用户名: 密码: 验证码:
基于GIS的泥石流预测预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以“辽宁省鞍山市重点地区地质灾害隐患查证”项目为依托,在野外调查和室内资料整理工作的基础上,构建了泥石流三维地理信息数据库。基于COM的GIS组件ArcObjects9.2进行二次开发,以Visual Basic作为开发工具,开发了泥石流预测预报系统。在开发平台上,对泥石流流域的钻孔数据、地层、水系、泥石流堆积扇进行三维实体建模,实现了三维可视化模拟。选取了山坡坡度、相对高差、植被覆盖率、沿沟松散物储量、5天累计降雨量、最大小时雨强和当日雨量为泥石流预警的影响因子,构建了地质环境条件和降雨条件相结合的岫岩县泥石流预警指标体系,并运用改进的AHP法对影响因子权重赋值。利用功效系数法和可拓学理论对岫岩县泥石流沟进行了预警研究,开拓了基于泥石流沟的地质环境条件和降雨诱发条件为影响因子的非线性预警方法。在泥石流强度预测方面,运用逐步判别分析法筛选泥石流最大危险范围预测指标,利用非线性多元回归最小二乘法拟合来确定最大危险范围预测模型,对危险范围的最大长度、最大宽度、最大厚度、最大面积进行了预测。最后,在GIS平台上将泥石流沟预警和最大危险范围预测结果三维可视化输出,便于工作人员查询浏览。
There are so many mountains in China. Influenced by geological structure, such as fracturation, numerous mountains are very steep, which possess rich unconsolidated accretion and low forest coverage. When rainy weather or even downpour appears, serious debris flow disaster will occur. The debris flow, occurring suddenly and overwhelmingly, has double effect on eboulement, landslide and floods, and also has huge destructive power which seriously imperils engineering facilities such as mountainous transportation, mine, water conservancy and hydropower, and safeties of lives and property of the local people in the mountains. Therefore, the reliability and validity of prediction of debris flow plays an important role in ensuring safeties of lives and property of the masses.
     At present, prediction of debris flow has been paid great attention by the domestic and overseas scholars and the local government. However, the overall level of prediction is not high and the accuracy is very low. The main reason for this condition is that most of existing methods, which neglect the influence of different geological environment condition on the occurrence of debris flow, early warn only according to the causative factor of rainfall or forecasting dangerous range of debris flow by perceptual knowledge on the basis of experience. How to alter debris flow with single gully, combining the geological environment information and the rainfall information together? And how to forecast debris flow dangerous range by adopting influencing factors of the geological environment? It is the key topic of debris flow prediction research.
     The research is conducted in this thesis on the basis of "Geological disaster verification of main areas in Anshan city of Liaoning province". As the key area of Anshan, Xiuyan county needs geological disaster verification, where the debris flow is the major geological disaster. After long-term crustal movement and exogenetic processes, the physiognomy of Xiuyan is low-middle mountains and hills zone. This region is the place where the faults develop well, the unconsolidated solid paricles are abundant, the effect of human activity is intense, the vegetation coverage is very low and the rainfall always appears in July or August. Because of the poor geological environmental quality, the debris flow occurs several times during the season of the rainstorm.
     The thesis introduces the divided graphic layer method of debris flow 3D GIS and the attributive structure of each layer based on GeoDataBase. The 3D graphics library consisting of contour line, stratum information, river system and debris flow basin, as well as debris flow GIS including debris flow feature database, disaster history database, rainfall database are built, which accomplishes spatial digitization of geological environmental information of debris flow to duly browse and inquire geological information data and provide database support for prediction task of debris flow.
     The method of building 3D model which is suitable for prediction of debris flow is raised on the basis of the knowledge of 3D data model. This thesis introduces the building method of debris flow 3D solid and successfully builds the 3D model of debris flow basin. The expression of drilling data as well as its building method is introduced and 3D layer model of debris flow is built in accordance with drilling data and IDW interpolation. Moreover, building method of 3D river system and debris flow deposit fan is introduced to accomplish 3D visualization and simulation analysis of debris flow.
     Based on GIS, the forecast model of debris flow is built by fully analyzing debris flow feature database, disaster history database, rainfall database, accomplishing the 3D prediction of debris flow early warning and maximal hazardous range and thickness of debris flow. Comprehensively considering the rainfall and geological conditions, hill slope, relative height, vegetation coverage, along the groove loose material reserves,5d cumulative rainfall, maximum hours of rainfall intensity and the date of rainfall are selected as the influencing factors. Using the optimal transitive matrix to improve the AHP to avoid the high-subjectivity in adjusting the judgment matrix in the later checkout process Using the improved analytic hierarchy process to calculate the weight coefficient of factors of debris flow warning. Using efficacy coefficient method and Extenics theory to establish early warning models of debris flow in Xiuyan county. In view of prediction of maximal hazardous range of debris flow, adopting stepwise discriminant analysis to select the influencing factors and using nonlinear multiple regression least square principle to predict hazardous range and accumulative thickness of debris flow. Delivering debris flow prediction results 3d visualization output on GIS platform, the powerful inquiry and the spatial analysis function will facilitate the comprehensive searching analysis of the results.
     The main algorithms adopted in this thesis are analytic hierarchy process, stepwise discriminant analysis, efficacy coefficient method, Extenics theory, least square method in data mining theory. On the basis of the Arc Objects 9.2—GIS component of COM and regarding Visual Basic as the development platform, the system of GIS debris flow prediction in advance is developed on the basis of GIS. This system consists of some modules, such as the management of spatial database, the construction of 3D model, spatial overlay analysis, spatial inquiry, geological forecast and prediction, etc. The functions of the system are the inputting, inquiring and modifying of debris flow characteristic data, rainfall data, disaster history data, drilling geophysical data, remote sensing data; 3D model building of drilling, strata, water system, and debris flow basin; spatial inquiring analysis characterized by clicking inquiry and location inquiry according to the specific attributes; forecasting module realized by the weight coefficient calculation to the influencing factors of debris flow early warning on the basis of debris flow prediction of improved analytic hierarchy process, efficacy coefficient method and Extenics theory; the debris flow prediction of nonlinear least squares multiple regression to the dangerous range and accumulative thickness and the 3D display of the dangerous range of debris flow.
     Adopting methods, theories and the developed system of debris flow prediction that have been described in this thesis, the debris flow in Xiuyan county is forecasted in two aspects of the debris flow early warning and prediction of maximal hazardous range and thickness of debris flow and several conclusions are obtained as follows:
     1. The poor quality of geological environmental in Xiuyan county is the fundamental factor of the occurrence of debris flow. The high-intensified rainfall is the only factor to cause debris flow.
     2. Based on field investigation and analysis results from predecessors, the factors of hill slope, relative height, vegetation coverage, along the groove loose material reserves,5d cumulative rainfall, maximum hours of rainfall intensity and the date of rainfall have a strong influence on the occurrence of debris flow in Xiuyan county. Therefore, the geological environmental condition and rainfall factors are combined as impact factors of early warning model.
     3. According to the contrastive analysis of forecast results between efficacy coefficient method and Extenics theory, the results of these two methods are basicly similar. It conforms to the reality and validates the forecasting ability of nonlinearity theory.
     4. By means of stepwise discriminant analysis, selecting the influencing factors of maximal hazardous range of debris flow, whose result is more objective. Debris flow dangerous range is divided into three groups by size. And adopting nonlinear multivariate regression least square method to forecast maximal hazardous range and thickness of three groups debris flow, the forecasting accuracy is very higher.
     5. The accuracy of forecasting results to debris flow early warning and maximal hazardous range and thickness, convincingly demonstrate that the debris flow prediction can be carried out by nonlinearity theory. The innovation of research thoughts and methods which has higher value of application and promotion, embodies that the selected subject and the research of this thesis has scientific significance and economic value.
引文
[1]崔鹏,刘世建,谭万沛.中国泥石流监测预报研究现状与展望[J].自然灾害学报,2000,9(2):10-15.
    [2]康志成,李悼芬,马霭乃,等.中国泥石流研究[M].北京:科学出版社,2004.
    [3]谭炳炎.山区铁路沿线暴雨泥石流预报的研究[J].中国铁道科学,1994,15(4):67-78.
    [4]崔鹏,高克昌,韦方强.泥石流预测预报研究进展[J].学科发展,2005,20(5):363-369.
    [5]高速,周平根,董颖,等.泥石流预测、预报技术方法的研究现状浅析[J].工程地质学报,2002,10(03):279-285.
    [6]Aleotti P.A warning system for rainfall-induced shallow failures[J].Engineering Geology,2004,73:247-265.
    [7]谭万沛,王成华著.暴雨泥石流滑坡的区域预测与预报-以攀西地区为例[M].成都:四川科技出版社,1994.
    [8]谭万沛.泥石流沟的临界雨量线分布特征[J].水土保持通报,1989,12.
    [9]吕儒仁主编.西藏泥石流与环境[M].成都科技大学出版社,1999.
    [10]朱平一,陈景武,汪凯.暴雨泥石流形成的量化研究,泥石流观测与研究[M].科学出版社,1996:121-126.
    [11]朱静.泥石流沟判别与危险度评价研究[J]..干旱区地理,1995,18(3):63-71.
    [12]朱平一,程尊兰,汪阳春.长江上游暴雨泥石流与环境研究[J]..水土保持学报,2000,14(5):35-40:15-24.
    [13]C M.弗赖施曼著,姚德基译.泥石流[M].科学出版社,1986:29-35.
    [14]谭万沛.中国暴雨泥石流预报研究基本理论与现状[J].土壤侵蚀与水土保持学报,1996,2(1):88-95.
    [15]谭万沛,王成华,姚令侃等著.暴雨泥石流滑坡的区域预测与预报[M].成都:四川科学技术出版社,1994:1-279.
    [16]陈景武.云南东川蒋家沟泥石流暴发与暴雨关系的初步分析[A].中国科学院兰州冰川冻土研究所集刊(4)[C].北京:科学出版社,1985:88-96.
    [17]陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析[J].岩土力学,1995,16(3):62-68.
    [18]魏永明,谢又予.降雨型泥石流(水石流)预报模型研究[J].自然灾害学报,1997,6(4):48-53.
    [19]陈晓清,崔鹏,冯自立,陈杰,李泳.滑坡转化泥石流起动的人工降雨试验研究[J].岩石力学与工程学报,2006,25(1):106-116.
    [20]丛威青,潘懋,李铁锋,任群智,李仁锋.降雨型泥石流临界雨量定量分析[J].岩 石力学与工程学报,2006,25(1):2809-2812.
    [21]苏鹏程,刘希林,郭洁.四川泥石流灾害与降雨关系的初步探讨[J].自然灾害学报,2006,15(4):19-23.
    [22]谭万沛,韩庆云.四川省泥石流预报的区域临界雨量指标研究[J].灾害学,1992,7(2):37-42.
    [23]王利先,于志民.山洪及泥石流灾害预测[M].北京:中国林业大学出版社,2001.
    [24]刘传正,温铭生,唐灿.中国地质灾害气象预警初步研究[J]..地质通报,2004,23(4):303-309.
    [25]高召宁,姚令侃.基于非线性RSH方法的泥石流灾害预测预报[J].中国铁道科学,2007,28(6):7-11.
    [26]白利平,南赞,孙佳丽.北京市泥石流灾害临界雨量研究[J].中国地质灾害与防治学报,2007,18(2):34-41.
    [27]刘传正.区域滑坡泥石流灾害预警理论与方法研究[J].水文地质工程地质,2004,3:1-6.
    [28]彭贵芬,段旭,张杰,等.云南滑坡泥石流灾害精细化气象预警系统[J].气象科技,2008,36(5):627-630.
    [29]丛威青,潘懋,任群智,等.泥石流灾害多元信息耦合预警系统[J].北京大学学报(自然科学版),2006,1(1):1-5.
    [30]匡乐红.区域暴雨泥石流预测预报方法研究[D].长沙:中南大学,2006.
    [31]白利平,王业耀,龚斌,等.基于托理论的泥石流灾害预警预报系统开发:以北京市为例[J].现代地质,2009,23(1):157-163.
    [32]TAKAHASHI T.1980.Debris flow on prismatic open channel [J] Journal of Hydraulic Division,106(3):381-396.
    [33]Takahashi T, Tsujimmoto H.1985.Delineation of the Debris Flow Hazardous Zone by a Numerical Simulation Method[C]. Proceeding of International Symposium On Erosion, Debris Flow and Disaster Prevention. Tsukuba:Japan of Erosion Control Engineering Society,1985: 457-462.
    [34]石川芳治,水山高久,井户清尾.堆积扇上泥石流堆积泛滥机理,泥石流及洪水灾害防御国际学术会议论文集,A(泥石流),1991:27-31.
    [35]山下佑一,石川芳治.土石流の直击を受けゐ范围の设定,新砂防,44(2),1991:22-25.
    [36]池谷浩,米尺谷,诚悦.土石流危险区域の设定に关すゐ研究(第二报),土木技术资料,21(9),1979:46-50.
    [39]高桥保,中川一,山路昭彦.土石流泛滥危险范围の指定法に关すゐ研究,京都大学防灾研究所年报,38(B-2),1987:611-625.
    [40]水山高久,下东久已.土石流扇形地の地形と土石流の堆积泛滥,新砂防,1985,37(6):11-19.
    [42]Mizuyama T, Yazawa A.1987. Computer Simulafion of Debris Flow Depositional Processes[C]. Erosion and Sedimentation in the Pacific Rim. Wallingford:IAHS Press.1987: 179-190.
    [43]高桥保,中川一.1987.土石流泛滥危险范围の的指定法に关ず为研究[J].京都大学防灾学报,30(2):611-622.
    [44]Hunger O, Morgan C, Vandine F D, et al. Debris Flow Defenses in British Columbia[J]. Geological Society of America Reviews in Engineering Geology,1987,7(2):201 222.
    [45]O'Brien J S, Julian P Y, Fullerton W T. Two-dimensional Water Flood and Mudflow Simulation[J]. Journal of Hydraulic Engineering,1993,119(2):244-261.
    [46]唐川,刘希林,朱静.泥石流堆积泛滥区危险度的评价与应用[J].自然灾害学报,1993,2(4),79-84.
    [47]绍颂东.流团模型在洪水与泥石流大尺度流动计算中的应用[D].北京:清华大学,1997.
    [48]罗元华.泥石流堆积数值模拟及泥石流灾害风险评估方法研究[D].武汉:中国地质大学,1998.
    [49]刘希林,唐川,张松林,等.泥石流危险范围模型实验[J].地理研究,1993,12(2):77-85.
    [50]刘希林,唐川.泥石流堆积扇泛滥范围的流域背景预测法[C]//中国减轻自然灾害研究会.全国减轻自然灾害研讨会论文集.北京:气象出版社,1992.
    [51]刘希林.泥石流堆积扇危险范围雏议[J].灾害学,1990,5(3):86-89.
    [52]刘希林.论泥石流堆积扇危险范围的确定方法[C]//中国减轻自然灾害研究会.全国减轻自然灾害研讨会论文集.北京:中国科学技术出版社,1990.
    [53]刘希林,唐川,陈明,等.泥石流危险范围的实验研究[C]//中国水土保持学会.首届全国泥石流滑坡防治学术会议论文集.昆明:云南科学技术出版社,1993.
    [54]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.
    [55]柳金峰,欧国强,游勇.泥石流流速与堆积模式之实验研究[J].水土保持研究,2006, 13(1):120-121.
    [56]杨军,刘兴荣,冯乐涛,等.洛门镇响河沟泥石流危险性评价与危险范围预测[J].防灾科技学院学报,2009,11(2):83-86.
    [57]周志广,李广杰,陈伟韦.磐石市富太镇泥石流危险性评价与危险范围预测[J].水文地质工程地质,2007,2(2):101-105.
    [58]刘希林,唐川,朱静,等.泥石流危险范围的流域背景预测法.[J]自然灾害学报,1992,1(3):56-57.
    [59]唐川.泥石流堆积泛滥过程的数值模拟及其危险范围预测模型的研究[J].水土保持学报,1994.8(1):45-50.
    [60]章书成.泥石流运动数值模拟[J].中国学术期刊文摘,1995.1(2):62-63.
    [61]王纯祥,白世伟,江崎哲郎,等.基于GIS泥石流二维数值模拟[J].岩土力学,2007,28(7):1359-1368.
    [62]李同春,李杨杨,章书成,等.泥石流泛滥区域数值模拟[J].水利水电科技进展,2008,28(6):1-4.
    [63]李阔,唐川.泥石流危险范围预测模型及在昆明东川城区的应用[J].地球科学与环境学报,2006,28(4):70-72.
    [64]张晨,陈剑平,王清,等.泥石流危险范围预测及在乌东德地区的应用[J].吉林大学学报(地球科学版),2010,40(6):1365-1370.
    [65]邬伦,刘瑜.地理信息系统--原理、方法和应用[M].北京:科学出版社,2004.
    [66]娄丹丹,徐刚.GIS在地质灾害风险评价中的应用研究进展[J].四川地质学报,2008,28(4):335-338.
    [67]黄润秋.面向21世纪地质环境管理及地质灾害评价的信息技术[J].国土资源科技管理,2001,18(4):49-54.
    [68]Donati L, Turrini M C.An objective method to rank the importance of the factors predisposing to landslides with GIS methodology:application to an area of the Apennines(Valnerina; Perugia, Italy)[J]. Engineering Geology,2002,63:277-289.
    [69]Aldo C, Susanna P, Claudio T, et al.A procedure for landslide susceptibility zonation by the conditional analysis method[J]. Geomorphology,2002,48:349-364.
    [70]Temesgen B, Mohammed M U, Korme T.Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia[J].Physics and Chemistry of the Earth,2001,26(9):665-675.
    [71]Ohlmacher G C, Davis J C.Using multiple logistic regression and GIS technology to predict landslide hazard in Northeast Kansas, USA[J].Engineering Geology,2003,69:331-343.
    [72]Lee S, Min K.Statistical analysis of landslide susceptibility at Yongin, Korea[J]. Environmental Geology,2001,40:1095-1 113.
    [73]Dai F C, Lee D F.Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong[J].Geomorphology,2002,48:213-228.
    [74]Lin M L, Tung C C.A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake[J].Engineering Geology,2003,64:63-77.
    [75]曹修定,阮俊,郑宝锋,等.GIS技术在地质灾害信息系统中的应用[J].中国地质灾害与防治学报,2007,18(3):112-115.
    [76]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘,2001,8(2):279-284.
    [77].兰恒星,伍法权,周成虎,等.GIS支持下的降雨型滑坡危险性空间分析预测[J].科学通报,2003,48(5):507-512.
    [78]高克昌,崔鹏,赵纯勇,等.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J].岩石力学与工程学报,2006,25(5):991-996.
    [79]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,28(1):89-92.
    [80]金晓媚,刘金韬.四川省万县市滑坡群灾害灾情评估[J].工程地质学报,1999,7(1):25-29.
    [81]曹中初,孙苏南.GIS在煤矿底板突水危险性预测中的应用[J].水文地质工程地质,1996,23(1):45-48.
    [82]姜云,王兰生.地理信息系统在山区城市地面岩体稳定性管理与控制中的应用[J].地质灾害与环境保护,1994,5(1):32-38.
    [83]师哲,畅益峰,赵健,等.“长治”工程滑坡泥石流预警信息系统的构建[J].人民长江,2009,40(4):55-57.
    [84]陈平,丛威青.GIS支持下的湖南省地质灾害气象预警系统建设探讨[J].成都理工大学学报(自然科学版),2006,33(5):532-535.
    [85]李先华,林珲,陈晓清,等.GIS支持下降雨滑坡的启动机制研究与数字仿真[J].工程地质学报,2001,9(1)133-140.
    [86]李锋.开放式地质灾害实时监测及发布系统研究[J].计算机工程,2008,34(18)228-230.
    [87]田宏岭.降雨滑坡预警平台系统研究[D].成都:中国科学院研究生院(程度山地灾害与环境研究所),2007.
    [88]冯杭建,李伟,麻土华,等.地质灾害预警预报信息发布系统——基于ANN和GIS的新一代发布系统[J].自然灾害学报,2009,18(1):187-193.
    [89]单九生,魏丽,边晓庚,等.一基于Web-GIS技术的滑坡灾害预报预警业务系统[J]. 高原气象,2008,27(1):222-229.
    [90]Yoo C, Kim J M. Tunneling performance prediction using an integrated GIS and neural network [J]. COMPUTERS AND GEOTECHNICS,2007,34(1):19-30.
    [91]Bistacchi A, Massironi M, Dal Piaz G V, et al.3D fold and fault reconstruction with an uncertainty model:An example from an Alpine tunnel case study[J]. COMPUTERS & GEOSCIENCES,2008,34(4):351-372.
    [92]Apel M. From 3d geomodelling systems towards 3d geoscience information systems: Data model, query functionality, and data management[J]. COMPUTERS & GEOSCIENCES, 2006,32(2):222-229.
    [93]Chang Y S, Park H D. Development of a web-based Geographic Information System for the management of borehole and geological data[J]. COMPUTERS & GEOSCIENCES,2004, 30(8):887-897.
    [94]Kaufmann O, Martin T.3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines[J]. COMPUTERS & GEOSCIENCES,2008,34(3):278-290.
    [95]Tonini A, Guastaldi E, Massa G, et al.3D geo-mapping based on surface data for preliminary study of underground works:A case study in Val Topina (Central Italy)[J]. ENGINEERING GEOLOGY,2008,99(1-2):61-69.
    [96]Tonini A, Guastaldi E, Meccheri M. Three-dimensional reconstruction of the Carrara Syncline (Apuane Alps, Italy):An approach to reconstruct and control a geological model using only field survey data[J]. Computers & Geosciences,2009,35(1):33-48.
    [97]Choi Y, Yoon S, Park H. Tunneling Analyst:A 3D GIS extension for rock mass classification and fault zone analysis in tunneling[J]. Computers & Geosciences,, In Press, Corrected Proof.
    [98]李明超,王忠耀,刘杰.水库库岸滑坡体稳定性与三维可视化模拟分析系统研究[J].岩土力学,2009,30(1):270-274.
    [99]尹江涛,杨斌,何政伟,等.GIS三维可视化技术在天山公路地质灾害评价与决策信息系统中的应用研究[J].GIS技术,2008,(100):81-84.
    [100]朱琳,宫辉力,林学钰,等.地面沉降多尺度三维可视化技术研究[J].自然科学通报,2009,19(11):1255-1260.
    [101]钟登华,安娜,李明超.库岸滑坡体失稳三维动态模拟与分析研究[J].岩石力学与工程学报,2007,26(2):360-367.
    [102]刘学,王兴奎,王光谦.基于GIS的泥石流过程模拟三维可视化[J].水科学进展,1999,10(4):388-392.
    [103]韩玲,李燕婷,陈丹华.基于RS和GIS技术的武都地区泥石流数据研究[J].测绘科学,2010,35(1):72-73.
    [104]北京大学地球与空间科学学院,辽宁省冶金地质勘查局地质勘查研究院.辽宁省鞍山市地质灾害评价预警系统[R].沈阳:2005.
    [105]中冶沈勘工程技术有限公司.辽宁省岫岩满族自治县泥石流地质灾害重点区查证报告[R].沈阳:2009.
    [106]宋杨,万幼川.一种新型空间数据模型Geodatabase[J].测绘通报,2004, (11):31-33.
    [107]张佐帮,尚颖娟.基于GeoDatabase的面向对象空间数据库设计[J].地理空间信息,2005,3(2):33-35.
    [108]李国标,庄雅平,王珏华.面向对象的GIS数据模型—地理数据库[J].测绘通报,2001(6):37-39.
    [109]王殷行,刘文宝,崔先国.基于三叉树的面向对象的GIS数据模型[J].矿山测量,2002(4):41-43.
    [110]Bode T, Breunig M, Cremers A B. First Experiences with GEOSTORE, an Information System for Geologically Defined Geometries[C].Proceedings IGIS.1994.
    [111]李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330.
    [112]雄伟,毛善军,马蔼乃,等.面向地质应用的三维数据模型研究[J].煤炭地质与勘探,2002,30(6):11-14.
    [113]谭仁春.GIS中三维空间数据模型的集成与应用[J].测绘工程,2005,14(1):63-66.
    [114]赵永军,李汉林,王海起.GIS三维空间数据模型的发展与集成[J].石油大学学报(自然科学版),2001,25(5):24-28.
    [115]王润怀.矿山地质对象三维数据模型研究[D].西南交通大学博士学位论文,2007.
    [116]杨东来,张永波,王新春,等.地质体三维建模方法与技术指南[M].北京:地质出版社,2007.
    [117]史文中,吴立新,李清泉,等.三维空间信息系统模型与算法[M].北京:电子工业出社,2007.
    [118]肖如林,苏振奋,万庆,等.基于Multipatch模型的冰凌三维可视化分析[J].地球信息科学,2009,(2):196-201.
    [119]范力铭,吴健平,汪旻琦ArcObjects中三维模型的创建方法[J].苏州科技学院学报(自然科学版),2007,24(2):54-58.
    [120]蔡恒刚,李小根,张东亮,等.基于Multipatch的地下物体在ArcGIS上的实现[J].华北水利水电学院学报,2004,25(4):64-66.
    [121]刘玉锋.空间数据库构建研究[J].科技推广,,2010,(3):177-179.
    [122]毛玉龙.ArcGIS的二次开发[J].福建电脑,,2006,(2):84-85.
    [123]范大凯,吴健平.基于MapX的GIS应用开发实例[J].2001.
    [124]诸云强,宫辉力,赵文吉,等.基于组件技术的地理信息系统二次开发——以地下水资源空间分析系统为例[J].地理与地理信息科学,2003,19(1):16-19.
    [125]徐爱萍,徐武平.组件技术与ComGIS[J].测绘信息与工程,2001(2):32-34.
    [126]李胜,王强.组件GIS在国土专题信息管理系统中的应用[J].测绘通报,2002(8):46-48.
    [127]宋关福,钟耳顺.组件式地理信息系统研究与开发[J].中国图象图形学报,1998,3(4):313-317.
    [128]Zhong E, Song G, Wang E. Development of a Components G1S based on Applications[C].Proceedings of IEAS'97 & IWGIS'97. Beijing China.
    [129]唐超,冯珊,周凯波.基于组件技术的开放式地理信息系统结构[J].华中理工大学学报,2000(07).
    [130]郝平,李瑞麟,应时彦,等.组件式地理信息系统技术[J].浙江工业大学学报2001,29(3).
    [131]刘丹,郑坤,彭黎辉.组件技术在GIS系统中的研究与应用[J].地球科学——中国地质大学学报,2002,27(3):263-266.
    [132]高华喜,殷坤龙.降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J].岩土力学,2007,28(5):1 055-1 060.
    [133]林鸿州,于玉贞,李广信,等.降雨特性对土质边坡失稳的影响[J].岩石力学与工程学报,2009,28(1):198-204.
    [134]Glade T. Linking debris-flow hazard assessments with geomorphology [J]. Geomorphology,2005,66(14):189-213.
    [135]Zhou CH, Lee C F, Li J. On the spatial relationship between landslides and causative factors on Lantau Island [J].Hong Kong Geomorphology,2002,43:197-207.
    [136]王哲,易发成.基于层次分析法的绵阳市地质灾害易发性评价[J].自然灾害学报,2009,18(1):14-23.
    [137]Christopher J C Burges. A Tutorial on Support Vector Machine for Pattern Recognition [J].Data Mining and Knowledge Discovery,1998,2:121-167.
    [138]原立峰.基于SVM的泥石流危险度评价研究[J].地理科学,2008,28(2):296-300.
    [139]孟凡奇,李广杰,汪茜.最优组合赋权法在泥石流危险度评价中的应用[J].人民长江,2009,40(22):40-42.
    [140]党如童.应用灰色集合理论预测发生泥石流的危险系数[J].水土保持应用技术, 2007,(1):15-17.
    [141]李海滨,沙爱民.改进层级分析法在路面施工过程控制中的应用[J].长安大学学报(自然科学版),2008,28(5):23-26.
    [142]谢全敏,夏元友.边坡治理决策的改进层次结构模型及其应用[J].岩土工程学报,2002,24(1):86-88.
    [143]D'Amboise D, Gregorio S D et al. A first simulation of the Sarno debris flows through Cellular Automata modeling [J]. Geomorphology,2003,54:97-117.
    [144]S.Egashira, N.Honda, T.Itoh. Experiment Study on the Entrainment of Bed Material into Debris Flow.Phys [J].Chem. Earth,2001,26 (9):645-650.
    [145]CAI Wen.Extension theory and its application [J]. Chinese Science Bulletin,1999, 44(17):1538-1548.
    [146]Fannin R J, Rollerson T P. Debris flows:some physical characteristics and behaviors [J].Canadian Geotechnical Journal,1993,30:71-81.
    [147]陶永宏,祁爱琳.基于功效系数法与BP神经网络的造船业风险预警研究[J].中国造船,2010,51(1):191-198.
    [148]徐佳,张勤,吴继敏.功效系数法在确定岩体优势面中的应用[J].河海大学学报(自然科学版),2008,36(4):538-541.
    [149]蒋洁.功效系数法在高校财务风险预警中的应用[J].财务与金融,2009,(5):56-60.
    [150]周莉,黄河清,蒲勇健.基于功效系数法的经营者相对业绩评价研究[J].软科学,2006,20(1):40-44.
    [151]刘恒,巢健茜.基于功效系数法的医疗质量综合评价[J].中国医院管理,2008,28(2):25-26.
    [152]王迎超,尚岳全,孙红月,等.基于功效系数法的岩爆烈度分级预测研究[J].岩土力学,2010,31(2):529-534.
    [153]中华人民共和国国土资源部.GT/T 0220-2006泥石流灾害防治工程勘查规范[S].北京:中国标准出版社,2006.
    [154]仲桂清,张恒轩,刘国海.辽东山区泥石流成因和危险度区划研究[J].海洋地质与第四纪地质,1995,15(3):81-91.
    [155]丛威青,潘懋,任群智,等.基于水文气象数据的泥石流灾害预报研究[A].中国岩石力学与工程学会东北分会.第九届全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2006,602-607.
    [156]蔡文.物元模型及应用[M].北京:科学技术文献出版社,1994.
    [157]蔡文,杨春燕,林伟初.可拓工程方法[M].北京:科学技术出版,1997.
    [158]蔡文,杨春燕,何斌.可拓逻辑初步[M].北京:科学技术出版社,1997.
    [159]杨春燕,蔡文.可拓工程研究[J].中国工程科学,2000,2(12):90-96.
    [160]邓丽丽.可拓方法在采场稳定性评价中的应用[J].中国矿业,1998,7(4):35-38.
    [161]王亮.岩体边坡稳定性的可拓学分析[J].河北冶金,1999,1:21-23.
    [162]杨庆华,陈春光.洪灾强度的可拓学分析[J].城市道桥与防洪,2004,2:46-49.
    [163]秦胜伍.基于GIS的隧道施工超前地质预报[D].长春:吉利大学,2009.
    [164]孟凡奇,李广杰,李明,等.逐步判分析法在筛选泥石流评价因子中的应用[J].岩土力学,2010,31(9):2925-2929.
    [165]卢文喜,李俊,于福荣,等.逐步判别分析法在筛选水质评价因子中的应用[J].吉林大学学报(地球科学版),2009,39(1):126-130.
    [166]胡永章,王洪辉,段新国,等.多组逐步判分析在鄂尔多斯某区块识别水、气层[J].成都理工大学学报(自然科学版),2005,32(2):152-155.
    [167]于秀林,任雪松.多元统计分析[M].北京:中国统计出版社,1999:101-149.
    [168]段新国,王允诚,李忠权,等.应用多组逐步判别分析优选油气层[J].大庆石油地质与开发,2007,26(1):68-71.
    [169]邹乐强.最小二乘法原理及其简单应用[J].信息科技,2010,(23):282-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700