用户名: 密码: 验证码:
延边—东宁地区晚中生代浅成热液金铜矿床的成矿流体与成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延边-东宁地区位于兴蒙造山带东端,狭于华北板块,佳木斯地块以及兴凯地块之间,是一个经历了古亚洲洋演化、兴蒙造山对接以及新生代超壳断裂作用叠加而成的复合构造区,多期的构造、岩浆作用使得本区成为我国内生浅成热液金铜等多金属重要矿产地之一,长期以来倍受国内外地质学家关注和研究。为了深入揭示浅成热液金属矿床的成矿规律和找矿方向,本文以该地区的超大型-大(中)型浅成热液金铜矿床为研究对象,深入开展了典型矿床以及与成矿关系密切的中酸性火成岩的地质、地球化学、同位素、年代学研究,取得了如下重要进展。
     矿床地质研究得出:斑岩型金厂18号脉、农坪和类斑岩型小西南岔金铜矿床矿体类型为细脉型、细脉浸染型,浅成高硫化矿床矿体类型为角砾岩型和蚀变岩型;研究区斑岩型-浅成高硫化型矿床的控矿构造均为线性断裂或次级断裂,矿体产在断裂交汇的角砾岩筒内或次级断裂中;矿化阶段上,除类斑岩型小西南岔金铜矿床外,斑岩型和浅成高硫化型均分为4个矿化阶段:斑岩型和浅成高硫化型金铜矿床Ⅰ矿化阶段分别为钾长石化阶段、黄铁绢英岩阶段,其余三个矿化阶段均分别为:石英-黄铁矿±黄铜矿±辉钼矿阶,多金属硫化物阶段,石英-方解石脉阶段;小西南岔分为5个阶段,第Ⅰ和第Ⅴ矿化阶段和斑岩型第Ⅰ和第Ⅳ矿化阶段相同,Ⅱ-Ⅳ(主成矿)矿化阶段分为浸染状硫化物蚀变岩阶段、硫化物阶段、纯硫化物阶段;围岩蚀变上,三类矿床除斑岩型和类斑岩型早期发育钾长石化、阳起石化、电气石化及黑云母化,均发育绿泥石、绿帘石化,硅化,绢云母化,泥化和碳酸盐化。
     流体包裹体的研究表明:浅成高硫化矿床包裹体类型为气液两相、含子晶多相及(富)纯气相,富液相;子晶类型主要为石盐、钾盐、硬石膏、重晶石等硫酸盐,黄铜矿及赤铁矿等金属子晶;金厂0号脉、1号脉和杜荒岭、九三沟的均一温度分别为120℃-490℃,110℃-490℃,90-530℃,140-560℃;初始成矿流体的盐度分别为35.66-65.85 wt%(NaCl), 62.38±wt%(NaCl),60.03~64.49 wt%(NaCl);主成矿古深度为<1.5km。斑岩型金厂18号、农坪金铜矿床包裹体除发育浅成高硫化包裹体类型外,金厂18号矿体还存在熔融包裹体,子晶种类与高硫化型相同;其均一温度分别为230℃-600℃、170-490℃;初始成矿流体的盐度分别为31.75-69.82 wt%(NaCl),2.89 wt%(NaCl)±;主成矿阶段古深度分别为3.5-1.0km,2.0-0.5km.小西南岔北山、南山及与成矿关系密切的角闪花岗闪长岩包裹体类型与斑岩型相同,子晶种类还有方解石和水合物;北山、南山及角闪花岗闪长岩均一温度分别为150℃-500℃、150℃-390℃,90℃-530℃,显示北山具有高温气相成矿特征;北山获得初始成矿流体盐度为9.45-20.15(wt%NaCl),与角闪花岗闪长岩原生流体包裹体的盐度10.49-15.55(wt%NaCl)接近;北山开始成矿深度为4km,南、北山主成矿古深度均小于2.0kmm。这三类矿床主成矿阶段流体盐度均出现低盐度和高盐度两个区间,晚期为低盐度流体。激光拉曼结果显示五个矿床的气体成分主要为H20,C02,CH4,小西南岔南、北矿区和金厂0号脉,杜荒岭气体成分还有N2。氢氧同位素显示小西南岔南、北矿区和金厂0号脉的δ18O(H2O)分别为0.048-6.125‰,-0.09-3.78‰,4.1-7.14‰;δDV-SMOW分别为-46--99.5%o,-38--82.5%0,-73-86.62。这些结果表明早期成矿流体均为含CO2的高温高氧化的幔源岩浆热流体,浅成高硫化矿床和斑岩型金厂18号脉初始成矿流体具有高盐度性质,而斑岩型农坪和类斑岩型小西南岔金铜矿床初始成矿流体为中低盐度,成矿过程中均有不同程度的地壳流体和大气水的混入。三类矿床的成矿过程中均有沸腾作用发生,450-400℃,30Mpa,高盐流体与大气水的加入是浅成高硫化矿床形成的前提,350-200℃,15-5Mpa流体沸腾是该类矿床主要成矿机制;斑岩型金厂18号脉和农坪经先沸腾后大气水混合形成细脉浸染状斑岩型矿床,沸腾条件分别为450-300℃,35-10Mpa和350-300℃,20-10Mpa;温度370-400℃,压力20Mpa时流体的瞬间沸腾是小西南岔矿床形成的前提,随后350℃±,15Mpa时高温气相与地壳流体混合交代是北山形成的主要机制,400-200℃,20-5Mpa随温压变化在裂隙中脉状充填结晶是南山主要成矿机制,5Mpa大气水加入造成局部不混溶是小西南岔中晚期成矿机制。
     成矿关系密切的中酸性火成岩的主量、痕量元素显示Si02含量≥53%,A1203≥17%,富集大离子、轻稀土元素,亏损重稀土元素的特征;Sr-Nd-Pb同位素结果显示:金厂九三沟和小西南岔脉岩的(87Sr/86Sr)i,INd和εNd(t)的值分别为0.70414-0.70487,0.51258~O.51264,1.56-2.88;206Pb/204Pb为18.3481~18.4682,207Pb/204Pb为15.5438~15.6198,208pb/204Pb为38.2316-38.4177。这些结果显示脉岩为钙碱性和埃达克质岩共生特征,为俯冲洋壳脱流体过程中,可能伴生有埃达克质熔体的产生,它们与上覆地幔楔和地幔熔体不同程度的混合、混染形成。
     成岩成矿年代学研究显示金厂金铜矿和九三沟金矿的成矿时代上限分别为110±1.1Ma,109.8±2.2Ma,杜荒岭金矿床的成矿时代为107±6 Ma;小西南岔和农坪矿床成矿时代上限分别为102.1±2.2Ma,96.9±1.4Ma;显示成矿集中在两个时间,110Ma和100Ma,均与早白垩世晚期伊泽奈奇板块不同方向的俯冲有关。
     结合与成矿有关的岩浆的成因和形成时代,成矿流体的演化,归纳成矿动力学背景和成矿过程为:110Ma伊泽奈奇板块北北西向下俯冲古亚洲洋大陆,俯冲洋壳脱流体过程中,可能伴生有埃达克质熔体的产生,它们与上覆地幔楔和地幔熔体不同程度的混合、混染过程中,岩浆房逐渐卸载岩浆带来的铜等成矿元素,中低盐度的超临界含矿流体库聚集形成。随着岩浆结晶金厂和杜荒岭,九三沟矿区的临界流体发生相分离均形成高盐度流体和低盐度岩浆气;在岩石圈地幔伸展情况下,岩浆和成矿流体上升,高盐度流体经过沸腾和大气水混合以结晶和充填方式在金厂形成细脉浸染状18号脉,金厂矿区、杜荒岭和九三沟矿区的低盐度岩浆气上升过程中浓缩出高盐度液相再经大气水混合转变为中低盐度流体,1.5km处经沸腾分别形成0号、1号角砾岩筒矿体,杜荒岭和九三沟角砾岩型矿体;100Ma伊泽奈奇板块北西向俯冲,经历上述过程形成的埃达克质岩浆和中低盐度流体在小西南岔和农坪矿区上升,经沸腾和大气水混合形成农坪细脉浸染状铜金矿体,而在小西南岔沸腾后的高温气相流体与年轻地壳流体混合交代、结晶在北山形成细脉浸染状矿体,沸腾的中温含矿流体在南山以充填方式形成磁黄铁矿为主的硫化物石英脉,在中晚期南、北山均有大气水的加入,在南山造成局部不混溶形成纯硫化物脉和角砾岩,北山不混溶形成的高温气相流体以充填方式形成胶黄铁矿石英脉,上升的埃达克质岩浆随着矿体形成也在浅部就位。因此,延边-东宁地区晚中生代在相同的动力学背景下,通过不同的流体演化过程形成了三种不同类型的热液金铜矿床。
Yanbian-Dongning area is located in the eastern part of Mongolia orogenic belt, adjacent to Jiamusi massifs in the north and North China plate in the South and Khanka massifs in the northeast. The region has undergone the evolution of the Ancient Asian Ocean, Xing'an-Mongorian orogenic process, superposition of Mesozoic subduction of palaeo-Pacific plate and Cenozoic supercrustal faulting. Owing to multi-stage tectonic-magmatism, the study area became one of important Au-Cu-dominated polymetallic mineral producing area in China, and the geologists world-wide have paid much attation to the area for a long period. This paper chooses typical epithermal Au-Cu deposits of Late Mesozoic in the area to further reveal the metallogenic regularity and ore-searching direction. The study, including deposit geology, geochemistry, metallogenic epoch of typical deposits and the geology, geochemistry, isotope and chronology of intermediate-acid igneous associated with the ore, was systemically carried out. The following important developments are obtained.
     The study on deposit geology indicates that:the orebodies in porphyry type No.18 of Jinchang, Nongping and porphyry-like type Xiaoxinancha Au-Cu deposit are characterized by veinlike and veinlet-dissemination, Those in epithermal high sulfidation deposits (HSD) belong to breccia pipe type and alteration type. The five deposits are all controlled by linear fractures and secondary fracture, and the orebody occurred in breccia pipe and secondary fracture. The porphyry type and HSD type deposit are all divided into four mineralization stage, the first stage for the porphyry type and HSD type deposit are potassic alteration and pyritized phyllite, respectively, the other three stages are quartz-pyrite±chalcopyrite±molybdenite stage, polymetallic sulfide stage, quartz-calcite stage in sequence, whereas Xiaoxinancha can be divided five stages, the first and the end stages are the same to that of the porphyry type deposit, theⅡ-Ⅳstages are disseminated sulfide and alteration rocks stage, sulfide veins stage, pure sulfide stage, in turn. Hydrothermal alteration in five studied deposits are widespread, including argillic alteration, silicification, kaolinization, sericitization, as well as potassic alteration, biotitization and tourmalinization in porphyry type and porphyry-like Au-Cu deposit.
     Four type fluid inclusions are recognized in HSD deposit, including aqueous inclusion, vapor-rich inclusion, polyphase inclusion and liquid-rich inclusion, the discovered daughter minerals are halite, sylvite, anhydrite, barite, as well as opaque mineral such as hematite, chalcopyrite; the total homogenization temperatures and the salinity of early mineralizing fluids are in the ranges of 90-530℃and 62.38±wt%(NaCl) for Duhuangling, in the ranges of 140-560℃and 60.03-64.49 wt%(NaCl) for Jiusangou,120℃-600℃and 35.66-65.85 wt%(NaCl) for No.0 in Jinchang deposit, and the mineralization depth of the HSD is mainly less 1.5km. The porphyry type deposit in study area have the same fluid inclusion type to HSD, as well as melt inclusion; the range in the salinity of early mineralizing fluids and total homogenization temperatures varies from 31.75-69.82 wt%(NaCl) and 230℃-600℃for No.18, those of Nongping are in the ranges from 170 to 490℃for total homogenization temperature and 2.89 wt%(NaCl)±for the salinity of early mineralizing fluids. In Xiaoxinancha, Hydrate and calcite daughter minerals are also discoveried, except for the same fluid inclusion type to the porphyry type; the total homogenization temperatures are in the ranges of 150℃-500℃for the North mine,150℃-390℃for the South mine,90℃-530℃for the granitic complex associated with the minerazition, and the salinity of early mineralizing fluids is in range from 9.45~20.15 wt%(NaCl), that is consistent with the salinity of the granitic complex (10.49-15.55 wt% NaCl), and the North mine began the mineralization at the depth of 4 km, the main mineralization depth is less 2 km. The salinity in the main mineralizing stage of study deposits all show low- and high-range two regions. The result of Laser raman mainly gives the gas composition of H2O, CO2, CH4, as well as N2 in Xiaoxinancha, Jinchang and Duhuanling. Calculatedδ18O values of H2O in the fluid in equilibrium with quartz and calcite are, respectively,+0.048 to +6.125%o for the South mine, -0.09 to +3.78%o for the North mine in Xiaoxinancha, and +4.1 to +7.14%o for No.0 in Jinchang (SMOW). TheδDH2O of inclusion fluids is -46 to -99.5%o,-38 to -82.5%o, and -73 to -86.62‰, respectively. The result indicated together that early mineralizing fluids of the five deposit are characterized by high temperature, high oxidation, mantle-derived and CO2-bearing, but high salinity for Jinchang, Duhuangling and Jiusangou whereas low salinity for Xiaoxinnach and Nongping. The fluids of three type deposit both experienced boiling; mixing with meteoric water at 450-400℃and 30 Mpa is precondition and fluid boiling at 350-200℃,15-5Mpa is the main mechanism of high sulfidation deposit; fluid boiling is the main mechanism for No.18 of Jinchang and Nongping, and the boiling condition is 450-300℃,35-10Mpa and 350-300℃,20-10Mpa, respectively; and fluid boiling at 370-400℃and 20 Mpa is the prerequisite of the mineralization in Xiaoxinancha, subsequently replacement and crystallization of mixed fluids with young crustal fluid at 15Mpa is the main mechanism of ore precipitation for the North mine whereas filling in fissures with the change of temperature and pressure at 400-200℃and 20-5 Mpa formed sulfide-quartz veins of the South mine, local immiscibility caused by adding of meteoric water at 5Mpa is responsible for middle and late mineralization in North and South mine.
     The main geochemical characteristics of the intermediate-acid igneous rocks associated with the mineralization are SiO2≥53%, high Al content (Al2O3≥17%), rich in LILE and LREE, and depleted in HREE; the initial Nd and Sr isotopic compositions of the igneous rocks in Jinchang, Jiusangou and Xiaoxinancha are in the ranges of 0.70414-0.70487 for (87Sr/86Sr)i, 0.51258-0.51264 for INd, and 1.56-2.88 forεNd(t); the Pb isotopic ratios of those range from 18.3481 to 18.4682 for 206Pb/204Pb, from 15.5438 to 15.6198 for 207Pb/204Pb, and from 38.2316 to 38.4177 for 208Pb/204Pb. The geochemistry together with petrochemistry is suggested that the igneous rocks are exhibit calc-alkaline and adakite signatures, and the product of the interaction betweem slightly depleted mantle and subducted fluids and melts.
     LA-ICP-MS U-Pb dating analysis for zircon grains in the igneous rocks together with 40Ar/39Ar laser probe of dating single quartz particle in sulfide veins indicate that the metallogenic epoch is 107±6 Ma for Duhuangling, the upper limit of metallogenic epoch is 110±1.1Ma for Jinchang,109.8±2.2Ma for Jiusangou,102.1±2.2Ma for Xiaoxinancha, 96.9±1.4Ma for Nongping; they are mainly focused on two stages, one is 110Ma, and the other is 100Ma, both related with the subduction of Izanagi Plate.
     Based with magmatic genesis, chronology of the intermediate-acid igneous rocks, and the fluid evolution, the dynamic setting and ore-forming process are summarized as following. As a result of Izanagi Plate NNW-trend subduction beneath paleo-Asian continent at 110Ma, mantle wedge contaminated and mixed with dehydration fluids and melts from the subducted oceanic crust, in the process, metal elements such as Cu, Au carried by the magma were gradually unloaded in the magma chamber to form supercritical ore-bearing fluid reservoir. With the crystallization of magma, the critical fluid boiled separating out lower-salinity vapor and hypersaline fluid in magma chamber; As the extension of the lithospheric mantle, the pre-produced magma and the ore-bearing fluids rose along the fractures, the former emplaced at shallow crust to form intermediate-acid igneous rocks, whereas the boiled hypersaline fluid took place "second boiling" and subsequently mixing with meteoric water by crystallization and filling to form No.18 veinlet-dissemination in Jinchang, the hypersaline fluid by condensed out from the lower-salinity vapor in magma chamber, fristly mixed with meteoric water and then "second boiling" in Duhuangling, Jiusangou and No.0 of Jinchang, respectively, which formed breccia pipe type (Cu-) Au orebody. When Izanagi Plate transformed to NW-trend subduction at 100Ma, adakitic magma and low and moderate salinity supercritical fluid generated as the above process in Nongping and Xiaoxinancha rose along the fractures, Nongping Au-Cu deposit was formed as the same way as No.18 of Jinchang. High temperature vapor from boiling was mixed with young crustal fluid, and the mixed fluids metasomatized wall rocks to form veinlet-dissemination orebody in the North mine, with the change of temperature and pressure, moderate temperature mineralizing fluids from boiling formed the South mine sulfide-quartz veins by filling, at middle and late ore-forming stage, local immiscibility was caused by adding of meteoric water, therefore, ore-rich fluids generated in the South mine deposited pure sulfide and breccia, high temperature vapor-like fluids generated in North mine in fissure formed melnicovite-dominated sulfide-quartz veins by filling, as such, the adakitic magma emplaced at shallow crust during the precipation of mineralizing fluids, hence, three types hydrothermal Au-Cu deposits of Late Mesozoic in Yanbian-Dongning area were formed by the similar dynamic setting but different fluids evolving process at the two stage.
引文
[1.]Anderko A, Pitzer K S Phase-equilibria and volumetric properties of the systems KC1-H2O and NaCl-KCl-H2O above 573K—equation of state representation. Geochim Cosmochim [J] Acta 57(20):4885-4897.
    [2.]Arribas A. Jr. Characteristics of high sulfidation epithermal, and their relation to magmatic fluid [J]. Mineralogical Assoc.Can. Short Course,1995,23,419-454.
    [3.]Atherton M.P., Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust [J]. Nature,1993,362:144-146.
    [4.]Aude'tat A, Pettke T. The magmatic-hydrothermal evolution of two barren granites:a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA) [J].Geochim Cosmochim Acta,2003,67(1):97-121.
    [5.]Ballentine C J, Burgess R, Marty B. Tracing fluid origen, tansport and interaction in the crust In: Noble Gases [M].//Porcelli D P, Ballentine C J, Wieler R:Rev Mineral Geochem,2002,539-614.
    [6.]Baptiste P J, Fouquet Y. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N [J]. Geochim Cosmochim Acta,1996,60:87-93.
    [7.]Beane R. E., Titley S. R. Porphyry copper deposits Part Ⅱ:Hydrothermal alteration and mineralization [J].Economic geology 75th anniversary volume,1981,235-269.
    [8.]Beane, R.E., Bodnar, R.J. Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits, in Pierce, F.W., and Bohm, J.G.eds., Porphyry copper deposits of the American Cordillera:Tucson, AZ, Arizona Geological Society Digest,1995,20,83-93.
    [9.]Belousova E A, Griffin W L, O' Reilly S Y, et al. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contribution to Mineralogy and Petrology,2002,143:602-622.
    [10.]Bischoff J. L.. Densities of liquids and vapors in boiling NaCl-H2O solutions:A PVTX summary from 300℃ to 500℃.Amer. J.Sci.,1991,291:309-338.
    [11.]Bodnar R J, Burnham C W, Sterner S M. Synthetic fluid inclusions in natural quartz III determination of phase equilibrium properties in the system H2O-NaCl to 1000℃ and 1500 bars [J]. Geochim Cosmochim Acta,1985,49:1861-1873.
    [12.]Bowman J.R., Parry W.T., Kropp W. P., et al. Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah [J]. Economic geology,1987,82,395-428.
    [13.]Bozzo A. T, Chen H S, Kass J R, et al. The properties of hydrates of chlorine and carbon dioxide In: Fouth International Symposium on Fresh water from the sea (eds. A. Delyannis) [D].1973,3:437-451.
    [14.]Buikin A, Trieloff M, Hopp J, et al. Noble gas isotopes suggest deep mantle plume source of late Cenozoic mafic alkaline volcanism in Europe. Earth Planet Sci Lett,2005,230:143-162.
    [15.]Burnham C W. Magmas and hydrothermal fluids. In. Geochemistry of hydrothermal ore deposits[C].// Barnes, H. L.2nd edn:New York:Jhon Wiley,1979:71-136.
    [16.]Camus F, Dilles J H. A special issue devoted to porphyry copper deposits of northern Chile-Preface [J]. Econ Geol,2001,96(2):233-237.
    [17.]Candela P.A. Felsic magmas, volatiles, and metallogenesis. In:Whitney,J.A., Naldrett, A.J. (Eds.), Ore deposits associated with magmas. Rev. Econ.Geol.,1989,4,223-233.
    [18.]Castillo, A., Patino Douce, A. E., Corretge, L.G.. Origin of pelaluminlous granitics and grandiosities, Iberian massif, Spaill:An experimental test of granitic petrogenesis [J]. Contrib Mineral Petrol, 1999,135:255-276.
    [19.]Chen C.H., Tan L.P., Tien R.L., et al. Fission track age of igneous rocks and silicified sandstones from the Chilung volcano group, northern Taiwan:implication of mineralization events of the Chinkuashih gold-copper deposits [J[.J. Geol. Soc. China,1993,36,157-174.
    [20.]Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research,1972,77:3057-3067.
    [21.]Cline J.S., Bodnar, R.J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt [J]?:Journal of Geophysical Research,1991,96,8113-8126.
    [22.]Corbett G. Epithermal gold for explorationists[J]. AIGJournal-Applied Geoscientific Practice and Research in Australia,2002,April:1-26.
    [23.]DePaolo D J, Wasserburg G. J. Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodyinm. Geochimica et Cosmochimica Acta,1979,43:999-1008.
    [24.]Deyell C.L., Rye R.O., Landis G.P., et al. Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio-Pascua belt, Chile [J]. Chemical Geology,2005,215,185-218.
    [25.]Dilles J H. The petrology of the Yerington batholith, Nevada:Evidence for the evolution of porphyry copper ore fluids [J]. Economic geology,1987,82,1750-1789.
    [26.]Driesner T. A new model for the thermodynamic and transport properties of the NaCl-Water System from 0-700℃,0.1 to 500 MPa, and XNaCl from 0 to 1.11th Annual Goldschmidt Conference, 2001[C].Hot Springs, Virginia.
    [27.]Driesner T, Heinrich C A Revised critical curve for the system H2O-NaCl.12th Annual Goldschmidt Conference,2002 [C]. Davos.Geochim Cosmochim Acta A 196.
    [28.]Driesner T, Heinrich C A.. The system H2O-NaCl. Part I:Correlation formulae for phase relations in temperatures-pressures-composition space from 0 to 1000℃,0 to 5000 bar,0-1 X-NaCl [J]. Geochimica et Cosmochimica Acta,2007,71,4880-4901.
    [29.]Dunaim T, Baur H. Helium, neon, and argon systematics of the European subcontinental mantle: implications for its geochemical evolution [J]. Geochim Cosmochim Acta,1995,59:2767-2783.
    [30.]Dunaim T, Porcelli D P. Storage and transport of noble gases in the subductinental lithosphere. In:Noble Gases [M].//Porcelli D P, Ballentine C J, Wieler R:Rev Mineral Geochem,2002,371-409.
    [31.]Engebretson D.C.,Cox A., Gordon R.G..Relative motions between oceanic and continental plates in the Pacific basin [J].Geol.Soc.Spec.Paper,1985,206:1-59.
    [32.]Foland K A., Allen J C. Magma sources for Mesozoic anorogenic granites of the White Mountain Magma series, New England, USA [J]. Contrib. Mineral. Petrol,1991,109:195-211.
    [33.]Fournier R O.Conceptual models of brine evolution in magmatic-hydrothermal systems. In:Volcanism in Hawaii [M].//Decker RW, Wright TL,Stauffer PH:Hawaiian VolcanoObservatory,1987,1487-1506.
    [34.]Gammons C.H., and Williams-Jones, A.E.,1997, Chemical mobility of gold in the porphyry-epithermal environment:ECONOMIC GEOLOGY, v.92, p.45-59.
    [35.]Gautheron C, Moreira M, Allegre C. He, Ne and Ar composition of the European lithospheric mantle [J]. Chem Geol,2005,217:97-112
    [36.]Gautheron C, Moreira M. Helium signature of the subcontinental lithospheric mantle [J]. Earth Planet Sci Lett,2002,199:39-47
    [37.]Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries [J]. Earth Planet. Sci. Lett,1992,113,495-510.
    [38.]Gilder S A, Courtillot V. Timing of the North-South China collision from new middle to late Mesozoic paleomagnetic data from the North China Block [J].J.Geophys.Res.,1997,102(B8):17713-17727.
    [39.]Gustafson LB, Hunt J P. Porphyry copper deposit at El Salvador, Chile [J]. Econ Geol,1975, 70(5):857-912.
    [40.]Hall D. L. Sterner S M.. Freezing point depression of NaCl-KCl-H2O solution [J]. Econ. Geology,1988, 83:197-202.
    [41.]Heald P, Foleyn K, Hayba D O. Comparative anatomy of volcanic2hosted epithermal deposits -acid sulphate and adularia-sericite types [J]. Economic Geology,1987,80:1-26.
    [42.]Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits Freezing point depression of NaCl-KCl-H2O solution. Nature,1994,370(6490):519-527.
    [43.]Hedenquist J. W., Arribas A., Reynolds T. J. Evolution of an intrusioncentered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology,1998,93, 373-404
    [44.]Hedenquist J.W., Matsuhisa Y, Izawa E, et al. Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan [J]. Economic Geology,1994,89,1-30.
    [45.]Hedenquist, J., Arribas, A., and Reynolds, J.,1998, Evolution of an intrusioncentered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines [J]. Economic Geology,93,373-404.
    [46.]Heinrich C A, Guenther D, Audetat A, et al. Metal fractionation between magmatic brine and vapor, determined bymicroanalysis of flμid inclusions [J]. Geology,1999,27 (8):755-758.
    [47.1 Heinrich C A, Ryan C G, Mernagh T P, et al. Segregation of ore metals between magmatic brine and vapor:A fluid inclusion study using PIXE microanalysis [J].Econ. Geo,1992,87:1566-1583.
    [48.]Heinrich C A, Driesner T, Stefansson A, et al. Magmatic vapor contraction and the transport of gold from porphyry to epithermal ore deposits [J]. Geology,2004,32(9):761-764.
    [49.]Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study [J]. Mineralium deposita,2005,39:864-889.
    [50.]Hilton D R, Fischer T P, Marty B. Noble gases and volatile recycling at subduction zones. In:Noble Gases [M].//Porcelli D P, Ballentine C J, Wieler R:Rev Mineral Geochem,2002,47:318-370.
    [51.]Holmes N C, Nellis W J, Graham L.Spontaneous Raman scattering from shocked water [J].phys.Rew.lett.,1985,55(22):2433-2436.
    [52.]Jannas R.R., Beane R.E., Ahler B.A., et al. Gold and copper mineralization at the El Indio deposit, Chile.[J].Journal of Geochemical Exploration,1990,36:233-266.
    [53.]Kay R.W. A leutian magnesian andesites:melts from subducted pacific ocean crust [J]. Journal of Volcanology and Geothermal Research,1978,4:117-132.
    [54.]Kay S.M., Ramos V.A., Marquez M.. Evidence in Cerro pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America [J]. The Joural of Geology,1993,101:703-714.
    [55.]Kennedy M B, Hiyagon H, Reynolds J H. Crustal neon:A striking uniformity [J]. Earth Planet Sic Lett, 1990,98:277-286
    [56.]Kepezhinskas P, McDermott F, Defant M J. et al.Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis.Geochim[J].Cosmochim. Acta,1997,61 (3),577-600.
    [57.]Kinoshita O. A migration model of magmatism explaining a ridge subduction, and its details on a statistical analysis of the granite ages in Cretaceous Southwest Japan [J]. Island arc,1999,8(2):181-189.
    [58.]Landtwing M.R., Furrer C., Redmond P.B., et al...The Bingham Canyon porphyry Cu-Mo-Au deposit: III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ. Geol,2010,105:91-118.
    [59.]Larocque A C.L, Stimac J A., Siebe C, et al. Deposition of a high-sulfidation Au assemblage from a magmatic volatile phase, Volcan Popocatepetl, Mexico [J].Journal of Volcanology and Geothermal Research,2008,170:51-60.
    [60.]Liebscher A. Heinrich C A. Fluid-fluid interactions in the earth's lithosphere [J]. Fluid-Fluid Interactions, 2007 65, p.1-13.
    [61.]Lindgren W. A suggestion for a terminology of certain mineral deposits. Economic Geology,1922,17(4): 292-294.
    [62.]Lindgren W. Mineral Deposits.4th Ed. McGraw-Hill Book Company, INC., New York and London McGraw Hill [C].1933,1-930.
    [63.]Loucks R R, Mavrogenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions [J]. Science,1999,284(25):2159-2163.
    [64.]Maruyama S, Seno T.Orogeny and relative plate motion:example of the Japanese islands [J]. Tectonophysics,1986,127:305-329.
    [65.]Matsuda J, Matsumoto T, Sumino H, et al. The 3He/4He ratio of the new internal He standard of Japan (HESJ)[J].Geochem J,2002,36:191-195.
    [66.]Matsumoto T, Chen Y I, Matsud J I. Concomitant occurrence of primordial and recycled noble gases in the Earth's mantle [J]. Earth Planet Sci Lett,2001,185:35-47.
    [67.]Martin H., Smithies R. H., Rapp R., Moyen J. F. Champion D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution [J]. Lithos,2005,79(1):1-24.
    [68.]Men L J, Sun J G, Zhang Z J,et al. An isotopic (Sr, Nd and Pb) tracer study on Xiaoxinancha gold-rich copper deposit in Yanbian, China:implication for the geodynamic model of diagenesis and metallogenesis [J]. Acta Geolocica Sinica(English Edition),2010,85(1),175-188.
    [69.]1 Mungall J E. Roasting the mantle:slab melting and the genesis of major Au and Au-rich Cu deposit [J]. Geology,2002,30:915-918.
    [70.]Muller D, Franz L, Herzig P. M, Hunt S. Potssic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea [J]. Lithos,2001,57(2-3):163-186.
    [71.]Muntean, J.L., Einaudi, M.T. Porphyry gold deposits of the Refugio district, Maricunga belt, northern Chile [J]. Economic Geology,2000,.95:.1445-1472.
    [72.]Nagao K, Ogata N, Matsubayashi O. Ar isotope analysis for K-Ar dating using tow modified-VG5400 mass spectrometers. I:isotope dilution method [J]. J Mass Spectrom Soc Jpn,1996,44:39-61.
    [73.]Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]:Annual Review of Earth and Planetary Sciences,1995,23:251-285.
    [74.]Pickles C S, Kelley S P, Reddy S M et al.. Determination of high spatial resolution argon isotope variations in metamorphic biotites. Geochim. Cosmpchim. Acta,1997,61:3809-3833.
    [75.]PotterR.W, et al., The volumetric properties of aqueous sodium chloride solutions from 0℃ to 500℃ at pressures up to 2000 based on a regression of available data in the literature. U. S. Geol [J]. Survey Bull., 1978,1421-C,36.
    [76.]Rapp R. P., Xiao L., and Shimizu N. Experimental constraints on the origin of potassium-rich adakite in east China [J]. Acta Petrol. Sin,2002,18,293-311.
    [77.]Redmond P, Einaudi M T, Inan E E, et al. Copper deposition by fluid cooling in intrusion-centered systems:new insights from the Bingham porphyry ore deposit, Utah [J]. Geology,2004,32:217-220.
    [78.]Richards, J. P. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation [J]. Economic Geology,2003.98:1515-1533.
    [79.]Robert F., Brommecker R., Bourne B.T.,et al. Models and exploration methods for major gold deposit types:Exploration 07:Fifth Decennial International Conference onMineral Exploration, Toronto,2007 [C]. Proceedings,691-711.
    [80.]Roedder E. Fliud inclusion:reviews in mineralogy [M]. Mineralogical Society of America,1984,12:644.
    [81.]Rohrlach B D. Tectonic evolution, petrochemistry, geochronology and palaeohydrology of the Tampakan Porphyry and high-sulfidation epithermal Cu-Au deposit, Mindanao, Philippines [D]. Australian National University,2003,499,23 app.
    [82.]Ruggieri G., Lattoazi P., Luxoro S., et al. Geology, mineralogy, and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy [J]. Econ. Geol,1997,92,1-19.
    [83.]Rusk B G, Reed M, Dilles J H, et al. Composition of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper molybdenum deposit at Butte, MT [J]. Chem Geol,2004,210:173-199.
    [84.]Rusk B G, Reed M, Dilles J H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit, Butte, Montana [J]. Econ Geol,2008,103:307-334.
    [85.]Rye R.O. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems [J]. Chemical. Geology,2005,215:5-36.
    [86.]Rye R.O. The evolution of magmatic fluids in the epithermal environment [J]. Economic Geology,1993,. 87:733-353.
    [87.]Sarda P, Staudacher T, Allegre C J. Neon isotopes in submarine basalts [J]. Earth Planet Sci Lett,1988, 91:73.
    [88.]Sawkins FJ.Metal deposits in relation to plate tectonics. Minerals and Rocks,1990 [C]17. Berlin Heidelberg:Springer,461.
    [89.]Schlosser P, Winckler G. Noble gases in ocean water and sediments. In:Noble Gases [M].//Porcelli D P, Ballentine C J, Wieler R:Rev Mineral Geochem,2002,47:701-730.
    [90.]Seedorff E, Einaudi M.T. Henderson porphyry molybdenum system, Colorado:II Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids [J]. Economic geology,2004,99:39-72.
    [91.]Sengor A. M. C. and Natalin B. A. Paleotectonics of Asia:Fragments of a synthesis. In:The Tectonic Evolution of Asia [M]//Yin A.and Harrison, M:Cambridge University Press,1996:586-640.
    [92.]Sengor A.M.C., Natal'in B.A, Burtman V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature,1993,364:299-307.
    [93.]Sheppard S.M.F., Taylor J.P. Hydrogen and oxygen isotope evidence for the origins of water in the Boulder batholith and the Butte ore deposits, Montana [J]. Economic geology,1974,69:926-946.
    [94.]Sibson R H, Robert F, Poulsen K H. High-angle reverse faults, fluid-pressure cycling and mesothermal gold-quartz deposits [J]. Geol,1988,16:551-555.
    [95.]Sillitoe R H Erosion and collapse of volcanoes-causes of telescoping in intrusion-centered ore deposits [J]. Geology,1994,22(10):945-948.
    [96.]Sillitoe R H, Hedenquist J W. Linkages between volcanotectonic settings, ore-fluid compositions and epithermal precious metal deposits [C]. In:Simmons SF, Graham I (eds) Volcanic, geothermal and ore-forming fluids:rulers and witnesses of processes within the earth. Econ Geol Spec Publ,2003,343
    [97.]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region [J]. Austral J Earth Sci,1997,44(3):373-388.
    [98.]Sillitoe R H.Gold-rich porphyry copper deposits:descriptive and genetic models and their role in exploration and discovery [C].In:Hagemann SG,Brown PE(eds).in 2000 Glod.Society of Economic Geologists Reviews,13:315-344
    [99.]Sillitoe R.H.. A plate tectonic model for the origin of porphyry copper deposits [J]. Economic Geology, 1972,67:184-197.
    [100.]Sillitoe R.H.. Enargite-bearing massive sulfide deposits high in porphyry copper systems [J]. Econ. Geol,1983,78,348-352.
    [101.]Sillitoe R.H.. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration [J].Mineralium Deposita,2002,37:4-13.
    [102.]Sillitoe R.H.. The tops and bottoms of porphyry copper deposits [J]. Economic geology,1973,68: 799-815.
    [103.]Solomon M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs [J]. Geology,1990,18:630-633.
    [104.]Steiger R.H, Jager. E. Subcommission on geochronology:convention on the use of decay constants in geo-and cosmochronolog [J]. Earth and Planetary Sctence Letters,1977,36:359-362.
    [105.]Stephan M K, Henley R W, Christoph H A. Gold preciptation by fluid mixing in bedding-parallel fractures near carbonaceoμs slates at the Cosmopolitan How gold deposit, Northern Australia[J]. Econ. Geol.,1995,90:2123-2139.
    [106.]Stern C. R., Killian R.. Role of the subduted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone [J]. Contrib. Mineral. Petrol.,1996,123: 263-281.
    [107.]Sterner S. M. et al.. Synthetic fluid inclusion:V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions [J]. Geochim. Cosmochim. Acta,1988,52:989-1005.
    [108.]Stuart F M, Burnard P G, Taylor R P, et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, S. Korea [J]. Geochim Cosmochim Acta,1995,59:4663-4673.
    [109.]Stuart F, Turner G, Taylor R. He/Ar isotope systematics of fluid inclusions:resolving mantle and crustal contributions to hydrothermal fluid. In:Noble Gas Geochemistry and Cosmochemistry [C]. Tokyo:Terra Scientific Publishing Company,1994.261-277.
    [110.]Sumino H, Nagao K, Notsu K. Highly sensitive and precise measurement helium isotopes using a mass spectrometer with double collector system [J]. J Mass Spectrom Soc Jpn,2001,49:61-68.
    [111.]Sun J G, Zhao J K, Chen J Q, et al., ore-forming mechanism for the Xiaoxinancha Au-rich Cu deposit in Yanbian, Jilin Province, China:Evidence from nobles gas isotope geochemistry of fluid inclusions in minerals[J]. Science in China Series D:Earth Science,.51,.1-13.
    [112.]Taylor B.E.. Magmatic volatiles:Isotopic variation of C, H, and S [J].Reviews in Mineralogy,1986, 16:185-226.
    [113.]Taylor, S.R., and McLennan, S.M., The Continental Crust:Its Composition and Evolution [M]. United States:Blackwell Scientific Pub., Palo Alto, C A,1985,312.
    [114.]Torgersen T, Kennedy B M, Hiyagon H. Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin [J]. Australia. Earth Planet Sci Lett,1988,92:43-59.
    [115.]Tosdal R M, Richards J P. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. In:Structural controls on ore genesis [M].//Richards J P, Tosdal R M. Reviews in Economic Geology,2001,157-180.
    [116.]Trieloff M, Kunz J. Isotope systematics of noble gases in the Earth's mantle:possible sources of primordial isotopes and implications for mantle structure. Phys Earth Planet Inter,2005,148:13-38.
    [117.]Trieloff M, Kunz J, Allegre C J. Noble gas systematics of the Reunion mantle plume source and the origin of primordial noble gases in Earth's mantle [J]. Earth Planet Sci Lett,2002,200:297-313.
    [118.]Turner G, Stuart F M. Helium/heat ratios and deposition tempertures of sulphides from the ocean floor [J]. Nature,1992,357:581-583.
    [119.]Ulrich T., Gunther D, and Heinrich C.A. The evolution of a porphyry Cu-Au deposit based on LA-ICP-MS analyses of fluid inclusions:Bajo de la Alumbrera, Argentina [J]. Economic geology,2001, 96:1743-1774.
    [120.]Veevers J J, Saeed A, Belousova F A, et al.. U-Pb ages and source composition by Hf isotope and trace element analysis of detrital zirozon in Permian sandstone and modern sand from southwestern Australia and a review of the palegeographical and denudational history of the Yilgarn craton [J]. Earth Science Reviews,2005,68:245-279.
    [121.]Vennemann T W, Muntean J L, Kesler S E, et al. Stable isotope evidence for magmatic fluids in the Pueblo-Viejo epithermal acid sulfate Au-Ag deposit, Dominican Republic [J]. Econ Geol,1993, 88(1):55-71
    [122.]Wang Y S Sasaki M, Sasada M, et al. Fluid inclusion studies of the Chinkuashih high-sulfidation gold-copper deposits in Taiwan [J]. Chemical Geology,1999,154:155-167.
    [123.]Watanabe Y., Hedenquist J.W. Mineralogic and stable isotope zonation at the surface over El Salvador porphyry copper deposit, Chile [J]. Economic geology,2001,96:1775-1797.
    [124.]Webster J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 8000℃ [J].Geochemica et cosmochimica Acta,1992,56:679-687.
    [125.]Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal deposit [J]. Economic Geology,2005,100(7):1287-1312.
    [126.]Williams-Jones A. E., Heinrich C.A., MigdisovA. A.. Vapor as a medium for the transport of metals: implications for ore depositmodeling. Goldschmidt Conf. on Vapor and the Transport of Metals,2205 [C]. Abstr.,2005, A733.
    [127.]Winter J. D. An introduction to igneous and metamorphic petrology [M]. Upper Saddle River, New Jersey. Prentice-Hall,2001:697.
    [128.]Wu F Y, Sun D Y, Li H M, et al.. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis [J]. Chemical Geology,2002,187(1-2):143-173.
    [129.]Xu J. F., Shinjio R., Defant M. J., Wang Q., and Rapp R. P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial melting of delaminated lower continental crust?[J] Geology,2002,30,1111-1114
    [130.]Zartman R.E, Doe B.R.. Plumbotectonics-the model [J]. Tectonophys,1981,75:135-162.
    [131.]Zhang L., Dilles J. H., Field C.W., et al.1999, Oxygen and hydrogen isotope geochemistry of pre-Main stage porphyry Cu-Mo mineralization at Butte, Montana [J]. Geological Society of America Abstracts with Programs,1999,31(7):A381.
    [132.]Zindler A., Hart S. Chemical and geodynamics [J]. Annual Review of Earth and Planetary Sciences,1986,14:493-571.
    1133.] 艾霞.隐爆角砾岩型金矿成矿地质条件、构造类型及找矿标志[J].矿床地质,2002,21(增刊):569-572.
    [134.]陈锦荣,李汗光,金宝义,武玉海,王艳忠,喻万强.黑龙江金厂J-1号金矿体地质特征及深部预测[J].黄金地质,2002,8(4):8-12.
    [135.]崔学武,王晓勇,金同和,梁海军.吉东杜荒岭金矿区围岩蚀变与金矿化关系[J].黄金地质,2002,8(2):36-39.
    [136.]戴圣潜,邓晋福,吴宗絮,赵海玲,陈江峰.大别造山带燕山期造山作用的岩浆岩石学证据[J].中国地质,2003,30(02):59-65.
    [137.]戴自希.铜矿.国外矿床资源[M].中国地质矿床信息研究院编著,北京:地震出版社,1996:127-134.
    [138.]高洪林.全自动40Ar/39Ar激光探针定年系统空白本底与微量样品定年[J].地球学报,2005,26(增刊):39-43.
    [139.]葛小月,李献华,陈志刚,李伍平.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约[J].科学通报,2002,47(6):473-480.
    [140.]黑龙江省地质局.1:20万区域地质调查报告(穆棱镇公社幅L-52-XXXV)[R].1979.
    [141.]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [142.]侯增谦,莫宣学,高永丰.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩-以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1-12.
    [143.]侯增谦,曲晓明,黄卫.冈底斯斑岩铜矿成矿带有望成为西藏第二条玉龙铜矿带[J].中国地质,2001,28:27-29.
    [144.]胡华斌,毛景文,刘敦一,牛树银,王涛,李永峰.鲁西铜石岩体的锆石SHRIMP U-Pb年龄 及其地质意义[J].地学前缘(中国地质大学,北京),2004,11(2):453-460.
    [145.]怀宝峰,王晓勇,宋丙剑,梁海军.吉林省杜荒岭金矿床地质特征及成矿规律浅析[J].黄金科学技术,2007,15(3):19-23.
    [146.]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    [147.]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1989.
    [148.]纪伟强.吉黑东部中生代晚期火山岩的年代学和地球化学[D].长春:吉林大学地球科学学院,2007.
    [149.]贾国志,陈锦荣,杨兆光,边红业,王艳忠,梁海军,金同和,李振辉.2005.金厂特大型金矿床的地质特征与成因研究[J].地质学报,79:(5)661-670.
    [150.]姜开军,周永昶.吉林珲春东北部中生代内生成矿作用探讨[J].地质与勘探,1992,28(10):8-12.
    [151.]靳克,许文良,王清海,高山,刘晓春.蚌埠淮光“混合花岗闪长岩”的形成时代及源区:锆石SHRIMP U-Pb地质年代学证据.地球学报,2003,24(4):331-335.
    [152.]李超文.吉林省东南部晚中生代火山作用及深部过程研究[D].广州:中国科学科学院广州地球化学研究所,2006.
    [153.]李超文,郭锋;范蔚茗;高晓峰.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义.中国科学(D编辑)2007,37(3):319-330.
    [154.]李承东,张福勤,苗来成,颉航强,许雅雯.吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报,2007,23(4):767-776.
    [155.]李东津.吉林省岩石地层[D].武汉:中国地质大学出版社,1997.
    [156.]李高生,陈锦荣,王艳钟,金宝义,武玉海,喻万强.黑龙江金厂金矿床类型及包裹体特征研究[J].黄金地质.2003,9(1):1-6.
    [157.]李锦轶,牛宝贵,宋彪.长白山北段地壳的形成与演化[M].北京:地质出版社,1998.
    [158.]李俊建,程玉明.吉林夹皮沟成矿时代的研究[J].地质学报,1996,70(4):335-341.
    [159.]李荫清,陈殿芬.吉林小西南岔金铜矿床流体包裹体及成矿作用研究[J].矿床地质,1995,14(2):151-166.
    [160.]李真真,李胜荣,张华锋.黑龙江东宁县金厂金矿围岩蚀变和成矿年代学特征[J].矿床地质,2009,28(1).
    [161.]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式[J].矿物学报,1987,7(4):345-352.
    [162.]刘丛强,黄智龙,李和平,苏根利.地幔流体及成矿作用[J].地学前缘,2001,8(4):231-243.
    [163.]刘红涛,张旗,刘建明,等.埃达克岩与Cu-Au成矿作用:有待深入研究的岩浆成矿关系[J].岩石学报,2004,20(02):205-218.
    [164.]刘玉平,李晨晖.农坪金(铜)矿床地质特征及成因机制[J].吉林地质,1999,18(4):43-48.
    [165.]卢焕章,范宏瑞,倪培.流体包裹体[M].北京:科学出版社,2004,1-487.
    [166.]卢焕章.高盐度、高温和高成矿金属的岩浆成矿流体——以格拉斯伯格Cu-Au矿为例[J].岩石学报,2000,16(4):465-472.
    [167.]鲁颖准,张宇,赖勇,王艳忠.黑龙江金厂金矿田.岩浆和成矿作用的锆石La-ICP-MS定年[J].岩石学报,2009,25(11):2902-2912.
    [168.]马醒华,杨振宇.中国三大地块的碰撞拼合与古欧亚大陆的重建[J].地球物理学报,1993,36(4):476-488.
    [169.]毛景文,李晓峰.深部流体及其与成矿成藏关系研究[J].矿床地质,2004,23(4):520--532
    [170.]孟庆丽,周永昶,柴社立.中国延边东部斑岩-热液脉型铜金矿床[M].长春:吉林科学技术出 版社,2001:1-162.
    [171.]门兰静,孙景贵,赵俊康,等.黑龙江东宁县金厂金矿床角砾岩型铜金矿体流体包裹体研究[J].矿床地质,2008,27(1):71-80.
    [172.]慕涛,刘桂阁,刘魁辰.黑龙江金厂金矿地质地球化学特征及矿床成因[J].黄金地质,2000,6(3):57-64.
    [173.]聂凤军,江思宏,赵省民.斑岩型铜金矿床研究新进展[J].内蒙古地质,2000(2):1-11.
    [174.]逄伟,孙景贵,门兰静,陈雷,陈冬,常艳,梁树能,张朋,聂喜涛.延边东部五道沟群的单颗粒锆石SHRIMP U-Pb年代学及地质意义[J].中国地质,2008,35(6):1178-1184.
    [175.]彭子成,Kwak.玄武岩中铅同位素和微量铀钍铅的测定[J].岩矿测试,1986,5(2):121-125.
    [176.]裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及构造意义[J].世界地质,2004,23(1):6-13.
    [177.]彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代记录[J].地质与资源,2002,11(2):65-75.
    [178.]秦江艳.黑龙江金厂岩体穹窿构造型金矿床的流体地球化学研究[D].北京:中国地质大学(北京),2008.
    [179.]曲晓明,侯增谦,国连杰.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O 同位素约束[J].地质学报,2004,78(6):813-821.
    [180.]芮宗瑶,黄崇珂,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984:1-350.
    [181.]芮宗瑶,张洪涛,王龙生,等.吉林延边地区斑岩型-浅成热液型铜金矿床[J].矿床地质,1995,14(2):99-114.
    [182.]芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J].岩石学报,2004,20(2):229-238.
    [183.]邵济安,陈福坤,路凤香,周新华.辽西中生代软流圈底辟体的脉动式上涌[J].地球科学(中国地质大学学报),2006,31(6):807-816.
    [184.]时俊峰,李晨晖.农坪金矿床地质特征及成因类型.矿产与地质,1998,65(2):178-182.
    [185.]宋彪,张玉海,万渝生.2002.钻石SHRIMP样品制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    [186.]孙德有,吴福元,林强,路孝平.张广才岭燕山早期白石山岩体成因与壳幔相互作用.岩石学报,2001,17(2):227-235.
    [187.]孙丰月,金巍,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30.
    [188.]孙景贵,陈雷,赵俊康,等.延边小西南岔富金铜矿床矿田燕山期花岗杂岩的锆石SHRIMPU-Pb年龄及其地质意义[J].矿床地质,2008,27(3):319-328.
    [189.]孙景贵,陈雷,赵俊康.延边小西南岔富金铜矿床矿田燕山期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J].矿床地质,2008,27(3):319-328.
    [190.]孙景贵,门兰静,赵俊康,陈雷,梁树能,陈冬,逄伟.延边小西南岔大型富金铜矿床矿区内暗色脉岩的锆石年代学及其地质意义[J].地质学报,2008,82(4):517-527.
    [191.]孙晓明,熊德信,王生伟,等.云南大坪金矿白钨矿惰性气体同位素组成特征及其成矿意义[J].岩石学报,2006,22(3):725-732.
    [192]王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘,2003,10(3):209-220.
    [193.]王奖臻,李朝阳,胡瑞忠.斑岩铜矿研究的若干进展[J].地球科学进展,2001,16(4):514-519.
    [194.]王永,席斌斌,张德会,张文准.黑龙江金厂金矿流体地球化学特征[J].矿床地质,2007, 26(2):184-194.
    [195.]魏君奇,姚华舟,牛志军.藏北赤布张错地区埃达克岩的厘定及其意义[J].岩石矿物学杂志,2005,24(3):173-178.
    [196.]王冬艳,许文良,冯宏,林景仟,郑常青.辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据[J].吉林大学学报(地球科学版),2002,32(4):319-324
    [197.]. 温志坚,毛景文.超临界流体的研究进展及其对成矿地球化学研究的启示[J].地质论评,2002,48(1):106-112.
    [198.]吴福元,葛文春,孙德有,郭春丽.中国东部岩石圈减薄研究中的儿个问题[J].地学前缘,2003:10(3):51-60.
    [199.]吴福元,S.wilde,孙德有.中国东部出露的最年轻侵入体的锆石离子探针年龄[J].科学通报,2001,46(12):1048-1052.
    [200.]吴尚全.吉林小西南岔金铜矿床的主要地质特征及成因[J].矿床地质,1986,5(2):1741-180.
    [201.]谢烈文,张艳斌,张辉煌等.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J].科学通报,2005,50(20):2278-2288.
    [202.]许文良,孙德有,周燕.满洲里-绥芬河地学断面岩浆作用和地壳结构[M].北京:地质出版社,1994.
    [203.]. 许文良,郑常青,王冬艳.辽西中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义[J].地质论评,1999,45(增刊):444-449.
    [204.]薛春纪,祁思敬,隗合明.基础矿床学[M].北京:地质出版社,2006:1-355
    [205.]杨金中,邱海峻.跃进山岩系及其构造意义[J].长春科技大学学报,1998,28(4):380-385.
    [206.]姚春亮,陆建军,郭维民袁林.斑岩铜矿若干问题的最新研究进展[J].矿床地质,2007,26(2):221-229.
    [207.]于介江,门兰静,陈雷,赵俊康,梁树能,陈冬,逢伟.延边地区五道沟群变质英安岩的锆石SHRIMP U—Pb年龄及其地质意义[J].吉林大学学报(地球科学版),2008,38(3):363-367.
    [208.]曾键年,许继峰.埃达克质岩与成矿:困惑与探索[J].地学前缘,2008,15(6):278-292.
    [209.]张春艳,张兴洲,邱殿明.延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J].吉林大学学报(地球科学版),2007,37(4):672-677.
    [210.]张德会,王永,王懂,徐文喜,王艳忠,张文淮.黑龙江金厂岩浆穹窿内金矿体成矿流体地球化学及其矿床成因探讨[J].矿床地质,2006,25(增刊),155-158.
    [211.]张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997a,16(3):53-58.
    [212.]张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997b,12(6),546-552.
    [213.]张德会.热液成矿环境中络合物研究的进展.地质科技情报,1994,13(3):69-80.
    [214.]张德全,丰成友,李大新,等.紫金山地区斑岩-浅成热液成矿系统的成矿流体演化[J].地球学报,2005,26(2):127-136.
    [215.]张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例[J].科学通报,2003,48(6):603-609.
    [216.]张炯飞,李之彤,金成洙.中国东北部地区埃达克岩及其成矿意义[J].岩石学报,2004,20(2).
    [217.]张旗,王焰,钱青,杨进辉,王元龙,赵太平,郭光军.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J].岩石学报,2001,17(2):236-244.
    [218.]张旗,王元龙,张福勤,等.埃达克岩与斑岩铜矿[J].华南地质与矿产,2002(3):85-90.
    [219.]张荣华,胡书敏.地球深部流体演化与矿石成因[J].地学前缘,2001,8(4):297-309.
    [220.]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春,吉林大学地球科学学院, 2002.1-132.
    [221.]张宇,赖勇,卿敏,王艳忠,徐佳佳.黑龙江省金厂金矿床JO矿体流体地球化学研究[J].岩石学报.2008,24(5):1131-1144.
    .[222.] 张振亮.德兴铜厂铜矿非常温常压下的流体包裹体拉曼光谱特征及成矿意义[D].北京,中国地质大学,2003:1-98.
    [223.]赵斌、王声远、吴厚泽、刘正义等著,高温高压实验地球化学[J].北京:科学出版社,1995,41-100.
    [224.]赵海,崔学武,徐伦先.吉林汪清九三沟金矿床地质及同位素特征探讨[J].黄金科学技术,2008,16(1): 48-51.
    [225.]赵羽军,孙景贵,王清海,门兰静,李怡欣,郭佳,崔培龙.吉林延边地区浅成热液金(铜)矿床的40Ar/39Ar激光探针测年与成矿时代讨论[J].地学前缘,2010,17(2):156-169.
    [226.]赵院冬.东宁地区早中生代花岗岩地球化学特征及大地构造背景[D].长春,吉林大学地球科学学院,2007.
    .[227.] 郑斗范,朴涛允,万玉生.小西南岔金铜矿床地质特征及成矿规律[R].吉林省有色地质勘探局,1983,1-52.
    [228.]郑亚东,Davis G A,王琮等.2000.燕山带中生代主要构造事件与板块构造背景问题[J].地质学报,74:289-302
    [229.]朱成伟,陈锦荣,李体刚,崔彬,金宝义,王克强.黑龙江金厂金矿床地质特征及成因探讨[J].矿床地质,2003,22(1):56-64.
    .[230.] 朱训,黄崇轲,芮宗瑶.德兴斑岩铜矿[M].北京:地质出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700