用户名: 密码: 验证码:
吉林敦化地区草炭土特性的时间效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着吉林省线路工程的逐渐发展,国道省道的建设不断穿越了被誉为“地球之肾”的沼泽湿地环境,草炭土湿地就是其中的一种。这种土具有低密度、高含水率、高压缩性、低强度、低分解度等特性,一般很难满足工程需要。采用怎样的地基处理方式对草炭土进行处理,既能满足工程安全需求,又能保持原湿地的水利环境成为该研究阶段的重中之重。
     本文结合国家自然科学基金项目“季冻区沼泽草炭土特性的时间效应研究”(No.40772169)和吉林省交通厅多项有关草炭土的科技项目,针对草炭土特殊的时间效应进行了野外勘察和取样、野外监测和室内模拟与分析。
     本文以吉林省敦化地区草炭土为研究对象,首先采用自然剖面法分析不同形成年代草炭土性质的变化,即自然历史上季冻区草炭土特性的变化。由于草炭土基本按照成层方式沉积,因此,对研究区不同深度草炭土的特性进行研究进而反映不同年代草炭土的特性变化规律;并主要从基本物理力学性质、特殊的微观结构以及结构强度等方面进行分析。其次,研究草炭土在工程短期内的性状变化机制,分别研究在进行地基处理后对比2004年和2009年天然草炭土特性的变化规律以及2009年天然草炭土和地基下草炭土的特性变化特征,预测未来草炭土特性的变化趋势;并通过对比研究,提出在保证工程安全和保护湿地的前提下,适合草炭土湿地地区的地基处理方法。最后,利用标准应力路径应力控制三轴试验仪对草炭土路基填筑过程进行室内模拟,研究在分级填筑的过程中地基草炭土的应力、应变、孔隙水压力以及地基强度等指标的变化特征。
With the development of economic construction in Jilin Province, railways, highways andother line engineering has gradually increased. There are many line projects which werecontributed to promote the traffic outside the province are under construction in JilinProvince currently. Many engineering are across the wetland environment unavoidablebecause of the long distance and high standard feature of line engineering. Especially theroad of Jilin to Hunchun and Heda highway are through a typical peat soil wetlands-turfysoil. Turfy soil is a class of quagmire, which is formed at the adequate rainfall and restoreenvironment, with the characteristics of high organic matter content, large void ratio, highcompression and low degree of decomposition. It is very difficult to meet the engineeringneeds with the special engineering properties. The engineering properties of turfy soil havesignificant time effect because the decomposition and organic matter content of plantresidue will change over time, causing a large number of undecomposed plant roots in turfysoil. The normal operation of turfy soil road will be effect by the change of engineeringproperties of turfy soil foundation, causing the original material composition, physicalproperties, mechanical properties and water properties of turfy soil will change with timegoing. The characteristics study of turfy soil with time going has the great theoretical andpractical value in order to avoid the construction accidents which are caused by engineeringproperties of turfy soil evolution over time.
     For the above reasons and necessity of the study, this paper were studied on the time effectproperties of turfy soil under the support of the National Natural Science Foundation ofChina " study on the engineering geological characteristics of turfy soil considering timeeffect in seasonal frost region " and " The highway construction technology of turfy soilarea ", etc four transportation construction projects in Jilin Province.
     The study began with the field survey of systematic study the formation and thesedimentary characteristics of turfy soil. A lot of field sampling and laboratory tests arecarried out in order to analysis the physical properties, chemical characteristics andmechanical properties of turfy soil at the year of 2004 and 2009. And also it is that using advanced equipment and technology to research the microstructure, mineral compositionand formation age. The study of time effect will use the natural profiling and constructoperation testing method to study the engineering geological characteristics of turfy soil onthe basis of indoor test data with time going under the natural history and engineering life.And giving the best foundation treatment which is not only meet the requirement offoundation bearing capacity, but also adapt the permeability, water conditions, drainagepath, water holding capacity and other aspects in wetland by comparing the moisturecontent, permeability and other changes of natural turfy soil in different foundationtreatment sections before and after embankment construction.
     It gains the following results through the study on the time effect characteristics of turfysoil in Dunhua region:
     1. Study on the transformation mechanism, engineering properties, formation ages andother properties of turfy soil at Dunhua region:
     1) Jilin Dunhua is located in the Northeast Plain wetland environment. Turfy soil is atransitional soil that is not swamped completely.
     2) The turfy soil is a kind of peat which has small density, high water content, highpermeability, large pore, acidic, high organic matter, high compressibility and formed lessthan 1 million years according to the indoor test results in Dunhua region (includingHuangsongdian section, Largestone town section and Jiangyuan town section).
     2. The qualitative and quantitative characteristics research on physical, mechanical,chemical and micro-structural of turfy soil at Heda road show that:
     1) The study area which has the characteristics of loose structure, low decomposition andlarge permeability that the vertical greater than or equal to the horizontal permeability isHolocene sediment and deposit unevenly. With the degree of decomposition increasing, thestructure of turfy soil changes from aerial structure to flocculation structure gradually; andthe porosity decrease, the structure gradually become denser than before. The sensitivitytest results show that the sensitivity of turfy soil is small and belonging to the lowsensitivity soil, which does not have structural properties and structural strength is weak.
     2) Using IPP software to quantitative analysis the pore characteristics of peat soil atdifferent depth. The results show that the direction angle of porosity is greater than 75°. It is illustrate that the soil have certain direction, large pores, flat pore shape and poorcircularity. And different depths have different pore directions. The pore direction anglereduced and the pore shape is changed from flat to round with the embedded depthincreased.
     3) We can see from the stress path graph of turfy soil that pore water pressure exit lagphenomenon and the lag time increased with the confining pressure increased. The porewater pressure increased dramatically when the lag time ended. It will lead the effectivestress reduce rapid.
     3. The evolution of engineering geological characteristics of turfy soil under project life areas follows:
     1) The density of natural turfy soil become larger over time and the increasing multiple isdecreased with the embedded depth increased, while the soil particle density is contrast.
     2) The moisture contents variation of turfy soil over time are different at differentfoundation treatment sections. The permeability of deeper and deep turfy soil will impactlowly after filling with porous materials to treat foundation. It means that this method donot change the penetration path and destruct the wetland ecology. So this foundationtreatment can be used at turfy wetland areas. Using gravel weathered rock plus compositeearthwork cloth to treat foundation have less environmental impact and the method can beused in turfy wetland area also.
     But sand pile foundation treatment is not suitable to use in wetland areas from theperspective of protecting wetlands point of view. Because it can be speed up the drainageand consolidation; and it will increase the vertical permeability of the turfy soilsignificantly. This method can also change the original water channel that let a lot of wateralong the surface of turfy soil down into the sand pile. It will impact the wetlandenvironment of turfy soil.
     3) The mechanical properties of turfy soil over time are changed. Compression indexchanged over time show that the properties of secondary consolidate compression of turfysoil have greater impact over time.
     4. Using GDS stress control device to simulate the subgrade of turfy soil, the test results areas follows:
     1) At the load (shear) stage, the pore water pressure dissipation level is affected directlyunder different drainage ways. Due to the pore water pressure can not be dissipated, theeffective stress and foundation strength reduced and the soil deformation increased with theincrease of load on the cover.
     2) Faster loading rate will cause a large amount of pore pressure changes and grounddeformation. The ground strength decreases rapidly and the stability of foundation isaffected with faster loading rate. And slow loading can reduce the deformation and increasethe strength of foundation, but it will increase loading time substantially.
     3) The pore pressure, deformation and stress path have little difference under different testconditions on the various samples of turfy soil in the initial load (shear) and theconsolidation phase. The study results show that the characteristics of turfy soil depend onthe initial consolidation state.
     4) The study on the foundation compression modulus variation of turfy soil shows that thestrength of turfy soil decrease with the loading carry on. The foundation strength is notaffected significant under different drainage test conditions; but different loading rate willimpact the foundation strength. The foundation strength will be decrease as the loadinggradually; and stop loading consolidation process will increase the soil strength, which isfully demonstrated that the safety and necessity of the need of grade filling embankment.
引文
[1]中国土壤学会土壤分类会员会中国科学院南京土壤研究所土壤地理研究室.土壤分类及土壤地理论文集[M].杭州:浙江人民出版社,1979.
    [2]纪青山,栾海,韩一波,等.延边地区草炭土工程特性分析[J].吉林交通科技,2003,(3):3-7.
    [3]赵华,佴磊,敦化地区草炭土的工程性质研究[J],岩土工程技术,2004(6),311-314.
    [4]韩兴广,佴磊,草炭土路基处理方法研究[J],世界地质,2004,23(4):391-396.
    [5]沈世伟,佴磊.草炭土铁路路基工程处理研究[J].铁道建筑, Feb. 15,2010,61-64.
    [6]江娟.鹤大公路试验段草炭土路基极限填高研究[D].长春:吉林大学, 2005.
    [7]于炎鑫,佴磊,刘建磊,等.草炭土路堤稳定性分析及工程处理措施研究[J].铁道建筑,Apr.15,2010,72-75.
    [8]李淼.江密峰至黄松甸段一级公路软土地区路基固结沉降特性[D].长春:吉林大学, 2006.
    [9]柳雁玲.草炭土路基沉降与变形特性研究[D].长春:吉林大学, 2006.
    [10]徐燕.季冻区草炭土变形工程地质特性及变形沉降研究[D].长春:吉林大学,2008.
    [11]刘飞,佴磊,吕岩,等.分解度对草炭土结构特征及强度的影响试验[J].吉林大学学报(地球科学版),2010, 40(6):1395-1400.
    [12]刘飞,佴磊,吕岩,等.草炭土路基填筑过程力学特性试验研究[J].吉林大学学报(地球科学版),2011, 41(2):505-510.
    [13]牛焕光,张养贞.东北地区沼泽[J].自然资源,1980,(2):53-63.
    [14]黄锡畴.试论沼泽的分布和发育规律[J].地理科学,1982,2(3):193-201.
    [15]孙广友,试论沼泽与冻土的共生机理-以中国大小兴安岭地区为例[J],冰川冻土,2000,22(4):309-316.
    [16]陆健健,何文珊,童春富.湿地生态学[M].北京:高等教育出版社,2006.
    [17]陈静,张树文,张养贞.近十五年来东北地区沼泽湿地变化研究[J].内蒙古师范大学学报(自然科学汉文版),2009,38(1):85-91.
    [18]柴岫.中国泥炭的形成与分布规律的初步探讨[J].地理学报,1981,36(3):237-253.
    [19]陈淑云,金树仁.中国草本泥炭的性质及其利用途径[J].东北师大学报自然科学版,1984,(2):93-103.
    [20]白光润,王升忠,冷雪天,等.草本泥炭形成的生物环境机制[J].地理学报,1999,54(3):247-254.
    [21]马学慧,王荣芬.我国泥炭基本性质的区域分异[J].地理科学,1991,11(1):30-41.
    [22]尹春善.中国泥炭资源[J].地学前缘(中国地质大学,北京),1999,6(sup.):116-124.
    [23]尹善春等.中国泥炭资源及其开发利用[M].北京:地质出版社,1991.
    [24]温孝胜,彭子成,赵焕庭.中国全新世气候演变研究的进展[J].地球科学进展,1999,14(3):292-298.
    [25]赵红艳,王升忠,白燕,冷雪天,近10年来我国泥炭地学的研究进展[J],地球科学进展,2002,17(6):848-854.
    [26]殷书柏,吕宪国.“泥炭气候成因说“的探讨[J].地理科学,2006,26(3):321-327.
    [27]郎惠卿.兴安岭和长白山地森林沼泽类型及其演替[J].植物学报,1981,23(6):470-477.
    [28]陈淑云,郎惠卿,王升忠,等.东北山地贫营养泥炭的性质与泥炭的发育过程[J].东北师大学报自然科学版,1994,(4):100-104.
    [29]赵红艳,冷雪天,王升忠,长白山地泥炭分布、沉积速率与全新世气候变化,山地学报[J],2002,20(5):513-518.
    [30]赵红艳,王升忠,李鸿凯,长白山地区全新世泥炭剖面地球化学特征及其古环境意义[J],古地理学报,2004,6(3):356-362.
    [31]徐惠风,刘兴土,金研铭.长白山区沟谷湿地乌拉草苔草沼泽土壤环境效应[J].2005,24(4):742-745.
    [32]孙铁,魏晶,吴钢,等.长白山高山冻原土壤呼吸及其影响因子分析[J].生态学杂志,2005,24(6):603-606.
    [33]张新荣,胡克,胡一帆,等.东北地区以泥炭为信息载体的全新世气候变迁研究进展[J].地质调查与研究,2007,30(1):39-45.
    [34]鲍锟山,贾琳,王国平.长白山区泥炭沼泽磁化率特征及其环境意义[J].湿地科学,2009,7(4):321-326.
    [35]赵红艳,王升忠,何春光,吉林省敦化地区泥炭成矿类型及性质[J],东北师大学报自然科学版,2001,33(2):93-96.
    [36]赵红艳,白燕,赵霞,敦化泥炭矿物质组成的研究[J],东北师大学报自然科学版,2002,34(1):77-80.
    [37]赵红艳,郄瑞卿,白燕,李舸民,敦化大桥泥炭土有机质及其组分研究[J],吉林农业大学学报,2002,24(3):65-67.
    [38]赵红艳,王升忠,周道玮.泥炭记录的近2200年吉林省敦化盆地的气候变化[J].东北大学学报,2005,37(4): 111-115.
    [39]张新荣,胡克,刘莉莉.吉林省敦化地区全新世泥炭沉积中植硅体分析[J],微体古生物学报,2005,22(2):202-207.
    [40]赵红艳,周道玮,吉林省敦化地区晚全新世泥炭沼泽孢粉组合特征及古植被[J],应用生态学报,2006,17(2):197-200.
    [41] V. G. Bulychey, L. S. Amaryan, E. T. Bazin. Field studies on the strain and strengthproperties of peat soil[J]. Fundamenty I Mekhanika Gruntov, 1966, (3):22-24.
    [42] V. A. Zaitseva, S. V. Nikonenko, Z. A. Nichiporovich. Influence of humidity on the opticalcharacteristics of woodland peat soils[J]. Journal of Applied Spectroscopy, 1994,61:632-636.
    [43]白燕赵红艳,祖文辰,等.中国东北与白俄罗斯泥炭藓泥炭特性的对比研究[J].东北师大学报自然科学版,1997,(2):98-103.
    [44]张则有,陈扬乐,白燕,等.中国东北地区与白俄罗斯泥炭特性及开发利用的对比研究[J].东北师大学报自然科学版,1997,(1):100-109.
    [45] Li YUN-FENG, XU JIAN-MIN, WANG SHI-JIE, et al. Characterization of soil humin byacid hydrolysis[J].Chinese Journal of Geochemistry, 1999, 18(4):333-339.
    [46] M.J. O'MAHONY, A. UEBERSCHAER. Bearing capacity of forest access roads built onpeat soils [J]. Journal of Terramechanics, 2000, 37:127-138.
    [47] XIA YU-MEI, WANG PEI-FANG. Peat record of climate change for the last 3000 years inYangmu, Mishan region of Sanjiang Plain[J].Journal of Geographical Sciences, 2001,11(4):454-460.
    [48] Sawahiko Shimada, Hidenori Takahashi, Akira Haraguchi, et al.The carbon contentcharacteristics of tropical peats in central kalimantan,indonesia estimation their spatial variability indensity[J]. Biogeochemistry, 2001, 53:249-267.
    [49]刘永和,孟宪民,王忠强,等.1995年以来国外泥炭及泥炭的研究进展[J].生态环境,2003,12(1):86-91.
    [50] Lars Zetterberg, Stefan Uppenberg, Markus ?hman.Climater impact from peat utilistationin Sweden[J]. Mitigation and Adaptation Strategies for Globel Change, 2004,9:37-76.
    [51] JULIAN DEISSA, CARL BYERSA. Transport of lead and diesel fuel through a peat soilnear Juneau AK: a pilot study[J], Journal of Contaminant Hydrology, 2004, 74:1-18.
    [52] L. I. INISHEVA. Peat soils: Genesis and classification [J]. Eurasian Soil Science, 2006, 39(7):699-704.
    [53] E.Beheim. The effect of peat land drainage and afforestation on runoffdynamics[J].Environmental Role of Wetlands in Headwaters,2006,59-75.
    [54] DMITRI MAUQUOY, Dan YELOFF. Raised peat bog development and possible responsesto environmental changes during the mid-to late-Holocene. Can the palaeoecological record be usedto predict the nature and response of raised peat bogs to future climate change?[J]. Biodiversity andConservation, 2008, 17(9):2139-2151.
    [55] Dmitri Mauquoy, Dan Yeloff.Raised peat bog development and possible responses toenvironmental changes during the mid to late Holocene[J]. Biodivers Conserv,2008,17:2139-2151.
    [56] Simon M. Hutchinson, Richard P.Armitage. A Peat Profile Record of Recent EnvironmentalEvents in the South Pennines(UK)[J]. Water Air Soil Pollut, 2009, 199:247-259.
    [57] Colin R. Jackson, Kong Cheng Liew, Catherine M. Yule. Structural and functional changeswith depth in microbial communities in a tropical malaysian peat swamp forest[J].Microb Ecol,2009,57:402-412.
    [58] Lamber T W. Stress paths method[J].Journal of the Soil Mechanics and FoundationDivision,ASCE,1967,93(SM6):309 - 331.
    [59] Prevost J H, Hoeng K. Effective Stress-Strain-Strength Model for Soil, Proc ASCE,JGTD,1975,101(GT3).
    [60] LADE, PV UNIV. CALIF., LOS ANGELES, et al.Stress-path independent behaviorr ofcohesionless soil. GEOTECH.ENGNG DIV. ASCE, V102, GTI, JAN., 1976, P51–68.
    [61] Chen Rong.Acoustic emission of rocks under triaxial compression with various stresspaths[J]. International Journal of Rock Mechanics and Mining Sciences & GeomechanicsAbstracts, 1979, 16(6): 401-405.
    [62] Mervyn E. Jones, Michael A. Addis.The application of stress path and critical stateanalysis to sediment deformation[J]. Journal of Structural Geology, 1986,8(5):575-580.
    [63] F.M.R. Ferfera, J-P. Sarda, M. Boutéca, et al. Experimental study of monophasicpermeability changes under various stress paths[J]. International Journal of Rock Mechanicsand Mining Sciences,Vol. 34, Issues 3-4, 1997, Pages 37.e1-37.e12.
    [64] P. M. T. M. Schutjens, H. de Ruig.The influence of stress path on compressibility andpermeability of an overpressurised reservoir sandstone: Some experimental data [J].Physicsand Chemistry of The Earth, Volume 22, Issues 1-2, 1997, Pages 97-103.
    [65] Fuchu Dai, C. F. Lee, Sijing Wang, et al. Stress–strain behaviour of a looselycompacted volcanic-derived soil and its significance to rainfall-induced fill slope failures[J].Engineering Geology, Volume 53, Issues 3-4, July 1999, Pages 359-370.
    [66] Der-Her Lee, C. H. Juang, Jin-Wen Chen, et al. Stress paths and mechanical behaviorof a sandstone in hollow cylinder tests[J]. International Journal of Rock Mechanics and MiningSciences,1999,36(7) :857-870.
    [67] Silvesti V, Diab R. Stress distributions and paths in clays during pressuremeter tests[J].Canadian Geotechnical Journal, 2001,38(3):542-552.
    [68] Tang-Tat Ng. Macro- and micro-behaviors of granular materials under different samplepreparation methods and stress paths[J]. International Journal of Solids and Structures,2004,41(21):5871-5884.
    [69] Y.P. Yao, D.A. Sun, H. Matsuoka.A unified constitutive model for both clay and sandwith hardening parameter independent on stress path [J].Computers and Geotechnics, Volume35, Issue 2, 2008, Pages 210-222.
    [70]刘祖德,陆士强,杨天林,等.应力路径对填土应力应变关系的影响及其应用[J].岩土工程学报,1982,4(4):45-55.
    [71]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力-应变关系影响[J].岩土工程学报,1987,9(6):78 - 88.
    [72]刘世明.有效应力路径对饱和粘土变形的影响[J].河海大学报,1991,19(6):111– 114.
    [73]徐日庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报,1995,17(4):56-60
    [74]刘元雪,施建勇,伊颖锋,等.一种原状欠压密土的力学特性实验研究[J].岩土力学,2004,25(1):5-9.
    [75]常银生,王旭东,宰金珉,等.粘性土应力路径试验[J].南京工业大学学报,2005,27(5):6– 11.
    [76]常银生.粘性土应力路径的试验研究与分析[D].南京:南京工业大学,2005.
    [77]曾玲玲.软土的结构性及不同应力路径下的力学特性试验研究[D].广州:暨南大学,2007.
    [78]曾玲玲,陈晓平.软土在不同应力路径下的力学特性分析[J].岩土力学,2009,30(5):1264 - 1270.
    [79]戴自航,沈蒲生,程媛彩.土的应力-应变路径若干问题描述[J].岩土工程学报,2004,26(6):854-857.
    [80]刘恩龙,沈珠江.不同应力路径下结构性土的力学特性[J].岩石力学与工程学报,2006,25(10):2058-2064.
    [81]杨雪强,朱志政,韩高升,等.不同应力路径下土体的变形特征与破坏特性[J].岩土力学,2006,27(12):2181-2185.
    [82]张光永,徐辉,王靖涛,等.等p路径下砂土本构关系的归一化特性及数值建模方法[J].固体力学学报,2008,29(1):85-90.
    [83]栾茂田,聂影,杨庆,等.不同应力路径下饱和黏土耦合循环剪切特性[J].岩石力学,2009,30(7):1927-1932
    [84]黄质宏,朱立军,廖义玲,等.不同应力路径下红粘土的力学特性[J].岩石力学与工程学报,2004,23(15):2599– 2603.
    [85]方祥位,陈正汉,申春妮,等.残积土特殊应力路径的三轴试验研究[J].岩土力学,2005,26(6):932– 936.
    [86]张腾,胡再强,吴兴辉,等.不同应力路径下非饱和黄土的结构变化特征[J].岩土力学,2006,27(11):1945– 1948.
    [87]梁燕,谢永利,刘保健.应力路径对黄土固结不排水强度的影响[J].岩土力学,2007,28(2):364– 366.
    [88]陈存礼,郭娟,杨鹏.应力路径对固结排水条件下饱和原状黄土变形与强度特性的影响[J].水利学报,2008,39(6):703-708.
    [89]曹名葆,王德纯.用应力路径法分析路堤的稳定性[J].土木工程学报,1988,21(1):75–84.
    [90]李纲林,刘祖德,邹勇,等.应力路径法在地基沉降计算中的应用[J].武汉大学学报(工学版),2003,36(6):56– 60.
    [91]童怀峰.高填方路基后处理机理及优化设计[D].郑州:郑州大学,2005.
    [92]曹杰.排水固结法在不同应力路径条件下引起软土地基沉降的初步研究[D].南京:河海大学,2006.
    [93]计招红.考虑应力路径变化的路基土的力学特性研究及工程应用[D].重庆:重庆交通大学,2008.
    [94]薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2004.
    [95]王德燕.SPSS统计分析软件包与神经网络相结合在选矿建模中的应用[D].昆明:昆明理工大学,2003.
    [96]高玉山.基于GIS和SPSS的地面沉降研究—以山东省济宁市城区为例[D].重庆:西南师范大学,2004.
    [97]徐兮,张义.SPSS在拱桥轴线变形观测回归拟合中应用[J].重庆交通大学学报(自然科学版),2007,26(6):64-66.
    [98]何小新,吴庆鸣.全断面岩石掘进机主参数回归模型[J].武汉大学学报(工学版),2007,40(2):99-103.
    [99]王孝伟.吉林省高速公路安全评价方法研究[D].长春:吉林大学,2007.
    [100]庞大鹏.诸永高速公路隧道监控量测数据处理及地质超前预报方法研究[D].长春:吉林大学,2008.
    [101]陈义民.多年冻土融沉特性统计分析与分类研究[D].长春:吉林大学,2008.
    [102]逯兰.冻土融化下沉特性试验分析研究[D].长春:吉林大学,2009.
    [103]潘国营,韩怀彦,王永安,等.应用SPSS统计软件和污染指数评价地下水污染[J].焦作工学院(自然科学版),2002,21(3):172-174.
    [104]韦庆.吉林西部草地生态环境退化驱动因子分析及恢复治理措施研究[D].长春:吉林大学,2003.
    [105]赵凤琴.吉林西部土地生态环境安全研究[D].长春:吉林大学,2005.
    [106] Robert Mac Callum.A comparison of factor analysis programs in SPSS, BMDP,and SAS[J]. Psychometrika, 1983,48(2):223-231.
    [107]Christian Holzer, Manfred Precht.Multiple comparison procedures for normallydistributed ANOVA models in SAS, SPSS, BMDP, and MINITAB[J]Computational Statistics& Data Analysis, 1992, 13(3): 351-358.
    [108]Anne B. Koehler.Time Series Analysis and Forecasting with Applications of SASand SPSS[J]. International Journal of Forecasting, 2001, 17(2): 301-302.
    [109] Hongling Guo, Heng Li, Qinping Shen, et al. Real estate confidence index basedon Web GIS and SPSS[J]. International Journal of project Management, 2007, 25(2):171-177.
    [110]焦文强,张景文,李桂英,等.第四纪冰川与第四纪地质论文集(第六集)[C].北京:地质出版社,1990,43-57.
    [111]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [112]刘金枝.堆浸浸出过程数值模拟分析及灰色预测研究[D].长沙:中南大小,2007.
    [113] H.T.科罗利等著,戴国良等译.泥炭的基本性质及其测定方法[M].北京:科学出版社,1989.
    [114]蒋忠信.滇池泥炭土[M].成都:西南交通大学出版社,1994.
    [115]施斌,李立,姜洪涛,等.DIPIX图像处理系统在土体微结构定量研究中的应用[J].南京大学学报,1996,32(2): 275-280.
    [116]梁双华,孙如华,李文平.基于Mapinfo和PhotoShop的粘性土扫描图像处理[J].河南科技大学学报(自然科学版),2005,26(1):55-58.
    [117]张杰,张蕊蕊,胡卜元,等.煤焦SEM图像的表面孔洞分形维数的Matlab实现[J].河北工程大学学报(自然科学版),2007,24(24):40-44.
    [118]赵安平.季冻区路基土冻胀的微观机理研究[D].长春:吉林大学,2008.
    [119]李仪芳,杨冠玲.基于显微图像处理PM2.5尺寸的分布研究[J].中国粉体技术,2005,11:109-113.
    [120] Image-Pro Plus? v 6.0 (For Windows)快速入门指南[M].美国: Media Cybernetics公司,2003.
    [121]张季如,祝杰,黄丽,等.土壤微观结构定量分析的IPP图像技术研究[J].武汉理工大学学报,2008,30(4):80-83.
    [122]王梅.中国湿陷性黄土的结构性研究[D].太原:太原理工大学,2010.
    [123]张先伟.结构性软土蠕变特性及扰动状态模型[D].长春:吉林大学,2010.
    [124] JTJ051-93,公路土工试验规范[M].北京:人民交通出版社,1993.
    [125]韩爱民,乔春元,丁长阳.南京下蜀土结构强度研究[J].工程地质学报, 2009, 17(3): 371-376.
    [126]李国维,蒋华忠,杨涛,等.路堤下深厚软土侧向变形的沉降影响研究[J].岩土力学, 2008,29(10): 2817-2822.
    [127]刘莹,肖树芳,王清.吹填土沉积固化后结构强度增长的机理分析[J].同济大学学报,2003,31(11):1295-1298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700