用户名: 密码: 验证码:
黑龙江省东部晚古生代—早中生代构造演化:碎屑锆石与火山事件的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黑龙江省东部晚古生代早期地层底部砂岩和晚古生代-早中生代火山岩为研究对象,通过对砂岩中碎屑锆石LA-ICP-MS U-Pb年代学研究和物源分析,确定了晚古生代早期地层的沉积下限,并讨论了松嫩—张广才岭地块与佳木斯地块之间的拼贴时间;通过对火山岩中锆石的LA-ICP-MS U-Pb年代学和火山岩的主量、痕量元素及Sr-Nd同位素以及锆石Hf同位素的地球化学研究,确定了火山岩的形成时代,讨论了研究区不同时代火山岩的岩石组合和岩浆源区性质及其形成的构造背景。最终结合区域地质资料,探讨了研究区晚古生代-早中生代区域构造演化历史。
     研究区晚古生代早期地层砂岩碎屑锆石U-Pb定年结果显示:1)小兴安岭滨东早泥盆世黑龙宫组(D1h1)和汤原早泥盆世宝泉组(Dlb)下部石英砂岩中碎屑锆石分别具有:2503、1833、903-802、551-403 Ma和2508、898-749、495-413Ma年龄数据;最年轻的碎屑锆石表明黑龙宫组和宝泉组的沉积作用分别发生在403 Ma和413 Ma之后;大量-2.5Ga、-1.8Ga、903-800Ma古老锆石的存在,暗示在早泥盆世期间,松嫩—张广才岭地块(可能包括额尔古纳地块和兴安地块)之上存在有前寒武纪古老陆壳残片;而黑龙宫组(D1h1)和宝泉组(Dlb)中大量489-551 Ma碎屑锆石的存在——这些年龄的锆石主要分布在佳木斯地块之上,暗示松嫩—张广才岭地块和佳木斯地块的碰撞拼贴在403-413 Ma之前已经完成(应为加里东晚期)。2)佳木斯地块东缘早-中泥盆世黑台组(D1-2ht)砂岩中碎屑锆石具有569、542、509和484Ma年龄数据,这表明其沉积下限为484Ma之后,沉积物源只是佳木斯地块本身。
     研究区火山岩锆石U-Pb定年结果表明,该区晚古生代-早中生代火山作用可分为四期:中-晚泥盆世(-386Ma)、早二叠世(-291Ma)、中二叠世(-268Ma)和晚三叠世(201-217Ma)。中-晚泥盆世佳木斯地块东缘发育双峰式火山岩,暗示被动陆缘环境,而同期小兴安岭地区发育“A”型流纹岩,表明陆内伸展环境;早二叠世佳木斯地块东缘发育钙碱性火山岩组合,暗示活动陆缘背景,而同期张广才岭地区发育典型双峰式火山岩组合,揭示陆内伸展环境:中二叠世佳木斯地块东南缘发育同碰撞型流纹岩类,表明佳木斯地块与兴凯地块此时已经碰撞拼贴;晚三叠世南北向带状展布的“A”型流纹岩的存在,揭示陆内伸展环境,同时表明古亚洲洋构造域与环太平洋构造域的转变应发生于晚三叠世之后。
This thesis studies the provenance and maximum age of deposition of the Late Paleozoic sedimentary strata and the formation time of the Late Paleozoic-Early Mesozoic volcanic rocks in eastern Heilongjiang Province by using LA-ICP-MS zircon U-Pb chronology. Besides, we discuss the nature of magma sources, and their tectonic setting based on major-and trace-elements, and Sr-Nd isotope as well as zircon Hf isotope for these volcanic rocks. These chronological and geochemical data, together with regional tectonic analysis, provide constraints on the Late Paleozoic-Early Mesozoic tectonic evolution in eastern Heilongjiang Province. Main achievements are as follows:
     1. Maximum age of deposition of the Late Paleozoic basins in eastern Heilongjiang Province
     The dating results of detrital zircons from quartz sandstones of the Early Devoniar Heilonggong (D1hl) (in eastern Harbin), the Early Devonian Baoquan (D1b) (in the Lesse: Xing'an Range), and the Early-middle Devonian Heitai formations (D1-2ht) (in eastern margir of the Jiamusi Massif) as well as the formation times of the volcanic rocks within the overlying stratas, reveal that:(1) rocks from the D1hl Formation is deposited after 403 Ma; (2) the Dih and Dib formations are deposited between 413~386 Ma, and 484~390 Ma, respectively.
     2. Remnants of ancient crystalline basement
     Detrital zircon dating results from the Dihl and D1b formations reveal that they wer sourced from regions with rocks as old as~2500,~1833, and 903~800 Ma in addition to th Phanerozoic material. Taking into account the paleomagnetic data, the timing of the final closure of the Paleo-Asian ocean and the researches on the Phanerozoic granites within the CAOB, it appears that these Archean/Proterozoic zircons were derived from a local source close to these Late Paleozoic basins, i.e., several ancient Precambrian crustal remnants exist within the Xing'an, Erguna, and Songnen-Zhangguangcai Range massifs in the Paleozoic.
     3. Timing of the amalgamation of the Songnen-Zhangguangcai Range and Jiamisi massifs
     The dating results show that the D1hl and D1b formations of the Songnen-Zhangguangcai Range Massif contain numerous detrital zircons with ages of 489~551 Ma, similar to the age features of the Mashan Complex, Early Paleozoic gneissic granitoids, and the detrital zircons of the D1-2ht Formation in the Jiamusi Massif. This finding suggest that the collision between the Songnen-Zhangguangcai Range and Jiamisi massifs most possibly took place prior to the deposition of the D1hl and D1b formations, i.e., before 403~413 Ma. Combination with the existence of the north-south-trending Caledonian I-type granitoid belt (445 Ma), we propose that the amalgamation of the Jiamusi and Songnen-Zhangguangcai Range massifs probably occurred between the Late Ordovician and early stage of the Early Devonian (413~445 Ma).
     4. Spatial and Temporal Features of the Late Paleozoic-Early Mesozoic Volcanisms in eastern Heilongjiang Province
     We undertook LA-ICP-MS zircon U-Pb dating for the Late Paleozoic-Early Mesozoic volcanic rocks in eastern Heilongjiang Province. Zircons from these volcanic rocks are euhedral-subhedral in shape and display striped absorption and fine-scale oscillatory growth zoning as well as their high Th/U ratios, implying a magmatic origin. The dating results show that the Late Paleozoic-Early Mesozoic volcanic rocks in the study area can be divided into four stages, i.e., the Middle-late Devonian (-386 Ma), Early Permian (~291 Ma), Middle Permian (~268 Ma) and Late Triassic volcanisms (201~217 Ma). Moreover, the two former volcanisms widespreadly exist in the eastern margin of the Jiamusi Massif, Lesser'Xingan and Zhangguangcai ranges; the Middle Permian volcanisms mainly occur in southeastern margin of the Jiamusi Massif; whereas the Late Triassic volcanisms chiefly outcropped in western margin of the Khanka Massif.
     5. Determinations of the passive continental-margin setting in eastern margin of the Jiamusi Massif and an intra-continental extensional environment in the Lesser Xing'an Rang in Middle-late Devonian.
     The Middle-late Devonian volcanic rocks in eastern margin of the Jiamusi Massif are composed mainly of major rhyolite and minor basalt, displaying the features of the typical bimodal volcanism. Combined with the coeval sedimentary characteristics, we propose that there exist a passive continental-margin setting in eastern margin of the Jiamusi Massif in Middle-late Devonian. Furthermore, the coeval volcanic rocks occurred in the Lesser Xing'an Range have the features of A-type rhyolite, indicating an intra-continental extensional environment. The above findings are also consistent with the extensional environment existed after the amalgamation of the Songnen-Zhangguangcai Range and Jiamisi massifs in the Late Caledonian.
     6. Determinations of the active continental-margin setting in eastern margin of the Jiamusi Massif and an extensional environment in the Zhangguangcai Range in Early Permian.
     The Early Permian volcanic rocks in eastern margin of the Jiamusi Massif are composed mainly of basalt, basaltic-andesite, and minor dacite. They belong to the subalkaline series, and display a calc-alkaline evolutionary trend, indicating that an active continental-margin setting could exist in the eastern margin of the Jiamusi Massif in the Early Permian. Besides, there exist voluminously coeval basalt, andesite-basalt and rhyolite in the Zhangguangcai Range. The geochemical data show that they are typical of bimodal volcanism. Together with the coeval A-type granites, the early Permian bimodal volcanic rocks in the study area indicate an extensional environment in the Zhangguangcai Range. Combined with the regional geological data and an active continental setting in eastern margin of the Jiamusi Massif, we propose that the bimodal volcanism in the Zhangguangcai Range could form in an extensional tectonic setting, similar to a back-arc basin, and its formation could be related to subduction of the Paleo-Asian oceanic plate beneath the Songnen-Zhangguangcai Range and Jimusi massifs.
     7. Timing of the amalgamation of the Jiamisi and Khanka massifs
     The Middle Permian volcanic rocks in eastern and southeastern margin of the Jiamusi Massif consist mainly of rhyolite and minor dacite. They are characterized by high SiO2, low MgO, enrichment in K2O, Rb, Th and U, and depletion in Eu, Sr, P and Ti, implying a crust-derived origin and similar to the syn-collisional rhyolites. Therefore, it is proposed that the Middle Permian volcanic rocks could have formed under the collision of the Jiamusi and Khanka massifs.
     8. Determinations of the intra-continental extensional environment in western margin of the Khanka massif in Late Triassic.
     The Late Triassic volcanic rocks in western margin of the Khanka Massif consist mainly of rhyolite and minor dacite. These geochemical features are similar to those characteristics of A-type rhyolite, suggesting an extentional setting. Combined with the regional geological data, the Late Triassic volcanic rocks could form in an inter-continental extensional environment related to the final closure of the Paleo-Asiatic ocean and the collision of the NCC and Jiamusi-Khanka Massif in the late Paleozoic-Early Triassic.
引文
1. Abe N, Arai S, Yurimoto H. Geochemical characteristics of the uppermost mantle beneath the Japan island arcs:Implications for upper mantle evolution[J]. Phys. Earth Planet. Int.1998,107:233-248.
    2. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology,2002,192(1-2):59-79.
    3. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamics environments[J]. Lithos,1999, (46):605-626.
    4. Black LP. Recent Pb loss in zircon:A natural or laboratory-induced phenomenon[J]. Chemical Geology,1987,65:25-33.
    5. Boynton WV. Geochemistry of the rare earth elements: meteorite studies[J]. In: Henderson P. (ed.), Rare earth element geochemistry, Elservier,1984:63-114.
    6. Bruguier O, Lancelet JR. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (central China):provenance and tectonic correlations[J]. Earth and Planetary Science Letters,1997,152:217-231.
    7. Carter A, Steve JM. Combined detrital-zircon fission-track and U-Pb dating: a new approach to understanding hinterland evolution[J]. Geology,1999,27:235-238.
    8. Chen B, Jahn BM, Tian W. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Sr-Nd isotope compositions of subduction-and collision-related magmas and forearc sediments [J]. Journal of Asian Earth Sciences,2009,34:245-257.
    9. Chen B, Jahn BM. Wilde, S. A, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications [J]. Tectonophysics,2000,328:157-182.
    10. Cherniak DJ. Watson, E. B. Pb diffusion in zircon[J]. Chemical Geology,2000,172: 5-24.
    11. Christiansen RL.1984. Yellowstone magmatic evolution: its bearing on understanding large-volume explosive volcanism[M]. In:Explowive volcanism:inception, evolution and hazards[M]. National Academy Press, Washington DC,84-95.
    12. Chu NC, Taylor RN, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections[J]. Contributions to Mineralogy and Petrology,2002,17:1567-1574.
    13. Duncan AR, Erlank AJ, Marsh J. Regional geochemistry of the Karoo igneous province[J]. Special Publication Geological Society of Africa,1984,13:355-388.
    14. Eiler JM, Grawford AJ, Elliott TR, et al. Oxygen isotope geochemistry of oceanic arc lavas[J]. Journal of Petrology,2000,41:229-256.
    15. Fedo CM, Sircombe KN, Rainbird RH. Detrial zircon analysis of the sedimentary record[J]. Review of Mineral Geochemistry,2003,53:277-303.
    16. Fedorovskii VS, Khain EE, Vladimirov AG, et al. Tectonics, metamorphism, and magmatism of collisional zones of the Central Asian Caledonides[J]. Geotectonics,1995, 29:193-212.
    17. Feng R, Machado N, Ludden JN. Lead geochronology of zircon by laser probeinductively coupled plasma mass spectrometry (LA-ICP MS)[J]. Geochimica et Cosmochimica Acta,1993,35:3479-3486.
    18. Foder RV, Vetter SK. Rift-zone magmatism: petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin[J]. Contributions to Mineralogy and Petrology,1984,88:307-321.
    19. Francalanci L, Taylor SR, McCulloch MY, et al. Geochemical and isotopic variations in the calc-alkaline rocks of Aeolian arc, southern Tyrrhenian sea, Italy: Constraints on magma genesis [J]. Contributions to Mineralogy and Petrology,1993,113:300-313.
    20. Fretzdorff S, Livermore RA, Devey CW, et al. Petrogenesis of the back-arc east scotia ridge, south Atlantic ocean[J]. Journal of Petrology,2002,43:1435-1467.
    21. Frey FA, Gerlach DC, Hickey RL, et al. Villavicencio, F. M. Petrogenesis of the Laguna el Maule volcanic complex, Chile (36°S)[J]. Contributions to Mineralogy and Petrology, 1984,88:133-149.
    22. Frost CD, Frost BR, Chamberlain KR, et al. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA:a reduced, rapakivi-type anorogenic granite[J]. Journal of Petrology,1999,40:1771-1802.
    23. Fryer BJ, Jackson SE, Longerich HP. The application of laser ablation microprobe inductively coupled plasmamass spectrometry (LAM-ICP MS) to in situ U-Pb geochronology[J]. Chemical Geology,1993,109:1-8.
    24. Gamble JA, Wright IC, Woodhead JD, et al. Arc and back-arc geochemistry in the southern Kermadec arc-Ngatoro Basin and offshore Taupo Volcanic Zone, SW Pacific. In: Smellie J L. ed. Volcanism Associated with Extension at Consuming Plate Margins[M]. Geological Society of Special Publication, London.1995:193-212.
    25. Gao FH, Xu WL, Yang DB, et al. LA-ICP-MS zircon U-Pb dating from granitoids in southern basement of Songliao basin: Constraints on ages of the basin basement[J]. Science in China Series D:Earth Sciences,2007,50:995-1004.
    26. Garland F, Hawkesworth CJ, Mantovanim SM. Description and petrogenesis of the Parana rhyolites, southern Brazil[J]. Journal of Petrology,1995,36:1193-1227.
    27. Gebauer D, Grunenfelder M. U-Pb zircon and Rb-Sr whole rock dating of low-grade metasediments, example:Montagne Noir (Southern France)[J]. Contributions to Mineralogy and Petrology,1976,59:13-32.
    28. Geist D, Howard KA, Larson P. The generation of oceanic rhyolites by crystal fractionation:the basalt-rhyolite association at Volcano Alcedo, Galapagos Archipelago [J]. Journal of Petrology,1995,36:965-982.
    29. Gill JB. Early geochemical evolution of an oceanic island arc and back arc:Fiji and the south Fiji basin[J]. Journal of Petrology,1987,95:589-615.
    30. Gill JB. Orogenic Andesites and Plate Tectonics[M]. Springer Verlag, New York,1981, 385.
    31. Griffin WL, Belousova EA, Shee SR, et al. Archean crustal evolution in the northern Yilgarn Craton; U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research,2004,131(3-4):231-282.
    32. Grove TL, Kinzler RJ. Petrogenesis of andesites. Annu. Rev[J]. Earth and Planetary Science Letters,1986,14:417-454.
    33. Grove TL, Elkins, Tanton LT, et al. Fractional crystallization and mantle melting controls on calk-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003,145(5):515-533.
    34. Guo JH, Sun M, Chen FK, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision[J]. Journal of Asian Earth Sciences,2005,24: 629-642.
    35. Hochstaedter AG, Gill JB, Kusakabe M, et al. Volcanism in the Sumisu Rift I:element, volatile and stable geochemistry[J]. Earth and Planetary Science Letters 1993,100: 179-194.
    36. Hochstaedter AG, Gill JB, Kusakabe M, et al. Volcanism in the Sumisu Rift I: element, volatile and stable geochemistry[J]. Earth Planetary Science Letters,1990,100:179-194.
    37. Hofmann AW. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters,1988,90: 297-314.
    38. Ikeda Y, Yuasa M. Volcanism in nascent backarc basins behind the Schichito Ridge and adjacent areas in the Izu-Ogasawara arc, NW Pacific; evidence for mixing between E-type MORB and island arc magmas at the initiation of back-arc rifing. [J] Contributions to Mineralogy and Petrology,1989,101:377-393.
    39. Ionov DA, Gregoire M, Prikhod'ko VS. Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle[J]. Earth and Planetary Science Letters,1999,165: 37-44.
    40. Irvine TH, Baragar W. A guide to the chemical classification of the common volcanic rocks. Canad[J], Canadian Journal of Earth Sciences,1971,8:523-548.
    41. Jahn BM, Wu FY, Lo CH, et al. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology,1999,157:119-146.
    42. Jahn B, Capdevila R, Liu D, et al. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence and implications for Phanerozoic crustal growth[J]. Journal of Asian Earth Sciences,2004,23: 629-653.
    43. Jahn BM, Wu FY. Capdevila, R. Martineau, F. Wang, Y. X. Zhao, Z. H. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountain in NE China[J]. Lithos,2001,59:171-198.
    44. Jahn BM, Wu FY, Chen B. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000, 23:82-92.
    45. Jia DC, Hu RZ, Lu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences,2004,23: 211-219.
    46. Kay RW. Aleutian magnesian andesites:Melts from subducted Pacific ocean crust[J]. J Vol Geotherm Res,1978,4:117-132
    47. Kelemen PB, Hanghφj K, Greene AR. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[M]. In: Rudnick R L (ed.), Treatise On Geochemistry,2003,3:593-659.
    48. Kelty TK, Yin A, Dash B, et al. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J]. Tectonophysics,2008,451: 97-122.
    49. Kerr AC, Iturralde-Vinent MA, Saunders AD, et al. A new plate tectonic model of the Caribbean: Implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks[J]. Geol. Soc. Amer. Bull.1999,111:1581-1599.
    50. Khain EV, Bibokova EV, Kroner A, et al. The most ancient ophiolites of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhegur complex. Eastern Sayan siberia, and geodynamic implications[J]. Earth and Planetary Science Letters,2002,199: 211-325.
    51. Khain EV, Bibokova EV, Salnikova EE. The Palaeo-Asian ocean in the Proterozoic and early Palaeozoic:new geochronologic data and palaeotectonic reconstructions [J]. Precambrian Research,2003,122:329-358.
    52. Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Microscopy,1993,171:223-232.
    53. Kosler J, Sylvester P. Present trends and the future of zircon in geochronology: laser ablation ICPMS[J]. In:Hanchar, J. M. Hoskin, P. M. O. (Eds.), Zircon, Review of Mineral Geochemistry,2003,53:243-275.
    54. Kovalenko VI, Yarmolyuk VV, Kovach VP, et al. Sources of Phanerozoic granitoids in Central Asia: Sm-Nd isotope data[J]. Geological International,1996,34:628-640.
    55. Lanyon R, Black RP, Seitz HM. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology,1993,115:84-203.
    56. Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature Zircon[J]. Nature,1997,390: 159-162.
    57. Li JY. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian ocean and subduction of the Paleo-pacific plate[J]. Journal of Asian Earth Sciences,2006,26(3-4):207-224.
    58. Ludwig KR. Users manual for Isoplot/Ex (rev.2.49):a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication,2001, No.1,55.
    59. Maniar PD, Piccoli PM. Tectonic discrimination of granitoids [J]. Bulletin of the Geological Society of America,1989,101(5):635-643.
    60. Marlina AE, John F. Geochemical response to varying tectonic settings:an example from southern Sulawesi (Indonesia) [J]. Geochimica et Cosmochimica Acta,1999,63: 1155-1172.
    61. Martin H, Smithies RH, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos,2005,79:1-24.
    62. Maruyama S, Seno T. Orogeny and relative plate motion: example of the Japanese islands[J].Tectonophysics,1986,127:305-329.
    63. Maruyama S. Pacific-type orogeny revisited: Miyashiro-type orogeny Proposed. Island Arc,1997,6:91-120.
    64. Meng E, Xu WL, Pei FP, et al. Zircon U-Pb chronology and geochemistry of Permian volcanic rocks in eastern Heilongjiang Province, NE China and its tectonic implications[J]. Geochimica et Cosmochimica Acta,2010,74(12):698.
    65. Meng E, Xu WL, Pei FP, et al. Chronology of Late Paleozoic volcanism in eastern and southeastern margin of Jiamusi Massif and its tectonic implications[J]. Chinese Sciences Bulletin,2008,53:1231-1245.
    66. Meng E, Xu WL, Pei FP, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics,2010,53:1231-1245.
    67. Miao LC, Liu DY, Zhang FQ, et al. Zircon SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountais[J]. Chinese Science Bulletin,2007,52:1112-1134.
    68. Middlemost, Eric AK. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews,1994,37(3-4):215-224
    69. Mullen ED. MnO/TiO2/P2O5 a monor element discriminant for basaltic rock of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters,1983,62:53-62.
    70. Pearce JA, Cann JR. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters,1973,19:290-300.
    71. Pearce JA, Gale GH. Identification of ore-deposition environment from trace edement geochemistry of associated igneous host rocks[J]. Geol Soc Spec Publ,1977,7:14-24.
    72. Pearce JA. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C. J. and Norry M. J. (eds). Continental basalts and mantle xenoliths[J]. Nantwich:Shiva,1983:230-249.
    73. Pearce JA. Ernewein M. Bloomer, S. H. Geochemistry of Lau Basin volcanic rocks. In: Smellie J. ed. Volcanism Associated with Extension at Consuming Plate Margins[M]. Geological Society of Special Publication, London,1995:53-75.
    74. Pearce JA. Kempton, P. D. Nowell, G. M, et al. Hf-Nd element an isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems[J]. Journal of Petrology 40,1999:1579-1611.
    75. Pearce JA. Trace element characteristics of lavas from destructive plate boundaries[J]. United Kingdom (GBR):John Wiley & Sons, Chichester,1982:525-548.
    76. Pei FP, Xu WL, Yang DB, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin,2007,52:942-948.
    77. Pin C, Marini F. Early Ordovician continental break-up on Variscan Europe:Nd-Sr isotope and trace element evidence for bimodal igneous associations of the southern Massif Central, France[J]. Lithos,1993,29:177-196.
    78. Pin C, Paquette JL. A mantle-derived bimodal suite in the Hercynian belt: Nd isotope and trace element evidence for a subduction-related rift origin of the late Devonian Brevenne metavolcanics, Massif Central (France) [J]. Contributions to Mineralogy and Petrology, 1997,129:222-238.
    79. Pitcher WS.1993. The nature and origin of granite[M]. London: Blackie Academic and Professional,321.
    80. Polat A, Kerrich R. Magnesian andesite, Nb-enriched basalt-andesite, and adakites from Late-Archean 2.7 Ga Wawa greenston belts, Superrior Province, Canada: Implications for Late Archean subduction zon petrogenetic processes [J]. Contributions to Mineralogy and Petrology,2001,141:36-52.
    81. Rickwood PC. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos,1989,22:247-263.
    82. Rojas-Agramonte Y, Kroner A, Badarch G, et al. Detrital and xenocrystic zircon ages in the Central Asian Oro genic Belt of Mongolia: comparison with the Siberian craton and Gondwana. In:Tomurhuu D, Natal'in B, Ya A, et al. (Eds.), Structural and tectonic correlation across the Central Asian Orogenic Collage:implications for continental growth and intracontinental deformation. Abstract and Guidebook Volume, Workshop IGCP-480[M]. Mongolian University of Science and Technology Press, Ulaanbaatar, 2006:58-59.
    83. Rudnick RL, Gao S, Ling WL, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton[J]. Lithos,2004,77:609-637.
    84. Salnikova EB, Kozakov IK, Kotov A, et al. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt:loss of a Precambrian microcontinent[J]. Precambrian Research,2001,110:143-164.
    85. Salnikova EB, Sergeev SA, Kotov AB, et al. U-Pb zircon dating of granulite metamorphism in the Sludyanskiy Complex, eastern Siberia[J]. Gondwana Research, 1998,2:195-205.
    86. Saunders AD, Storey M, Kent RW, et al. Consequences of plume-lithosphere interactions. In: Storey, B. C. Alabaster, T. Pankhurst, R. J. (Eds.), Magmatism and the Cause of Continental Breakup[M]. Geological Society of Special Publication, London,1992,68: 41-60.
    87. Sengor AMC, Natal'in BA. Paleotectonics of Asia: fragments of a synthesis[M]. In: Yin A, Harrison T M (Eds.). The Tectonic Evolution of Asia. Cambrige University Press, Cambridge,1996:486-641.
    88. Sengor AMC, Natal'in BA, Burtman VS. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    89. Shen SZ, Zhang H, Shang Q, et al. Permian stratigraphy and correlation of Northeast China: Areview[J]. Journal of Asian Earth Sciences,2006,26:304-326.
    90. Shi GH, Miao, LC, Zhang FQ, et al. The age and its regional tectonic implications of the Xilinhot A-type granites, Inner Mongolia[J]. Chinese Science Bulletin,2004,49: 384-389.
    91. Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos,2000,54:117-137.
    92. Sisson VB, Pavlis TL, Roeske SM, et al. Introduction:an overview of ridge-trench interactions in modern and anciet settings. In: Sisson VB, Roeske SM & Pavlis TL (eds.) Geology of a Transpressional Orogen developed during Ridge-Trench Interaction along the North Pacific Margin[J]. Geological Society of America Special Papers,2003,371 1-18.
    93. Sorokin AA, Kudryashov NM, Li JY. Early Paleozoic granitoids in the eastern margin o: the Arguna' terrane, Amur area: first geochemical and geochronologic data[J]. Journal of Petrology,2004,12:367-376.
    94. Stampfli GM, Borel GD. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J]. Earth and Planetary Science Letters,2002,196:17-33.
    95. Stern TW, Goldich SS, Newel MF. Effect of weathering on the U-Pb zircon ages from the Morton gneiss, Minnesota[J]. Earth and Planetary Science Letters,1966,1:369-378.
    96. Stern, R. J. Subduction zones. Review of Geophysics,2002,40:1012.
    97. Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saundern A D, Norry M J (eds.). Magmatism in the ocean basins[J]. Geological Society Special Publication,1989,42:313-345.
    98. Sun DY, Wu FY, Li HM, et al. Emplacement age of the post-orogenic A-type granites in northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suolunshan-Hegenshan-Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2001,46:427-432.
    99. Taylor SR, Mclennan SM. The continental crust: Its composition and Evolution. Blackwell,1985:312.
    100.Wang F, Xu WL, Meng E, et al.2011. Caledonian Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites[J]. Journal of Asian Earth Sciences (in publishing).
    101.Whalen JB, Currie KL, Chappell BW. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95: 407-419.
    102.Wilde SA, Wu FY, Zhang XZ. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J]. Precambrian Research,2003,122:311-327.
    103.Wilde SA, Zhang XZ, Wu FY. Extension of a newly idenfied 500 Ma metamorphic terrane in North East China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J], Tectonophysics,2000,328:115-130.
    104.Wilde SA, Dorsett-Bain HL, Liu JL. The identification of a Late Pan-African granulite facies event in Northeast China: SHRIMP U-Pb zircon dating of the Mashan Group at Liu Mao, Heilongjiang Province, China[J]. In:Proceedings of the 30th IGC:Precambrian Geol. Metamorphic Petrol. VSP International Science Publishers, Amsterdam,1997,443: 59-74.
    105.Wilde SA, Wu FY, Zhang XZ中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30:35-50.
    106. Williams IS. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks[J]. Transactions of the Royal Society of Edinburge:Earth Sciences,1992, 83:447-458.
    107.Wilson W. Igneous petrogenesis[M]. Unwin Hyman, London,1989:327-373.
    108.Windley BF, Allen MB, Zhang C, et al. Paleozoic accretion an Cenozoic re-degormation of the Chinese Tiern Shan range, Central Asia[J]. Geology,1990,18:128-131.
    109.Windley BF, Kroner A, Gui J, et al. Neoproterozoic to Paleozoic geoloty of the Altai orogen, NW China: new zircon age data and tectonic evolution[J]. Joural of Geology, 2002,110:719-737.
    110.Windley BF. Proterozoic collisional and accretionary orogens. In: Condie KC (ed.). Proterozoic Crustal Evolution[J]. Elsevier, Amsterdam,1992,419-446.
    111.Windley BF, Alexeiev D, Xiao WJ, et al. Tectonic model for accretion of the Central Asian Orogenic Belt[J]. Journal of Geological Society, London,2007,164:31-47.
    112.Wood DA. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50: 11-30.
    113.Woodhead JD, Eggins SM, Gamble JG. High field strength and transition element systematics in coupled arc-back arc settings:evidence for multi-phase melt extraction and a depleted mantle wedge[J]. Earth Planetary Science Letters,1993,114:491-504.
    114.Wu FY, Jahn BM, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sm-Nd isotopic evidence from the granite in northeastern China[J]. Tectonophysics,2000,328:89-113.
    115.Wu FY, Jahn BM, Wilde S, et al. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos,2003a,66:241-273.
    116.Wu FY, Jahn BM, Wilde S, et al. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 2003b,67:191-204.
    117.Wu FY, Lin JQ, Wilde SA, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters,2005,233: 103-119.
    118.Wu FY, Sun DY, Jahn BM, et al. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences,2004b,23: 731-744.
    119.Wu FY, Sun SY, Li HM, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology 2002,187:143-173.
    120.Wu FY, Wilde SA, Zhang, GL, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences,2004a,23:781-797.
    121.Wu FY, Yang JH, Ching HL. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin if northeastern China[J]. Island Arc, 2007,156-172.
    122.Wu FY, Zhao GC, Sun DY, et al. Final Closure of the Paleo-Asian Ocean in NE China: Evidence from the Hulan Group in central Jilin Province[J]. J Asian Earth Sci,2007a,30: 542-556.
    123.Wu FY, Jahn BM, Wilde SA, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics.2000a,328:89-113.
    124.Wu FY, Sun DY, Li HM, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology,2002,187:143-173.
    125.Wu FY, Sun DY, Li HM, et al. Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China[J]. Chinese Science Bulletin,2000b,45:1514-1518.
    126.Wu FY, Yang JH, Lo CH, et al. The Heilongjiang Group:a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J]. Journal of Asian Earth Sciences,2007b,30:542-556.
    127.Wu FY, Yang YH, Xie LW. Hf isotopic compositions of standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology,2006,231:105-126.
    128.Wu FY, Zhao GC, Sun DY, et al. The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences,2007c,30: 542-556.
    129.Wu G, Sun FY, Zhao CS, et al. The founding and its geological significance of the Early Paleozoic post-collision granite in northern margin of the Erguna Massif[J]. Chinese Science Bulletin,2005,20:2278-2288.
    130.Wu YB, Zheng YF. The study on the zircon genesis mineralogy and its impacts on the interpretation of U-Pb age restriction[J]. Chinese Science Bulletin,2004,49:1589-1604.
    131.Xiao WJ, Windley BF, Hao J, et al. Accretion leading to collision and the Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003,22:1069.
    132.Xiao WJ, Zhang LC, Qin KZ, et al. Paleozoic accretionary and collisional tectonics of the eastern Tienshan (China):implications for the continental growth of Central Asia[J]. American Journal of Science,2004,304:370-395.
    133.Xu WL, Gao S, Wang QH, et al. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications [J]. Geology,2006, 34:721-724.
    134.Xu WL, Ji WQ, Pei FP, et al. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology, geochemistry, and tectonic implications [J]. Journal of Asian Earth Sciences,2009,34:392-402.
    135.Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage: arevised model[J]. Journal of asian Earth Sciences,2004,23:761-779.
    136.Yakubchuk A. The Baik alide-Altaid, Transbaikal-Mongolian and North Pacific Orogenic collage:similaritics and diversity of structural pattern and metallogenic zoning[J]. Geological Society, Lonton, Special Publications,2002,204:273-297.
    137. Yang JH, Wu FY, Shao J, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters,2006,246: 336-245.
    138.Yang ZY, Ma XH, Huang BC, et al. Apparent polar wander path and tectonic movement of the North China Block in Phanerozoic[J]. Science in China Series D:Earth Sciences, 1998,41:51-65.
    139. Ye K, Cong Bl, Ye DL. The possible subduction of continental materials to depths greater than 200 km[J]. Nature,2000,407:734-736.
    140.Yuan HL, Gao S, Liu XM, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandard Newsletter,2004,28:353-370.
    141.Zhang KJ. North and South China collision along the eastern and southern North China margins[J]. Tectonophysics,1997,270:145-156.
    142.Zhang XH, Zhang HF, Tang Y, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008,249:262-281.
    143.Zhang YB, Wu FY, Wilde SA, et al. Zircon U-Pb ages and tectonic implications of'Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast China[J]. The Island Arc,2004, 13:484-505.
    144.Zhao GC, Wilde SA, Cawood PA, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research.2001,107:45-73.
    145.Zhao XX, Coe RS, Zhou YX, et al. New plaeomagnetic results from northern China: Collision and suturing with Siberia and Kazakstan[J]. Tectonophysics,1990,181:43-81.
    146.Zhou JB, Wilde SA, Zhang XZ, et al. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics, 2009,478:230-246.
    147.Zhou MF, Zhang HF, Robinson PT. Comments on "Petrology of the Hegenshan ophioliteand its implication for the tectonic evolution of northern China"by T. Liu[Earth and Planetary Science Letters 202(2002)89-104] [J]. Earth and Planetary Science Letters 2003,217:207-210.
    148.Zhu YF, Sun SH, Gu LB, et al. Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis[J]. Geological Magazine,2001,138:101-115.
    149.Zonenshain LP, Kuzmin MI, Natapov LM. Geology of the USSR: a plate-tectonic synthesis[J]. Geodynamics Series, vol.21. American Geophysical Union, Washington, D. C.1990:242.
    150.表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18(1):28-33.
    151.曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版,1992.
    152.陈斌,徐备.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义[J].岩石学报,1996,12(4):546-561.
    153.陈斌,赵国春,Simon Wilde.内蒙古苏尼特左旗南两类花岗岩同位素年代学及构造意义[J].地质论评,2001,47(4):361-367.
    154.陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述一兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.
    155.邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳-幔成矿系统[J].地学前缘.19996(2):259-270.
    156.邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境:讨论[J].高校地质学报,2007,13(3):392-402.
    157.方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992.
    158.葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].2007,52(20):2407-2417.
    159.葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005b,21(3):749-762.
    160.葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005a,50(12):1239-1246.
    161.黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    162.洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    163.洪大卫,王式洗,谢锡林,等.从中亚正εNd(t)值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报,2003b,77(2):203-209.
    164.洪大卫,王式洗,谢锡林,等.试析地幔来源物质成矿域-以中亚造山带为例[J].矿床地质,2003a,22(1):41-55.
    165.洪大卫,王式洗,谢锡林,等.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456.
    166.黄宝春,周姚秀,朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘,2008,15(3):348-359.
    167.黄宝春,朱日祥,Otofuji Y,等.华北等中国主要地块早古生代古地理位置探讨[J].科学通报[J],2000,45(4):337-345.
    168.黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    169.吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    170.蒋国源,权恒.1988.大兴安岭根河、海拉尔盆地中生代火山岩[M].中国地质科学院沈阳地质矿产研究所所刊,17:23-100.
    171.颉颃强,苗来成,陈福坤,等.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约[J].地质通报,2008a,27:2127-2137.
    172.颉颃强,张福勤,苗来成,等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb及其地质意义[J].岩石学报,2008b,24(6):1237-1250.
    173.靳克.延边地区中生代火山岩的岩石学和地球化学[M].吉林大学博士学位论文,2004.
    174.李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3): 565-582.
    175.李锦轶,莫申国,何政军,等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘,2004,11(3):157-168.
    176.李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999.
    177.李锦轶,牛宝贵,宋彪.黑龙江省东部中太古代碎屑岩浆锆石的发现及其地质意义[J].地球学报,1995,3:331-333.
    178.李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    179.李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    180.李思田,路凤香,1997.中国东部及邻区中新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社,1-350.
    181.李思田,杨世恭.1987.中国东北部晚中生代裂陷作用和东北亚断陷盆地系[J].中国科学(B辑),21(2):185-195.
    182.林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3):208-222.
    183.林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33:129-139.
    184.林强,葛文春,吴福元,等.大兴安岭中生代花岗岩的地球化学[J].岩石学报,2004,20(3):403-412.
    185.刘海巨,朱炳泉,张展霞LAM-ICP-MS法用于单颗粒锆石定年研究[J].科学通报,1998,43:1103-1106.
    186.刘建峰,迟效国,周燕,等.小兴安岭东北部金林岩体全岩一角闪石Rb-Sr年龄[J].吉林大学(地学版),2005,35(6):690-693.
    187.刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27:534-544.
    188.柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[M].西北大学博士学位 论文,2004.
    189.吕志成,段国正,郝立波,等.满洲里-额尔古纳地区岩浆作用及其大地构造意义[J].吉林大学学报(地学版),2002,32(2):111-115.
    190.吕志成,段国正,郝立波,等.大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨[J].矿物岩石,2001,21(1):77-85.
    191.罗毅等.灵泉大青山火山盆地铀成矿环境分析及及找矿靶区优选[M].核工业北京地质研究院.1997.
    192.马文璞,李锦轶,李江海,等.造山带概念的演变及它在现今大陆构造研究中面临的问题[J].地质论评,2002,48(2):153-159.
    193.马醒华,刑利生,杨振宇,等.鄂尔多斯盆地晚古生代以来古地磁研究[J].地球物理学报,1993,36(1):68-79.
    194.孟恩,许文良,裴福萍,等.黑龙江省东部中泥盆世火山作用及其构造意义:来自岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素的制约[J].岩石矿物学杂志,2011(出版中).
    195.孟恩,许文良,裴福萍,等.黑龙江东部晚古生代沉积岩中碎屑锆石U-Pb年龄:对盆地沉积时限和区域构造演化的制约[J].矿物岩石地球化学通报,2008,27:265.
    196.孟恩,许文良,裴福萍,等.佳木斯板块东南缘二叠纪火山作用:锆石U-Pb年代学证据及其构造意义[J].科学通报,2008,53(8),956-965.
    197.孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报,2011b,(出版中).
    198,苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2003,48(22):2315-2323.
    199.苗来成,刘敦一,张福勤,等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,2007,52(5):591-601.
    200.裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004,23(1):6-13.
    201.曲关生等.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997.
    202.任收麦,黄宝春.晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J].地球物理学进展,2002,17(1):113-120.
    203.邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用[J].中国科学(D辑),1997,27(5):390-394.
    204.邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995,171-179.
    205.邵济安,韩庆军,张履桥,等.陆壳垂向增生的两种方式:以大兴安岭为例[J].岩石学报,1999b,15(4):600-606.
    206.邵济安,洪大卫,张履桥.内蒙古火成岩Sr-Nd同位素特征及成因[J].地质通报,2002,21(12):817-822.
    207.邵济安,臧绍先,牟保磊,等.造山带的伸展与软流圈隆起—以兴蒙造山带为例[J].科学通报,1994,39(6):533-537.
    208.邵济安,张履桥,牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999a,6(4):339-346.
    209.施光海,刘敦一,张福勤,等.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义[J].科学通报,2003,48(20):2187-2192.
    210.施光海,苗来成,张福勤,等.内蒙古锡林浩特“A”型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    211.宋彪,李锦轶,牛宝贵.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18(3):306-312.
    212.宋彪,牛宝贵,李锦轶,等.牡丹江-鸡西花岗岩类地质同位素年代学研究[J].岩石矿物学杂志.1994,13(2):204-213.
    213.苏玉平,唐红峰.“A”型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-251.
    214.隋振民等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480.
    215.孙德有,吴福元,李惠民,等.小兴安岭西北部造山后“A”型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45:2217-2222.
    216.孙德有,吴福元,林强,等.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001,17(2):227-235.
    217.孙德有,吴福元,张延斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间一 来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2001,17(2):227-235.
    218.孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004b,25(2):213-218.
    219.孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间一来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004a.34(2):175-183.
    220.孙广瑞,李迎春,张昱.额尔古纳地块基底地质构造[J].地质与资源,2002,11(3):129-139.
    221.唐克东,邵济安,李景春,等.吉林延边缝合带的性质与东北亚构造[J].地质通报,2004,23(9-10):885-891.
    222.王荃,刘雪亚,李锦轶.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社,1991.
    223.王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西北大学硕士学位论文,2005.
    224.王焰,钱青,刘良等.不同构造环境中双峰式火山岩的主要特征[J].岩石学报,2000,16(2):169-173.
    225.王有勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997.
    226.吴福元,Wilde SA,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    227.吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999a,18(2):1-13.
    228.吴福元,江博明,林强,等.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188-2193.
    229.吴福元,林强,葛文春,等.张广才岭新华屯岩体的形成时代与成因研究[J].岩石矿物学杂志,1998,17(3):226-234.
    230.吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999b,15(2):181-189.
    231.吴福元,孙德有,李惠民,等.松辽盆地基底岩石锆石U-Pb年龄[J].科学通报,2000, 45:656-660.
    232.吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    233.武广,孙丰月,赵财胜.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    234.夏林圻,夏祖春,徐学义,等.2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,27(1):77-89.
    235.肖庆辉,李晓波,贾跃明,等.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,1995,(1-2):43-50.
    236.肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008,26(1):4-8.
    237.谢鸣谦.拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社,2000.
    238.许文良,孙德有,周燕,等.满洲里-绥芬河地学断面岩浆作用和地壳结构[M].北京:地质出版社,1994.
    239.阎欣,储著银,孙敏,等.激光探针等离子质谱锆石微区207Pb/206Pb测定尝试[J].科学通报,1998,43:2101-2105.
    240.杨振宇,马醒华,黄宝春,等.华北地块显生宙古地磁视极移曲线与地块运动[J],1998,28(增刊):44-56.
    241.叶慧文,张兴洲,周裕文,等.牡丹江地区蓝片岩中脉状青铝闪石40Ar-39Ar年龄及其地质意义[J].长春地质学院学报,1994,24(4):369-372.
    242.叶茂,张世红,吴福元.中国满洲里一绥芬河地学断面域古生代构造单元及其地质演化[J].1994,24(3):241-245.
    243.张国伟,董云鹏,姚平安.造山带与造山作用及其研究的新起点[J].西北地质,2001,34(1):1-9.
    244.张梅生,彭向东,孙晓猛.中国东北地区古生代构造古地里格局[J].辽宁地质,1998,2:91-96.
    245.张兴洲,Sklyarov EV.中国东北及邻区蓝片岩带的构造意义(见:长春地质学院地质研究所论文集)[J].北京:地震出版社,1992:99-106.
    246.张兴洲,杨宝俊,吴福元,等.中国兴蒙一吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4)816-823.
    247.张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22(增):94-101.
    248.张兴洲.佳木斯地体的早期碰撞史-黑龙江岩系的构造-岩石学证据[D].长春地质学院博士学位论文[D].长春:吉林大学,1992.
    249.张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].吉林大学博士学位论文,2002.
    250.赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996:1-186.
    251.赵国龙,杨桂林,傅嘉友.大兴安岭中南部中生代火山岩[M].北京:北京科学技术出版社,1989:1-260.
    252.赵全国,许文良,靳克,等.延边地区中生代火山岩的岩浆源区来自:Sr-Nd同位素和深源捕虏体(晶)的证据[J].吉林大学学报(地球科学版),2005,35(4):416-422.
    253.赵越,杨振宇,马醒华.东亚大地构造的重要转折[J].地质科学,1994,29(2):105-119.
    254.赵振华,王强,熊小林.俯冲带复杂的壳幔相互作用[J].矿物岩石地球化学通报,2004,23(4):277-284.
    255.郑亚东,Davis G A,王宗,等.内蒙古大青山大型逆冲推覆构造[J].中国科学(D辑),1998,28:289-295.
    256周长勇,吴福元,葛文春,孙德有,Abdel Rahman A A,张吉衡,程瑞玉.大兴安岭北部塔河辉长岩体的形成时代、地球化学特征及成因[J].岩石学报,2005,21(3):763-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700