distribution[J]. American Association of Petroleum Geologists Bulletin.1994,78:910-937
    [41]Shanmugam G. High density turbidity currents, are they sandy debris fows? [J]. Journal of Sedimentary Research,1996,66:2-10
    [42]Shanmugam G.50 Years of the turbidite paradigm:deep-water processes and faciesmodels a critical perspective [J]. Marine and Petroleum Geology,2000,17:285-342
    [43]Shanmugam G. A preliminary experimental study of turbidite fan deposits discussion[J]. Journal of Sedimentary Research,2003,73(5):838-841
    [44]Stasiuk L D, Snowdon L R. Fluoresence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusion:Crude oil chemistry, density and application to petroleum migration. Applied Geochemistry,1997,12:229-241
    [45]Surdam R C, Boese S W and Crossey L J. The chemistry of secondary porosity in:MacDonald D A and Surdam R C. eds. Clastic Diagenesis. AAPGMemoir,1984,37,127-149
    [46]Surdam R C, Crossey L J, Hangen E S and Heasler H P. Organic inorganic interaction and sandstone diagenisis[J]. AAPG Bulletin,1989,73(1):1-23
    [47]Surdam R C, Jiao Z S and MacGowan D B. Redox reaction involving hydrocarbons and mineral oxidants:A mechanismfor significant porosity enhancement in sandstones [J]. AAPG Bulletin,1993, 77(9):1509-1518
    [48]Ungerer P M, Burrus B, Doligez P Y. Basin evaluation by integrated two dimensional modeling of heat transfer, fluid flow, hydrocarbon generation and migration[J]. AAPG Bulletin,1990,74(3): 309-335
    [49]Traverse A. Paleopalynology[M]. Boston:Unwin Hyman,1988,1-600
    [50]Walderhaug O. Kinetics modeling of quartz cementation and porosity loss in deeply buried sandstones reservoirs. AAPG Bulletin,1996,80(5):731-745
    [51]Wang Chi-yuen and Xinong Xie. Hydro fracturing and episodic fluid flow in shale-rich basins —A numerical study[J]. AAPG Bulletin,1998,82:1857-1869
    [52]Wolf K H, Chilingar G V, eds. Diagenesis IV [M]. Amsterdam:Elsevier,1994:519
    [53]ZengerD H, Dunham J B, Ethington R L. Concep ts and models of dolomitization[J]. SEPM Special Publication,1980,28:426
    [54]DZ/T0217-2005,石油天然气储量计算规范[S]
    [55]陈道公,E. Deloule,倪涛.大别地体新店榴辉岩变质锆石U-Pb年龄和氧同位素研究[J].中国科学D辑,2005,35(8):691-699
    [56]陈建平,查明.准噶尔盆地环玛湖凹陷二叠系不整合特征及其在油气运移中的意义[J].石油勘探与开发.2002.29(4):29-31
    [57]陈建平,查明,周瑶琪.有机包裹体在油气运移研究中的应用综述[J].地质科技情报.2000.19(1):6l-64
    [58]陈全红,李文厚,郭艳琴,等.鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J].地质学报,2006,80(5):656-663
    [59]陈章明,张云峰,韩有信,等.凸透状砂体聚集油模拟实验及其机理分布[J].石油实验地质,1998,20(2):166-170
    [60]邓秀芹,岳乐平,滕志宏,等.塔里木盆地周缘库车组、西域组磁性地层学初步划分[J].沉积学报,1998,16(2):82-87
    [61]邓秀芹,蔺昉晓,庞锦莲,等.鄂尔多斯盆地三叠系延长组湖盆沉积格架研究.长庆油田内部报告.2006:29-30
    [62]邓秀芹,刘新社,,惠潇,等.岩心磁组构分析古水流方向的原理与应用[J].西北大学学报,2007,37(6):896-900
    [63]邓秀芹,蔺防晓,刘显阳,等.鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J].古地理学报,2007,10(2):159-166
    [64]邓秀芹,李文厚,刘新社,庞锦莲,刘鑫.鄂尔多斯盆地中三叠统与上三叠统地层界线讨论[J].地质学报,2009,83(8):1089-1096
    [65]邓秀芹,李文厚,李士祥,等.鄂尔多斯盆地华庆油田延长组长6油层组深水沉积组合特征[J].地质科学.2010,45(3):745-756
    [66]邸领军,张东阳,王宏科.鄂尔多斯盆地喜山期构造运动与油气藏[J].石油学报,2003,24(2):37-40
    [67]丁仲礼,孙继敏,朱日祥,等.黄土高原红粘土成因及上新世北方干旱化问题[J].第四纪研究,1997,(2):147-157
    [68]段毅,吴保祥,张辉,等.鄂尔多斯盆地西峰油田原油地球化学特征及其成因[J].地质学报,2006,80(2):301-310
    [69]段毅,吴保祥,郑朝阳,等.鄂尔多斯盆地西峰油田油气成藏动力学特征[J].石油学报,2005,26(4):29-33
    [70]高先志,陈发景.应用流体包裹体研究油气成藏期次——以柴达木盆地南八仙油田第三系储层为例[J].地学前缘,2000,(04):548-554
    [71]冯乔,马硕鹏,樊爱萍.鄂尔多斯盆地上古生界储层流体包裹体特征及其地质意义[J].石油与天然气地质.2006,27(1):27-32
    [72]付广,薛超飞,付晓飞.油气运移输导系统及其对成藏的控制[J].新疆石油地质.2001,22(1)24-27
    [73]付金华,郭正权,邓秀芹.鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J].古地理学报,2005,7(1):34-44
    [74]付锁堂,邓秀芹,庞锦莲.晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析[J].沉积学报.2010,28(6):1081-1089
    [75]郭正权,张立荣,楚美娟,等.鄂尔多斯盆地南部前侏罗纪古地貌对延安组下部油藏的控制作用[J].古地理学报,2008,10(1):63-72
    [76]何登发,赵文智,雷振宇,等.中国叠合型盆地复合含油气系统的基本特征[J].地学前缘,2000,(03),7(3):23-38
    [77]何光明,高如曾.分形理论在裂缝预测中的尝试[J].石油物探,1993,32(2):1-13
    [78]侯建国,林承焰,姚合法,等.断陷盆地成藏动力系统特征与油气分布规律-以苏北盆地为例[J].中国海上油气,2004,16(6):361-364
    [79]胡见义,徐树宝,童晓光.渤海湾盆地复式油气聚集区(带)的形成和分布.石油勘探与开发,1986,13(1):1-8
    [80]黄思静,谢连文,张萌,等.中国三叠系录像砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281
    [81]霍福臣,潘行适,尤国林,等.宁夏地质概论[M].北京:科学出版社,1989
    [82]姜春发,王宗起,李锦铁.中央造山带开合构造[M].北京:地质出版社,2000,55-119
    [83]吉利明,吴涛,李林涛.陇东三叠系延长组主要油源岩发育时期的古气候特征[J].沉积学报,2006,24(3):426-431
    [84]李德生.中国含油气盆地的构造类型[J].石油学报,1982,3(3):1-12
    [85]李德生.中国含油气盆地构造学[M].石油工业出版社,2002:1-580
    [86]李建忠,杨涛,王立武,等.松辽南部大情字井地区断裂构造特征及其控油作用[J].石油勘探与开发,2004,31(1):18-20
    [87]李明诚.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004
    [88]李荣西,席胜利,邸领军.用储层油气包裹体岩相学确定油气成藏期次——以鄂尔多斯盆地陇东油田为例[J].石油与天然气地质,2006,27(2):194-200
    [89]李荣西,金奎励,廖永胜,有机包裹体显微傅立叶红外光谱和荧光光谱测定及其意义[J].地球化学,1998,27(3):244-245
    [90]李丕龙,张善文,宋国奇,等.断陷盆地隐蔽油气藏形成机制—以渤海湾盆地济阳坳陷为例[J].石油实验地质,2004,26(1):3-10
    [91]李文厚,柳益群,冯乔.川口油田长6段油层组储集层特征与油气富集规律[J].岩石学报,1998,14(1):117-127
    [92]李文厚,邵磊,魏红红.西北地区湖相浊流沉积[J].西北大学学报(自然科学版),2001,31(1):57-62
    [93]李文厚,庞军刚,曹红霞,等.鄂尔多斯盆地晚三叠世延长期沉积体系及岩相古地理演化[J].西北大学学报(自然科学版),2009,39(3):501-506
    [94]蔺宏斌,姚泾利.鄂尔多斯盆地南部延长组沉积特性与物源探讨[J].西安石油学院学报(自然科学版),2000,15(5):7-9
    [95]刘超.鄂尔多斯盆地西南缘晚三叠世延长期原盆恢复[D].西安:西北大学,2009
    [96]刘德汉.包裹体研究—盆地流体追踪的有力工具[J].地学前缘,1995,(4):149-154
    [97]刘化清,廖建波,房乃珍,等.鄂尔多斯盆地环县地区长6沉积体系展布特征[J].沉积学报,2005,23(4):584-588
    [98]刘林玉,曲志浩,孙卫,等.新疆鄯善油田碎屑岩中的粘土矿物特征[J].西北大学学报(自然科学版),1998,28(5):443-446
    [99]刘新社,席胜利,付金华,等.鄂尔多斯盆地上古生界天然气生成[J].天然气工业,2000,20(6):19-25
    [100]刘新社,席胜利,周焕顺.鄂尔多斯盆地东部上古生界煤层气储层特征[J].煤田地质与勘探,2007,35(1):37-40
    [101]刘新社,周立发,侯云东.运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏[J].石油学报,2007,28(6):37-42
    [102]刘新社,席胜利,黄道军,等.鄂尔多斯盆地中生界石油二次运移动力条件[J].石油勘探与开发.2008,35(2):143-147
    [103]柳少波,顾家裕.流体包裹体成分研究方法及其在油气研究中的应用[J].石油勘探与开发,1997,24(3):29-33
    [104]柳益群,李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):87-95.
    [105]卢焕章,范宏瑞,倪培,等,流体包裹体[M].北京:科学出版社,2004
    [106]卢欣祥.2000.秦岭花岗岩大地构造图[M].西安:西安地图出版社
    [107]吕正祥,卿淳.川西新场气田上沙溪庙组储层渗透性的地质影响因素.沉积与特提斯地质,2001,21(2):57-64
    [108]康永尚,庞雄奇.油气成藏流体动力系统分析原理及应用[J].沉积学报,1998,16(3):80-84
    [109]梅志超.沉积相与古地理重建[M].西安:西北大学出版社,1994,85-102
    [110]闵琪.深盆气藏与鄂尔多斯盆地[J].低渗透油气田,1998,3(2):126
    [111]潘长春,周中毅,解启来.油气和含油气包裹体及其在油气地质地球化学研究中的意义[J].沉积学报,1996,(4),15-24
    [112]潘立银,倪培,欧光习,等.中国塔里木盆地塔中北坡志留系多期石油充注:流体包裹体和有机地球化学证据[J].岩石学报,2007,23(1):131-136
    [113]潘钟祥.陕北古期中生代植物化石[J].中国古生物志,1936,甲种,4(2):1-49
    [114]潘钟祥.陕北老中生代地层时代的讨论[J].地质学报,1954,34(2):209-215.
    [115]任战利.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J].地球物理学报,1995,38(3):339-350
    [116]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24
    [117]任战利,赵重远.鄂尔多斯盆地与沁水盆地中生代晚期地温场对比研究[J].沉积学报,1997,15(2):134-137
    [118]任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999
    [119]任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J].地质学报,2006,80(5):674-684
    [120]陕西省区域地层表编写组.西北地区区域地层表(陕西省分册)[M].北京:地质出版社,1983,6-19
    [121]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994(3):67-75
    [122]史基安,王金鹏,毛明陆,等.鄂尔多斯盆地西峰油田三叠系延长组长6—8段储层砂岩成岩作用研究[J].沉积学报,2003,21(3):373-380
    [123]施继锡,李本超,傅家谟,等.有机包裹体及其与油气的关系[J].中国科学(B),1987,30(3): 318-326
    [124]施继锡.流体包裹体作为天然气运移标志的研究[J].石油与天然气地质,1991,12(4):185-193
    [125]寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究[J].地质科学,1998,33(2):244-250
    [126]斯行健.陕北中生代延长层植物群[M].京:科学出版社,1956,5:1-144
    [127]宋惠珍,欧阳健,孙君秀,等.裂缝性储集层定量研究的一套新方法[J].地震地质,1994,16(3):254-258
    [128]宋惠珍.脆性岩储层裂缝定量预测的尝试[J].地质力学学报,1999,5(1):76-84
    [129]宋立军,赵靖舟,袁炳强,等.“崆峒山砾岩”形成演化的动力学机制[J].大地构造与成矿学,2009,33(4):508-519
    [130]孙尚如.预测储层裂缝的两种曲率方法应用比较[J].地质科技情报,2003,22(4):71-74
    [131]陶士振.包裹体应用于油气地质研究的前提条件和关键问题[J].地质科学,2006,39(1):77-91
    [132]田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,1(2):20-24
    [133]田世澄,毕研鹏.论成藏动力学系统[M].北京:地震出版社,2000,1-160
    [134]万丛礼,付金华,杨华,等.鄂尔多斯盆地上古生界天然气成因新探索.天然气工业,2004,24(8):1-4
    [135]王建,李云.应用异常流体压力方法预测裂缝发育带[J].勘探地球物理进展,2005,28(6):413-415
    [136]王景,凌升阶,南中虎.特低渗透砂岩微裂缝分布研究方法探索[J].石油勘探开发,2003,30(2):51-53
    [137]王起琮,李文厚,赵虹,等.鄂尔多斯盆地东南部三叠系延长组一段湖相浊积岩特征及意义[J].地质科学,2006,41(1):54-63
    [138]文世鹏,李德同.储层构造裂缝数值模拟技术[J].石油大学学报,1996.20(5):17-24
    [139]吴汉宁, 陈岩,周鼎武.秦岭丹凤群蛇绿岩古地磁学再研究[J].地球物理学报,1992,35(3):361-368
    [140]吴汉宁,常承法,刘椿,等.依据古地磁资料探讨华北和华南块体运动及其对秦岭造山带构造演化的影响[J].地质科学,1990,25(3):201-213
    [141]吴孔友,查明,柳广弟.准噶尔盆地二叠系不整合面及其油气运聚特征[J].石油勘探与开发,2002,29(2):53-57
    [142]吴孔友,查明,王绪龙,等.准噶尔盆地成藏动力学系统划分[J].地质论评,2007,53(1): 75-82
    [143]吴欣松,张一伟,方朝亮.油气田勘探.北京:石油工业出版社,2001.8-10
    [144]谢秋元,孙国凡,李云龙,等.陕甘宁盆地石油地质普查总结报告(内部报告).1974
    [145]席胜利,刘新社.鄂尔多斯盆地中生界石油二次运移通道研究[J].西北大学学报(自然科学版),2005,35(5):628-632
    [146]夏能新,杨琦.F指标法在岩石裂隙分析中的应用[J].华东油气勘查,1993.13(3):34-41
    [147]杨华,付金华,喻建.陕北地区大型三角洲油藏富集规律及勘探技术应用[J].石油学报,2003,24(3):6-10
    [148]杨华,付金华,喻建,等.陕北地区三角洲岩性油藏成藏特征及勘探方法(英文)[J].Petroleum Science,2004,11(2):69-78
    [149]杨华,张文正.论鄂尔多斯盆地长_7段优质油源岩在低渗透油气成藏富集中的主导作用[J].地质地球化学特征,地球化学,2005,34(2):147-154
    [150]杨华,邓秀芹,庞锦莲,等.鄂尔多斯盆地延长组湖盆中部大型复合浊积体发育特征及浊积岩形成控制因素分析[J].西北大学学报(自然科学版),2006,36(增刊):1-5
    [151]杨经绥,许志琴,李海兵,等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志,2005,24(5):369-380
    [152]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002,104-105
    [153]杨飏,郭正权,黄锦绣,等.鄂尔多斯盆地西南部延长组过剩压力与油藏的关系[J].地球科学与环境学报,2006,28(2):49-53
    [154]杨友运.鄂尔多斯盆地南部延长组沉积体系和层序特征[J].地质通报,2005,24(4):369-372
    [155]杨振宇, Montcornet钻井岩芯的古地磁研究。地球物理学报,1998,41(5):653-657
    [156]叶加仁,王连进,邵荣.油气成藏动力学中的流体动力场[J].石油与天然气地质,1999,20(2):182-185
    [157]雍克岚.三维荧光指纹技术及其在石油地球化学勘探中的应用[J].石油实验地质,1992,4(11):432-441
    [158]喻建,邓秀芹,罗晓容.鄂尔多斯盆地晚三叠世西部沉积物源综合分析[J].西北大学学报(自然科学版),2006,36(增刊):26-30
    [159]余钦范,郑敏.岩石磁组构分析及其在地学中的应用.地质出版社,北京,1992
    [160]袁万明,莫宣学,喻学惠,等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评,2000, 46(2):203-211
    [161]岳乐平,王建其,邸世祥,等.油气田钻井岩芯及岩芯裂缝方位[J].地球物理学进展,1997,12(3):71-76
    [162]岳乐平,张云翔,邓秀芹,等.5.30Ma以来华北哺乳动物群与磁性地层序列[J].地层学杂志,1998,22(3):206-210
    [163]钟广法,杜社卿,侯方浩.泌阳凹陷核三下亚段砂岩成岩作用及初级性[J].矿物岩石,1996,16(2):40-46
    [164]曾溅辉,王洪玉.输导层和岩性圈闭中石油运移和聚集模拟实验研究[J].地球科学-中国地质大学学报,1999,24(2):193-196
    [165]曾溅辉,金之钧.油气二次运移和聚集物理模拟[M].北京:石油工业出版社,2000
    [166]曾联波,郑聪斌.陕甘宁盆地区域裂缝成因及其地质意义[J].中国区域地质,1999,18(4):391-396
    [167]曾联波.低渗透砂岩油气储层裂缝及其渗流特征[J].地质科学,2004,39(1):11-17
    [168]曾联波,李忠兴,史成恩,等.鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因[J].地质学报,2007,81(2):174-180
    [169]曾伟.张强凹陷上侏罗统成岩作用及储层分布[J].西南石油学院学报,1996,18(4):9-15
    [170]张国伟,张本仁,袁学诚,等著.秦岭造山带与大陆动力学[M],科学出版社,2001
    [171]张泓,白清昭,张笑薇,等.鄂尔多斯聚煤盆地形成与演化.西安:陕西科学技术出版社,1995,1-165
    [172]张俊,庞雄奇,姜振学,等.东营凹陷砂岩透镜体油气成藏机理及有利区预测[J].地球科学—中国地质大学学报,2006,31(2):250-256
    [173]张抗.鄂尔多斯断快构造和资源[M].陕西西安,陕西科学技术出版社,1989,193-222
    [174]张莉.陕甘宁盆地储层裂缝特征及形成的构造应力场分析[J].地质科技情报,2003,22(2):21-24
    [175]张树林.复式成藏动力学[J].现代地质,1997,11(4):522-528
    [176]张涛,贺静,蔺防晓,等.崆峒山砾岩的分布特征及其石油地质意义[J].西北大学学报(自然科学版),2006,36(增刊):151-155
    [177]张文正,李剑峰,普川莉.鄂尔多斯盆地上古生界深盆气形成的气源条件研究[J].低渗透油气田,1998,13(2):13-23
    [178]张文正,杨华,李剑锋,等.论鄂尔多斯盆地长_7段优质油源岩在低渗透油气成藏富集中的 主导作用—强生排烃特征及机理分析[J].石油勘探与开发,2006,33(3):289-293
    [179]张兴阳,罗顺社,何幼斌.沉积物重力流—深水牵引流沉积组合——鲍玛序列多解性探讨[J].江汉石油学院学报,2001,23(1):1-5
    [180]张义纲,陈彦华,陆嘉炎,等.油气运移及其聚集成藏研究[M].南京:河海大学出版社,1997
    [181]赵孟为,Behr H J鄂尔多斯盆地三叠系镜质体反射率和地热史[J].石油学报,1996,17(2):15-23
    [182]赵文智,何登发,宋岩,等.中国陆上主要含油气盆地石油地质基本特征[J].地质论评,1999,45(5):232-230
    [183]赵文智,胡素云,汪泽成,等.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5):1-5
    [184]赵文智,邹才能,汪泽成,等.富油气凹陷“满凹含油”论—内涵与意义[J].石油勘探与开发,2004,31(2):5-13
    [185]赵文智,王新民,郭彦如,等.鄂尔多斯盆地西部晚三叠世原型盆地恢复及其改造演化[J].石油勘探与开发.2006,33(1):6-13
    [186]赵文智,汪泽成,王红,等.中国中、低丰度大油气田基本特征及形成条件[J].石油勘探与开发,2008,35(6):641-650
    [187]赵忠新,王华,郭齐军,等.油气输导体系的类型及其输导性能在时空上的演化分析[J].石油实验地质,2002,24(6):527-533
    [188]郑德文,张培震,万景林,等.西秦岭北缘中生代构造活动的40Ar/39Ar、FT热年代学证据[J].岩石学报,2004,20(3):697-706
    [189]郑德文,张培震,万景林,等.六盘山盆地热历史的裂变径迹证据[J].地球物理学报,2005,48(1):157-164
    [190]钟大康,朱筱敏,张琴.不同深埋条件下砂泥岩互层中砂岩储层物性变化规律[J].地质学报,2004,78(6):863-871
    [191]钟玉芳,马昌前,佘振兵.锆石地球化学特征及地质应用研究综述[J].地质科技情报,2006,25(1):27-35
    [192]周文,胡文艳.埕岛潜山带裂缝分布评价[J].复式油气田,1999.2:14-17
    [193]周新桂,孙宝珊,李耀辉.辽河张强凹陷科尔康油田储层裂隙预测研究[J].地质力学学报,1998,4(3):70-75
    [194]周新桂.辽河科尔康油田断裂分形特征与油气关系[J].地质力学学报,1997,3(1):81-87
    [195]朱桂海,J ame M B三维全扫描荧光光谱在海洋石油勘探中的应用[J].石油实验地质,1987,3(4):240-248
    [196]朱国华.陕北浊沸石次生孔隙砂体的形成与油气关系[J].石油学报,1985,6(1):1-8
    [197]朱国华.陕北延长组成岩圈闭油藏的形成及其重要意义[J].沉积学报,1988,6(4):1-11
    [198]朱日祥,杨振宇,吴汉宁,等Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic[J]中国科学(D)(英文版),1998,41(Supp.)1-19
    [199]邹才能,陶士振,薛叔浩,等.“相控论”的内涵及其勘探意[J].石油勘探与开发,2005,32(6):7-12
    [200]邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发,2008,35(5):526-540
    [201]邹才能,赵文智,张兴阳,等.大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J].地质学报,2008,82(6):813-824
    [202]邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为[J].沉积学报,2009,27(6):1065-1076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700