用户名: 密码: 验证码:
长江口晚新生代沉积物中磁性矿物标型特征及其物源指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江流域的演化与青藏高原隆升、亚洲大河流域的起源及古气候变化等许多重大科学问题紧密相连。从“源”到“汇”的研究理念即是通过关注长江三角洲地区沉积物物源变化,进而推测长江流域演化信息。大量的实验结果和资料总结,表明沉积物中磁铁矿各种元素的丰度可以指示母岩类型,进而判断沉积物来源。
     为了掌握长江流域母岩类型分布,寻找有效的特征物源,从而应用于长江口晚新生代钻孔沉积物物源识别,本论文首先对现代长江上、中、下游河道不同河段的47个沉积物样品,进行了磁性矿物分选,并对其进行了磁性矿物形态电镜扫描(SEM)和化学成分的电子探针(EPMA)测试。
     其次,本文基于对河口区晚新生代钻孔(SG7孔,孔深336.62米)不同层位上的440个样品进行室温磁性参数测试的结果,挑选出54个强磁性层位样品进行了磁性矿物形态电镜扫描(SEM)和化学成分的电子探针(EPMA)测试,其中9个样品进行重矿物鉴定。同时结合到本研究中的还有430个样品的粒度数据、267个样品的古地磁分析、10样品的光释光测年和3个样品的u系测年结果。
     将长江现代河道沉积物和长江三角洲SG7孔EPMA结果进行有效指标提取、对比分析和讨论,尝试在河流汇区地层中寻找物源变化的信息及驱动力,从而为古长江流域演化过程研究展开一个新的角度抛砖引玉。
     长江现代河道沉积物中磁铁矿的EPMA结果表明:上游金沙江流域(石鼓段以上流域)物源贡献的磁铁矿特点是高Fe、Co,较高Cr、Mg、Al、V,低Ti、Mn、Zn;长江上游诸支流对高Ti、Cr磁铁矿贡献量较大;清江汇入Zn含量明显增高;汉江流域对高Zn磁铁矿物源也有一定贡献;大别山诸河对高Mn磁铁矿贡献量较大;鄱阳湖水系对高Ti、Al、Cr磁铁矿贡献量较大;青弋江小河流域对较高Mg丰度的磁铁矿有一定贡献;河口区本地物源贡献的是低Fe、Co,高Ti、Mg、Al、Cr的磁铁矿。表层样的EPMA分析结果还显示,长江上游产出的磁铁矿在进入江汉盆地后存在显著堆积的可能。
     根据磁铁矿EPMA测试结果中元素的变化情况可将SG7分为五层。Ⅰ层为上新统和下更新统底部,特征是高Ti、Mg、Mn低Cr、Zn、Al;Ⅱ层为下更新统下段,特征是高Fe,微量元素含量均为低值;Ⅲ层为下更新统中段,特征是高Ti、Mg、Mn,低Cr、Zn、Al、V;Ⅳ层为下更新统上段至上更新统,特征是所有元素都表现出强烈的波动;V层为全新统特征是低Mg、Mn、Cr,较低Al、V。
     长江三角洲SG7孔与长江现代河道沉积物中磁铁矿标型特征对比分析表明:长江三角洲地区上新世至早更新世初期期间沉积物中磁铁矿主要以当地白龙港富Ti玄武岩为母岩,古地形起伏较大,沉积物的来源范围狭小,主要来源于局地;早更新世早期沉积物中磁铁矿主要来自近源闽浙隆起带的沉积、变质岩性母岩,以高Fe为特征,其它元素含量均表现为低值;早更新世中期沉积物中富Mn磁铁矿颗粒的出现指示了流域至少有过一次明显扩张,反映了构造沉降作用导致沉积体系变大,本区由侵蚀区逐渐向开放的沉积体系演变,极大可能为中源大别山水系加入本区物源贡献;早更新世晚期—晚更新世磁铁矿标型特征元素波动变化指示了多次流域物源演化,其中早更新世晚期存在明显的流域扩张信息,沉积物中富Zn磁铁矿颗粒的出现极大可能指示了中远源长江中游武汉以上段物源影响到本区,反映了流域的再次扩大;全新世长江已完成全程贯通,长江三角洲地区沉积物源稳定并以上游远源贡献为主,长江流域水系演化进入成熟期。
The evolution of the Yangtze River is closely linked with many important scientific issues, such as the Qinhai-Tibet Plateau uplift, the origin of large river basins in Asia and the paleoclimate change. The theory of "source" to "sink" is by tracking down the sediment provenance of the Yangtze Delta back to the evolution of Yangtze River Basin. Numerous experimental results from previous studies have proved that the elemental composition of magnetite in sediments can be used as a proxy for the mother rock types, and further to indicate the sediment provenance.
     To get the knowledge of the rock type distribution of the Yangtze River catchment, and look for the effective diagnostic source are the first step to apply for the Late Cenozoic core in the Yangzte Delta. Thus, firstly, this paper identified 47 samples by magnetic mineral collected from different locations in the middle and lower reaches of the modern Yangtze River, and measured the magnetic mineral form of scanning electron microscopy (SEM) and chemical composition of the electron probe (EPMA) test.
     Secondly, based on the results of the chemical composition of the electron probe (EPMA) test on the 440 samples from different sediment layers in the Late Cenozoic sediment core (SG7,336.62m long) in the Yangtze estuary, this paper picked up 54 samples with strong magnetic properties for the measurements of magnetic mineral form of scanning electron microscopy (SEM) and chemical composition of the electron probe (EPMA) test. Among of them,9 samples were tested for heavy mineral compositons. Meanwhile, other materials incorporated into the present study are 430 samples of particle size,267 samples of paleomagnetic analysis,10 samples of optical dating and 3 samples of U-series dating.
     Through the comparison analysis between the modem sediments of the Yangtze River of EPMA results in SG7. the present study is trying to reveal the provenance evolution of the Yangtze River and the related driving forces, which will also provide a new insight into the evolution of the Yangtze River drainage basin.
     The EPMA results on the modern sediments of the Yangtze River showed that: the dominant contribution of magnetite source in upper Jinsha River (basin above Shek Kwu Section) is characterized by high Fe. Co, high Cr, Mg. Al, V, low Ti, Mn. Zn; various tributaries of the Yangtze River also contributed a lot of magnetite with high Ti. Cr: the increasing Zn were significantly derived from Qingjiang River: Hanjiang River also have some contributions to the sediment source with high-Zn magnetite; Rivers from Dabie Mountain provide a lot of large iron ore with high-Mn magnetic; Rivers from Poyang Lake Basin largely contributes sediments with high-Ti, Al and Cr; Qingyi River Basin has contributed sediments with high Mg magnetite; the local provenance from the estuary contributes the local source by the low-Fe, Co, high-Ti, Mg, Al, Cr magnetite. EPMA analysis of surface samples also showed that output of magnetite from the upper Yangtze River basin are more likely to accumulate when it is discharged into the Jianghan basin.
     The elemental compostion of magnetite in SG7 can be divided into five sections according to EPMA results. Section I (Pliocene-the bottom of Early Pleistocene) is characterized by high Ti, Mg, Mn low-Cr, Zn, Al; SectionⅡ(the lower part of the Early Pleistocene) is featured with high in Fe, and low in trace element contents; Section III is the next middle Pleistocene, characterized by high Ti, Mg, Mn, low-Cr, Zn, Al, V; Section IV (the upper part of Early Pleistocene-late Pleistocene) is characterized by the strong elemental fluctuations; Section V (the Holocene) is characterized by low Mg, Mn, Cr, and even lower Al, V.
     Typomorphic characteristics of magnetite from sediments of the SG7 core in the Yangtze Delta and modern river sediments of Yangtze River show that:From the Pliocene to the beginning of Pleistocene, magnetite in sediments of Yangtze River Delta region mainly come from Bailonggang Ti-rich basalt rock. Ancient topography is undulating, and sediments from a narrow range of local. Magnetite of Early Lower Pleistocene sediments mainly from proximal sedimentary rock and metamorphic rocks of Fujian and Zhejiang Uplift.It is characterized by high Fe. the content of other elements is low.Middle Lower Pleistocene sediments have a large number of Mn-rich magnetite particles. It indicates that the basin occurred at least once a significant expansion Event. It reflects the area become to an open depositional system under the tectonic subsidence movement.The sediments may come from the Dabie Mountains. Zn-rich magnetite particles appear in the Late Lower Pleistocene sediments. It indicates the sediments reach to this area most likely come from the Middle Yangtze River Region before Wuhan at this time. The basin expanded once again.The Yangtze River has been completed throughout at Holocene.Holocene sediments of the Yangtze River Delta comes from distal upper reaches steadily.The Evolution of Yangtze River water system gets into the mature period.
引文
Bailey, D.K., and Kearns, S.,2002. High-Ti magnetite in some fine-grained carbonatites and the magmatic implications[J]. Mineralogical Magazine,66(3): 379-384
    Barbour, G.B.1936. Physiographic history of the Yangtze[J]. Geographical Journal, 87:17-34
    Basu, A., and Molinaroli, E.,1989. Provenance characteristics of detrital opaque Fe-Ti oxide minerals [J]. J Sediment petrol,59:922-934
    Basu, A., and Molinaroli, E.,1991. Reliability and application of detrital opaque Fe-Ti oxide minerals in provenance determination [J]. Geological Society Special Publications,57:55-65
    Brookfiled M.E.,1998. The evolution of the great river systems of southern Asia durjng the Cenozoic India-Asia collision:rivers draining southwards[J].Geomorphology,22:285-312
    Browne, J. R., and Pirrie, D.,1995. Sediment dispersal patterns in a deep marine back-arc basin:evidence from heavy mineral provenance studies [J]. Geological Society Special Publications,94:137-154
    Buddington, A.F., Fahey, J.J., and Vlisidis, A.C.,1955. Thermometric and petrogenetic significance of titaniferous magnetite [J]. American Journal of Science,253(9):497-532
    Butler, R. F.,1992. Paleomagnetism:Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications.
    Caitcheon, G.G.,1993. Sediment source tracing using environmental magnetism:a new approach with examples from Australia[J].Hydrological processes, 7(4):349-358
    Caitcheon, G.G.,1998. The significance of various sediment magnetic mineral fractions for tracing sediment sources in Killimicat Creek[J].CATEN A,32(2):131-142
    Calvert, S.E., and Pedersen. T.F.,1993. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record [J]. Marine Geology, 113:67-88
    Chen Zhongyuan,Stanley D. J.,1995,Quaternary subsidence and river channel migration in the Yangtze Delta Plain,East China[J]. Journal of Coastal Research,11:927-945
    Chen, P.Y.,1978. Minerals in bottom sediments of the South China Sea[J].Geological society of America,89(2):211-222
    Chen,J., Wang, Z.H., Chen, Z.Y., Wei, Z.X., Wei, T.Y., and W, W.,2009. Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea[J]. Geomorpholoy, 113:129-136
    Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al.,2004. Surface uplift tectonics and erosion of eastern Tibet from large-scale drainage patterns [J]. Tectonics,23: TC1006, doi:10.1029/2002 TC 001402.
    Cookenboo, H.O., Bustin, R.M., and Wilks, K.R.,1997. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance:implications for orogeny in the Canadian Cordillera [J]. J Sedimentary Research,67:116-123
    Cox, A.,1969. A paleomagnetic study of secular variation in New Zealand[J]. Earth and Planetary Science Letters,6(4):257-267
    Darby, D.A., and Tsang, Y.W.,1987. Variation in ilmenite element composition within and among drainage basins:Implication for provenance [J].J Sediment Petrol, (57):831-838
    Darby, D.D.,1984, Trace elements in ilmenite:a way to discriminate provenance or age in coastal sands[J].Geological Society of America Bulletin,95:1208
    Darby, D.D., and Tsang, Y.U.,1987. Variation in ilmenite element composition within and among drainage basins:implication for provenance[J]. Journal of Sedimentary Petrology,57:831-838
    Dean,W.E., Gardner, J.V., and Piper D.Z.,1997. Inorganic geochemical indicators of glacial interglacial changes in productivity and anoxia on the California continental margin [J]. Geochimica et Cosmochimica Acta,61(21):4507-4518
    Dearing, J.,1994. Environmental Magnetic Susceptibility, Using the Bartington MS2 System [M]. Chi Publishing Kenilworth, UK,104 pp.
    Dearing, J.A.,1992. Sediment yields and sources in a Welsh upland lake—catchment during the past 800 years[J].Earth Surf.Proc.Landforms,17:1-22
    DeGraaff-Surpless, K., Graham. S. A., Wooden, J. L., and McWilliams, M. O.,2002. Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system [J]. Geological Society of America Bulletin. 114:1564-1580
    Dupuis, C., and Beaudoin, G.,2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita. DOI:10.1007/s00126-011-334-y
    Emerson,S.R., and Huested, S.S.,1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater [J]. Marine Chemistry,34(3-4): 177-196
    Fan, D.D., Li, C.X., Yokoyama, K., et al.,2005. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China(Series D),48:1718-1727
    Fellin, G., Sciunnach, D., Tunesi, A., Ando, S., Garzandi, E., and Vezzoli, G.,2005. Provenance of detrital apatites from the upper Gonfolite Lombarda Group (Miocene, NW Italy) [J]. GeoActa (Bologna) 4:43-56
    Folk, R.L., and Ward, W.C.,1957. Brazos river bar:a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology,27(1):3-26
    Force, E. R.,1980. The provenance of rutile [J]. Journal of Sedimentary Petrology,50: 485-488
    Frei, D., Liebscher, A., Franz, G., and Dulski, P.,2004. Trace Element Geochemistry of Epidote Minerals [J]. Reviews in Mineralogy and Geochemistry,56:553-605
    Frihy, O.E., El Askary, M.A., Deghidy,E.M., and Moufaddal, W.M.,1998. Distinguishing fluvio-marine environments in the Nile Delta using heavy minerals [J]. Journal of Coastal Research,14(3):970-980
    Gradstein, F., Ogg, J.G., and Smith, A.G.,2004. Geologic Time Scale 2004[M]. Cambridge University Press, Cambridge.
    Grigaby, J.D.,1992. Chemical fingerprinting in detrital ilmenite:A viable alternative in provenance research [J]. J Sediment Petrol,62:331-337
    Grigsby, J.D.,1990. Detrital magnetite as a provenance indicator[J]. Journal of Sedimentary Petrology,60(6):940-951
    Hamelin, B., Dupre, B., and Allegre, C.J.,1984. Lead-strontium isotopic variations along the East Pacific Rise and the Mid-Atlantic Ridge; a comparative study [J]. Earth and Planetary Science Letters,67(3):340-350
    Hanamgond, P.T., and Chavadi, V.C.,1999. Sediment movement as inferred from texture and heavy minerals, along Belekeri Bay beaches, west coast of India [J]. Indian Mineral,33(1):69-81
    Hayward, B.W., and Smale, D.,1992. Heavy minerals and the provenance history of Waitemata Basin sediments (early Miocene, Northland, New Zealand)[J]. New Zealand, Journal of Geology and Geophysics,35(2):223-242
    Heller, F., Strzyszcz, Z.,and Magiera, T.1998. Magnetic record of industrial pollution in forest soils of Upper Silesia,Poland, J Geophys Res 103:17767-17774
    Henderson,P.,1983. Rare Earth Element Geochemistry [M]. Amsterdam/Oxford/ New York/Tokyo:Elsevier Science
    Hidaka, H., Shimizu, H., and Adachi, M.,2002. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan:evidence for an Archean provenance[J]. Chemical Geology,187(3-4):279-293
    Hoskin P.W.O., and Ireland T.R.,2000. Rare earth element chemistry of zircon and its use as a provenance indicator [J]. Geology,28:627-630
    Hounslow, M.W., and Maher, B.A.,1999.Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments[J].Journal of geophysical research,104:5047-5061
    Kapicka,A., Jordanova, N., Petrovsky, E. and Ustjak, S.2000. Magnetic stability of power plant fly ash in different soil solutions [J]. Physics and Chemistry of Earth (A),25:431-436
    Kettanah, Y.A., and Wach, G.D.2006. The provenance of heavy minerals in the Mesozoic and Tertiary formations at the Venture B-13 Borehole, Offshore Nova Scotia, Canada [J]. AAPG Annual Convention, Houston.
    Kolla, V., and Bis, P.E.,1977.Distribution and Origin of Quartz in the Sediments of the Indian Ocean[J].Journal of Sedimentary Research,47(2):642-649
    Kolla, V., and Rao, N.M.,1990. Sedimentary sources in the surface and near-surface sediments of the Bay of Bengal[J].Geo-Marine Letters,10(3):129-135
    Kolla, V., Henderson, L., and Biscaye, P.E.,1976.Clay mineralogy and sedimentation in the western Indian Ocean[J].Deep-Sea Research,23(10):949-961
    Kolla, V., Kostecki, J. A., Robinson, F., Biscaye, P.E., and Ray, P. K.,1981. Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea[J]. Journal of Sedimentary Research,51(2)563-569
    Lee, C.1933.The development of the upper Yangtze valley[J]. Bulletin of the Geological Society of China,13:107-117
    Li, S.H., Chen, Y.Y., Li, B., Sun, J., and Yang, L.R.,2007. OSL dating of sediments from deserts in Northern China. Quaternary Geochronology,2(1-4):23-28
    Li,J.J.,Xie,S.Y.,and Kuang,M.S.2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J].Geomorphology,41:125-135
    Lowe, J.J., and Walker, M.J.C.,1984. Reconstructing Quaternary Environments[M]. London and NewYork:Longman Group Lmited,1-446
    Ludwig, K.R.1999. Using isoplot/EX, version 2, a Geolocronolgical toolkit for Microsoft excel[M]. Berkeley Geochronological Center Special Publication la, 47 pp.
    Mankinen, E.A., and Dalrymple, G.B.,1979. Revised geomagnetic polarity timescale for the interval 0-5 m.y. B.P., J. geophys. Res.,84:615-626
    Martinez-Monasterio, E., Martinez-Monasterio, Stephens, W.E., Walden, J., and Duck, R.W.2000. Weathering and abrasion of Fe-Ti oxides during rock degradation and fluvial transport:implications for sedimentary provenance studies[J]. Journal of the Geological Society,157(3):601-613
    Meinhold, G., Anders, B., Kostopoulos, D., and Reischmann, T.,2008. Rutile chemistry and thermometry as provenance indicator:an example from Chios Island, Greece [J]. Sedimentary Geology,203(1-2):98-111
    Monasterio, E.M.,1996. Relationship between magnetite chemistry and magnetic susceptibility of igneous rocks:implications for sedimentary provenance studies [J]. Geogaceta.20(3):660-661
    Morton, A., and Yaxley, G..2007. Detrital apatite geochemistry and its application in provenance studies [J]. Geological Society of America Special Papers 420: 319-344
    Morton, A.C, and Hallsworth, C.R.,1999. Processes controlling the composition of heavy mineral assemblages in sandstones [J]. Sedimentary Geology,124 (1-4): 3-29
    Morton, A.C.,1991. Geochemical studies of detrital heavy minerals and their application to provenance research [J]. The Geological Society,57:31-45
    Morton, A.C.,1992. Provenance of Brent Group sandstones:heavy mineral constraints [J]. Geological Society Special Publications,61:227-244
    Morton, A.C., and Hallsworth, C.,1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones [J]. Sedimentary Geology, 90(3-4):241-256
    Neuendorf, KKE, Mehl, JP, Jr., and Jackson, JA, eds.,2005. Glossary of geology (5th ed.) [M]. Alexandria, Va., American Geological Institute,779 pp.
    O'Reilly, W.,1984. Rock and Mineral Magnetism [M]. Blackie, Glasgow,220pp.
    Oldfield, F., Applehy, P.G., and Thompson, R.1987. Palaeoecolgical studies of three lakes in the Highlands of Papua New Guinea [J]. Journal of Ecology, 68:457-477
    Oldfield, F., Rummery,T.A., Thompson, R., and Walling, D.E.1979. Identification of suspended sediment sources by means of magnetic measurements, Water Resources Research,15:211-218
    Pettijohn, F., Potter, P., and Siever, R.,1987. Sand and Sandstone [J]. New York, Springer-Verlag
    Pietsch, T.J., Olley, J.M., and Nanson, G.C.,2008. Fluvial transport as a natural luminescence sensitiser of quartz[J]. Quaternary Geochronology,33 (4): 365-376
    Power, M.R., Pirrie, D., Andersen, J.C.O., and Wheeler, P.D.2000. Testing the validity of chrome spinel chemistry as a provenance and petrogenetic indicator[J]. Geology,28(11):1027-1030
    Razjigaeva, N.G., and Naumova, V.V.,1992. Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study [J]. Journal of Sedimentary Research,62:802-809
    Robert W. O'B. Knox, Stephen G. Franks, and Joshua D. Cocker.,2007. Stratigraphic evolution of heavy-mineral provenance signatures in the sandstones of the Wajid Group, (Cambrian to Permian), southwestern Saudi Arabia [J]. GeoArabia (Manama),12(4):65-96
    Rollinson, H.R.,1993. Using geochemical data:Evaluation, presentation, interpretation [M]. New York:Longman Scientific Technical,352.
    Roy, P.D., and Smykatz-Kloss, W.,2007. REE geochemistry of the recent playa sediments from the Thar Desert, India:An implication to playa sediment provenance [J]. Chemie der Erde Geochemistry,67(1):55-68
    Salata, D., and Oszczypko, N.,2002. Provenance of tourmalines from the Kanina Beds [J]. Slovak Geological Magazine 6(2-3):165-167
    Schafer. J.. and Doerr. W.,1997. Heavy-mineral analysis and typology of detrital zircons:a new approach to provenance study [J]. Journal of Sedimentary Research.67:451-461.
    Scheka. S.A., Platkov, A.V., Vrzhosek, A.A., Levashov, G.B., and Oktyabrsky, R.A. 1980. The Trace Elemental Paragenesis of Magnetite[M].Moscow, Nauka.147 P-
    Shaw, T. J., Gieskes J.M., and Jahnke R.A.,1990. Early diagenesis in differing depositional environments:the respose of transition tetals in pore water [J]. Geochimica et Cosmochimica Acta,54:1233-1246
    Shu, J., Dearing, J.A., Morse, A.P., et al.2000. Magnetic properties of daily sampled total suspended particles in Shanghai [J], China. Environmental Science and Technology,34:2393-2400
    Singh, P.,2009. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes [J]. Chemical Geology, 266(3-4):251-264
    Slattery, M.C.,1994. Contemporary sediment dynamics and sediment delivery in a small agricultural catchment, north Oxfordshire, U.K. Unpublished Ph.D. Thesis, University of Oxford. UK.
    Spiegel, C. Siebel, W., Frisch, W., and Berner, Z.,2002. Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators:implications for the reconstruction of the exhumation history of the Central Alps [J]. Chemical Geology,189(3-4):231-250
    Stattegger, K.,1987. Heavy minerals and provenance of sands:modeling of lithological end members from river sands of northern Austria and from sandstones of the Austroalpine Gosau Formation (Late Cretaceous) [J]. Journal of Sedimentary Petrology,57:301-310.
    Strzyszcz, Z. and Magi era, T.1993. Ferromagnetism of soils in Polish Natural Parks and its use in monitoring of forest ecosystems[J]. Pradnik. Prace Muz. Szafera, 7-8:125-132 (in Polish)
    Strzyszcz, Z. Magiera, T., and Heller, F.1996. The influence of industrial immissions on the magnetic susceptibility of soils in Upper Silesia[J].Studia Geophysica et Geodaetica,40:276-286
    Strzyszcz,Z.et al.1988.Zur Anwendung eines hochfrequenten Messverfahrens fur den Nachweis von ferromagnetischen Eisen in der Umwelt[J]. Arch. Ochr. Srodowiska,3-4:137-143
    Tanaka,H., Turner, G.M., Houghton, B.F., Tachibana, T., Kono, T., and McWilliams, M.O.,1996.Palaeomagnetism and chronology of the central Taupo Volcanic Zone, New Zealand[J]. Geophys. J.,124:919-934
    Tauxe, L.,2010. Essentials of Paleomagnetism [M]. University of California Press, pp:512
    Taylor, S.R., and McLennan, S.M.1985. The Continental Crust:Its Composition and Evolution [M]. Oxford Blackwell, London.
    Thompson, R., and Oldfield, F.1986. Environmental Magnetism[M]. George Allen & Unwin. London
    Thompson. R., Stober, J.C., Turner, G.M., Oldfield, F., Bloemendal. J.. Dearing. J.A. and Rummery, T.A.1980. Environmental Applications of Magnetic Measurements[J]. Science,207 (4430):481-486
    Walden, J., Slattery, M.C., and Burt, T.P.1997. Use of mineral magnetic measurements to fingerprint suspended sediment sources:approaches and techniques for data analysis[J]. Journal of Hydrology,202(1-4):353-372
    Walling, D.E., Peart, M.R., Oldfield,F. and Thompson,R.1979. Suspended sediment sources identified by magnetic measurements[J]. Nature,281:110-113
    Walther, JV 2005. Essentials of Geochemistry [M]. Jones and Bartlett Publishers, Inc. 704 pp.
    Wang Lijun, Zhang Shen, Gao Xiaojiang, Liu Shujuan, Wang Yuqi. Sun Jingxin. and Chen Hongmin.,1997. Environmental geochemistry of rare earth elements in main type soils in China (in 4th International symposium on Environmental geochemistry; proceedings) [R]. U. S. Geological Survey,95
    Wentworth, C.K.,1922. A scale of grade and class terms for Clastic Sediments[J]. Jour. Geol.,30:377-392.
    Wood, A.K.H., Ahmad, Z., Shazili, N.A.M., Yaakob,R., and Carpenter, R.,1997. Geochemistry of sediments in Johor Strait between Malaysia and Singapore [J]. Continental Shelf research,17(10):1207-1228
    Wright, K. M., Bouma, A. H., and Henry, D. J.,2002. Tourmaline as an indicator for provenance in Arkoma foreland basin deltaic deposits, Arkansas [J]. Geological Society of America Abstracts with Programs 34(6):435
    Xiang, F, Zhu, L, Wang, C S, et al.2007. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River. Geomorphology,85(3-4):249-258
    Yang, S Y, Li, C X, Yokoyama, K.2006. Elemental compositions and monazite age patterns of core sediments in the Cangjiang delta:Implications for sediment provenance and development history of the Changjiang River. Earth and Planetary Science Letters, (245):762-776
    Yeong-Gil Cho, Chang-Bok Lee, and Man-Sik Choi,1999. Geochemistry of surface sediments off the southern and western coasts of Korea [J]. Marine Geology, 159(1-4):111-129
    Zack, T., von Eynatten, H., and Kronz, A.,2004. Rutile geochemistry and its potential use in quantitative provenance studies [J]. Sedimentary Geology,171(1-4): 37-58
    陈光远,孙岱生,殷辉安.1987.成因矿物学与找矿矿物学[M].重庆:重庆出版社,234-235
    陈光远,薛君治,薛成秀.1975.迁安铁矿水厂——宫店子一带的含矿岩系特征[R].
    陈静,王哲,王张华,陈中原.2007.长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J].第四纪研究,27(5):700-708
    陈丽蓉,栾作峰,郑铁民,徐文强,董太禄.1980.渤海沉积物中的矿物组合及其分布特征的研究[J].海洋与湖沼,11(1):46-64
    陈木宏,郑范,陆钧,肖尚斌,颜文,陈忠,向荣,韦刚健,张兰兰.2005.南海西南陆坡区沉积物粒级指标的物源特征及古环境意义[J].科学通报,50(7):684-690
    陈中原,长江三角洲之沉降[J].火山地质与矿产,2001,22(2):95-101
    程三友.中国东北地区区域构造特征与中新生代盆地演化[D].中国地质大学(北京)博士论文.2006:1-121
    杜远生,童金南.1998.古生物地史学概论[M].北京:中国地质大学出版社
    高爱国,韩国忠,刘峰,张德玉,孙海青.2004.楚科奇海及其邻近海域表层沉积物的元素地球化学特征[J].海洋学报,26(2):132-139
    高学民,林振宏等.2000.冲绳海槽中部表层沉积物的地球化学特征和物源判识[J].海洋学报,22(3):61-66
    戈定夷,田慧新,曾若谷.1990.矿物学简明教程[M].北京:地质出版社
    龚树毅,陈国金,1997.长江中游地区第四纪河湖演变及其对环境的影响[J].地球科学,22(2):199-203
    顾慰祖,陆家驹,费光灿,林曾平,郑平生.2001.铀系不平衡在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展,12(2):177-184
    郭玉贵,李延成,许东禹等.黄东海大陆架及邻域大地构造演化史[J].海洋地质与第四纪地质,1997,17(1):1-11
    何浩生,何科昭,朱祥民.1989.滇西北金沙江河流袭夺的研究[J].现代地质,3(2):319-330
    和钟铧,刘招君,郭巍,2001.柴达木盆地北缘大媒沟剖面重矿物分析及其地质 意义[J].世界地质,20(3):275-281
    黄慧珍,唐保根,杨文达.1996.长江三角洲沉积[M].地质学北京:地质出版社,224pp.
    贾军涛,郑洪波,黄湘通吴福元,杨守业,王可,何梦颖.2010.长江三角洲晚新生代沉积物碎屑锆石U_Pb年龄及其对长江贯通的指示[J].科学通报,55(4-5):350-358
    蒋复初,吴锡浩.1993.中国大陆阶梯地貌的基本特征[J].海洋地质与第四纪地质,13(3):15-24
    琚宜太,王少怀,张庆鹏,张庆鹏,旺罗,邓成龙.2004.福建三明地区被污染土壤的磁学性质及其环境意义[J].地球物理学报,47(2):282-288
    康玉柱.2010.中国古大陆形成及古生代演化特征[J].天然气工业,30(3):1-7
    蓝先洪,1995.晚更新世末期陆架的古环境研究[J].海洋地质动态,5:6-8
    李凤杰,郑荣才,周小进,赵俊兴,蒋斌.2009.中国南方晚古生代构造演化与盆地原型[J].沉积与特提斯地质,29(2):93-99
    李吉均,方小敏.1998.青藏高原隆起与环境变化研究[J].科学通报。43(15):1569-1574
    李吉均.1999.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,19(1):1-11
    李鹏,强小科,唐艳荣,符超峰,徐新文,李续彬.2010.西安市街道灰尘磁化率特征及其污染指示意义[J].中国环境科学,30(3):309-314
    李萍,李培英,徐兴永,刘乐军,曹成效.2007.冲绳海槽现代沉积物磁学性质分布特征与环境的关系[J].沉积学报,25(5):753-758
    李四光.1924.陕东地质及长江之历史[J].中国地质学会志,3(3-4):351-391
    李庭,李长安,康春国,雷文大,杨建,王节涛.2010.宜昌砾石层的沉积环境及地貌意义[J].中国地质,37(2):438-445
    李延栋,莫杰.中国滨太平洋构造域构造格架和东海地质演化[J].海洋地质与第四纪地质,2002,22(4):1-6
    林师整.1982.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,3:166-174
    刘宝林,王亚平,王吉中,李建萍,王银宏,程敦伍,李烨.2004.南海北部陆坡海洋沉积物稀土元素及物源和成岩环境[J].海洋地质与第四纪地质,24(4):17-23
    刘季花,梁宏锋.1998.东太平洋深海沉积物小于2μm组分的稀土元素地球化学特征[J].地球化学,27(1):49-58
    刘健,秦华峰,孔祥淮,李军.2007.黄东海陆架及朝鲜海峡泥质沉积物的磁学特征比较研究[J].第四纪研究,27(6):1031-1039
    刘娜,孟宪伟.2004.冲绳海槽中段表层沉积物中稀土元素组成及其物源指示意义.海洋地质与第四纪地质,24(4):37-43
    刘英俊,曹励明等.1986.元素地球化学导论[M].北京:科学出版社
    卢焕章,李秉伦,沈昆,等.1990.包裹体地球化学[M].北京:地质出版社
    陆洁民,郭召杰,赵泽辉等,2004.新生代酒西盆地沉积特征及其与祁连山隆升关系的研究[J].高校地质学报,10(1):50-61
    鹿化煜,ThomasStevens,弋双文,孙雪峰.2006.高密度光释光测年揭示的距今约15-10ka黄土高原侵蚀事件[J].科学通报,51(23):2767-2772
    吕全荣.1992.长江口细颗粒沉积物的矿物特征和沉积分异[J].上海地质,13(3): 18-25
    马永法,李长安,王秋良,杨勇,陈国金,,焦焕美.2007.江汉平原周老镇钻孔砾石统计及其与长江三峡贯通的关系[J].地质科技情报,26(2):40-44
    马志邦,赵希涛,朱大岗,吴中海.2002.西藏纳木错湖相沉积的铀系年代学研究[J].地球学报,23(4):311-316
    孟宪伟,杜德文,陈志华,王湘芹.2000.长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义[J].地球化学,29(6):562-270
    孟宪伟,王永吉.1997.冲绳海槽中段沉积地球化学分区及其物源指示意义[J].海洋地质与第四纪地质,17(3):37-43
    牟保磊.1999.元素地球化学[M].北京:北京大学出版社,227PP.
    秦蕴珊,赵一阳,陈丽蓉等.1987.东海地质[M].北京:科学出版社,33-57
    秦震,陆祖雄,黄振华.1989.攀枝花式钒钛磁铁矿成矿特征[C].中国四川攀枝花:钒钛磁铁矿开发利用国际学术会议文集,78-92
    任美锷,包浩生,韩同春,王飞燕,黄培华.1959.云南西北部金沙江河谷地貌与河流袭夺问题[J].地理学报,25(2):135-155
    沈玉昌,杨逸畴.1963.滇西金沙江袭夺问题的新探讨[J].地理学报,29(2):87-108
    施雅风,李吉均,李炳元等.1999.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,54(1):10-20
    舒强,张茂恒,赵志军,陈晔,李吉均.2008.苏北盆地XH-1钻孔晚新生代沉积记录特征及其与长江贯通时间的关联[J].地层学杂志32(3):308-314
    水利部长江水利委员会.1999.长江流域地图集[M].北京,中国地图出版社,286pp.
    苏锵.2000.稀土元素:您身边的大家族[M].北京:清华大学出版社
    孙白云.1990.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J].海洋地质与第四纪地质,10(3):23-34
    孙志国,郭卫东,刘昌岭,韩昌甫,许东禹.1998.太平洋结核结壳中的锶铅同位素关系研究[J].海洋科学,(2):57-60
    唐贵智,陶明.1997.论长江三峡形成与中更新世大姑冰期的关系[J].华南地质与矿产,4:9-18
    陶世康.2007.长江三角洲地区晚新生代沉积物磁性特征及其沉积环境物源与古气候意义[D].硕士论文,华东师范大学
    田莉丽,邓成龙.2001.岩石的磁学性质[J].地球物理学进展,16(2):109-117
    万天丰.2004.中国大地构造学纲要[M].北京:地质出版社,pp:387
    汪品先.1998.亚洲形变与全球变冷-探索气候与构造的关系[J].第四纪研究,18(3): 213-221
    汪品先.2005.新生代亚洲形变与海陆相互作用[J].地球科学,30(1):1-18
    王德滋.1975.光性矿物学[M].上海:上海人民出版社,1-176
    王鸿祯等.1985.中国古地理图集[M].北京:地图出版社
    王腊春,陈晓玲,储同庆.1997.黄河、长江泥沙特性对比分析[J].地理研究,16(4):71-79
    王立军,陈能坚,1998.珠汀广州江段水体中稀土元素的地球化学特征[J].地理学报,53(5):453-462
    王秋良,胡思辉,李长安.2009.周老镇钻孔砾石层重矿物特征及地质意义[J].中国地质,36(4):878-884
    王顺金.1984.成因矿物学应用[M].武汉:武汉地质学院
    王顺金.1987.论磁铁矿的标型特征[J].矿物学岩石学论丛,3:139-154
    王旭龙,卢演俦,李晓妮.2005.黄土细颗粒单测片再生法光释光测年的进展[J].核技术,28(5):383-387
    王永,迟振卿,李德贵等.2004.泥河湾盆0.8Ma以来的地磁场相对强度记录[J].科学通报,49(9):879-882
    王张华,张丹,李晓,陶士康,解燕.2008.长江三角洲晚新生代沉积物磁性特征和磁性矿物及其指示意[J].中国地质35,(4):670-682
    王张峤,陈中原,魏子新等.2005.长江口第四纪沉积物中构造与古气候耦合作用的探讨[J].科学通报,50(14):1503-1551
    王兆荣,黄培华,彭子成,杨海涛,金嗣,梁任又,张汉昌,全裕才.1995.石笋的ESR和U系年龄及古气候研究[J].地球科学,20(6):677-681
    王中波,杨守业,王汝成,张文兰,李从先.2007.长江河流沉积物磁铁矿化学组成及其物源示踪[J].地球化学,36(2):176-184
    王中刚.1989.稀土元素地球化学[M].北京:科学出版社
    王中良,徐志方.2000.河流稀土元素地球化学研究进展[J].地球科学进展,15(5):553-558
    魏子新,翟刚毅,严学新等.2010.上海城市地质图集[M].北京:地质出版社
    魏子新.2003.长江三角洲东部第四纪沉积环境演化新构造运动古气候与海平面变化的耦合作用[D].华东师范大学资源与环境科学学院博士论文,1-116pp.
    吴标云,李从先.1987.长江三角洲第四纪地质[M].北京:海洋出版社,166pp.
    吴锡浩.1989.青藏高原东南部地貌边界与金沙江水系发育。山地研究。7(2)75-84
    向芳,王成善,李国忠,朱利东,李永昭,姜平.2006.宜昌地区第四纪沉积物重矿物特征及其与三峡贯通的关系[J].33(2):117-121
    向芳,朱利东,王成善,李永昭,杨文光.2005.长江三峡阶地的年代对比法及其意义[J].成都理工大学学报(自然科学版)32(2):162-166
    谢世友,袁道先,王建力,况明生.2006.长江三峡地区夷平面分布特征及其形成年代[J].中国岩溶25(1):40-45
    谢奕汉,范宏瑞.2001.矿物包裹体的成因矿物学标型意义[J].现代地质,15(2):202-206
    熊应乾,杨作升,刘振夏.2003.长江、黄河沉积物物源研究综述[J].海洋科学进展,21(3):355-362
    许仲路,李行健.1982.滇西北丽江鸿文村—剑川甸南纵谷成因与会沙江袭夺问题之探讨[J].地理学报,37(3):325-333
    杨丛笑,赵澄林.1996.石榴石电子探针在物源研究中的应用[J].沉积学报,14(1):162-166
    杨达源.2006.长江地貌过程[M].地质出版社,PP:219
    杨达源.1988.长江三峡的起源与演变[J].南京大学学报,24(3):465-474
    杨群慧,林振宏,张富元,周怀阳.2004.南海东部表层沉积物中普通角闪石和磁铁矿的特征及其成因[J].海洋地质与第四纪地质,24(2):29-36
    杨守业,蒋少涌,凌洪飞,夏小平,孙敏,王德杰.2007.长江水系沉积物Sr-Nd 同位素组成与源汇示踪意义[J].中国科学,37(5):682-690
    杨守业,李从先,朱金初,张文兰.2000.长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学,29(5):480-484
    杨守业,李从先.1999.REE示踪沉积物物源研究进展[J].地球科学进展,14(2):164-167
    杨守业,韦刚健,夏小平,孙敏,唐珉.2007.长江口晚新生代沉积物的物源研究:REE和Nd同位素制约[J].第四纪研究,27(3):339-346
    杨子赓.1994.晚松山时南黄海的古长江三角洲[J].第四纪研究,1:13-23
    姚培慧.1993.中国铁矿志[M].北京:冶金工业出版社
    俞立中,许羽,张卫国.1995.湖泊沉积物的矿物磁性测量及其环境应用[J].地球物理学进展,10(1):11-22
    俞立中,张卫国.1998.沉积物来源组成定量分析的磁诊断模型[J].科学通报,43(19):2034-2040
    袁复礼.1957.长江河流发育史的补充研究[J].人民长江,(2):1-9
    战庆,王张华,王听,李晓.2009.长江口区晚新生代沉积物粒度特征和沉积地貌环境演变[J].沉积学报,27(4):674-683
    张春霞,黄宝春,刘青松.2009.钢铁厂周围不同污染介质的磁学性质及环境意义[J].地球物理学报,52(11):2826-2839
    张丹,王张华,卫巍,李晓.2009.长江三角洲地区晚新生代沉积物岩石磁学特征及其物源指示意义[J].第四纪研究,29:308-317
    张虎才.1997.元素表生地球化学特征及理论基础[M].兰州:兰州大学出版社
    张若桦.1987.稀土元素化学[M].天津:天津科学技术出版社
    张文佑等.1977.铁矿的形成与富集[M].北京:冶金工业出版社,168PP.
    张艳彬,于玉,杨忠芳,陈岳龙.2007.成都经济区土壤磁化率特征及其环境意义[J].吉林大学学报(地球科学版)37(3):597-604
    张叶春.1995.长江三峡贯通的时代及意义[J].西北师范大学学报(自然科学版),31(2):52-56
    张玉芬,李长安,王秋良,等.2008.江汉平原沉积物磁学特征及对长江三峡贯通的指示[J].科学通报,53(5):577-582
    章震铨,刘昌森.上海两条隐伏第四纪断裂的研究[J].地震地质.2001,23(4):545-555
    赵诚.1996.长江三峡河流袭夺与河流起源[J].长春地质学院学报,26(4):428-433
    赵红格,刘池洋.2003.物源分析方法及研究进展[J].沉积学报,21(3):409-415
    赵济,陈永文,刘炎昭,韩渊丰,李祯.1995.中国自然地理[M].高等教育出版社
    赵松龄.1984.长江三角洲地区的第四纪地质问题[J].海洋科学, (5):16-21
    赵一阳,鄢明才.1994.冲绳海槽海底沉积物汞异常——现代海底热水效应的“指示剂”[J].地球化学,23(2):132-139
    周斌,郑洪波,杨文光,李丽,王慧.2008.末次冰期以来南海北部物源及古环境变化的有机地球化学记录[J].第四纪研究,28(3):407-413
    周渭.2007.海南岛近海表层沉积物中辉石与角闪石的成因及物源研究[D].北京:中国地质大学
    朱日祥,岳乐平,白立新.1995.中国第四纪古地磁学研究进展[J].第四纪研究,15(2):160-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700