用户名: 密码: 验证码:
信息系统中的知识获取与不确定性度量的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息系统(信息表)是描述对象集具备某些属性特征的有利工具.信息系统中的知识发现是信息科学领域的研究热点.信息系统的不确定性度量也是数据挖掘和知识发现的重要议题.信息粒和信息熵理论是研究信息系统的不确定性问题的主要理论依据.本文以粒计算理论、粗糙集理论、模糊集理论和直觉模糊集理论为基础,研究信息系统中的不确定性度量和知识获取等方面的问题.主要内容包括粗糙集的不确定性度量、直觉模糊信息系统中的属性约简、直觉模糊集的熵、直觉模糊集间的包含度、相似度、相容度,以及形式背景中的多尺度概念格等问题.主要工作如下:
     (1)作为粗糙集理论的重要研究内容之一,粗糙集的粗糙度和模糊度是很多学者广泛研究的问题.因为粗糙集的不确定性与其所在近似空间知识粒度的大小密切相关,本文提出了近似空间中集合的相对知识粒度的概念,结合模糊集理论和粒计算理论改进了粗糙集的不确定性度量方法.通过集合的相对知识粒度及边界熵给出了粗糙集的粗糙性度量函数与模糊性度量函数,这些度量在刻画了近似空间对粗糙集不确定性影响的同时,又去除了负域的干扰,并且满足随着近似空间知识粒的细分,粗糙集的粗糙度与模糊度均单调递减的性质.利用矩阵理论提出了易于实现的粗糙性度量与模糊性度量的矩阵算法.
     (2)在直觉模糊信息系统中构造了一类广义的直觉模糊集的熵,重新修订了直觉模糊包含度的公理化定义.基于直觉模糊逻辑算子构造了多种直觉模糊包含度,并依此进一步构造出直觉模糊相似度,讨论了直觉模糊集的熵和相似度之间的关系.依据谓词逻辑的思想定义了直觉模糊相容度,并构造了基于直觉模糊三角模的直觉模糊相容度.
     (3)在直觉模糊信息系统中,研究了对象集的分类问题和全序化问题.讨论了以绝对优势关系为代表的基于粗糙集方法的属性约简.依据对象集的属性值犹豫区间交叠的程度定义了α-不可辨识关系,给出了α-约简的方法.分析了直觉模糊信息系统的不确定性.针对直觉模糊序决策信息系统,利用依赖空间理论,分别讨论了协调的和不协调情况的属性约简.
     (4)形式概念分析作为分析数据的一种有效方法已经被应用于许多领域.本文给出约简概念数量的有效方法,借助包含度的理论,通过事先给定的对象集U的一个划分和一个给定的尺度(或精度)α,得到一个新的Galois连接,进而生成α概念格.从理论上又证明由原始形式背景基于包含度导出的α形式背景得到的概念格与原形式背景生成的α概念格是相同的.然后利用已有概念格计算软件求出约简后的概念格.
Information systems (Information tables) provide a convenient and useful tool for rep-resenting a set of objects using a group of attributes. Knowledge acquisition in informationsystems is a key issue in the field of information science. Uncertainty measure in informationsystem has also attracted lots of attention in data mining and knowledge discovery. Informationgranulation and entropy theory are two main approaches to research uncertainty of an informa-tion system. Based on the theory of granular computing, rough sets, fuzzy sets and intuitionisticfuzzy sets, this dissertation study on the uncertainty measure and knowledge acquisition of in-formation systems, including uncertainty measure of rough sets, attribute reduction, entropy,inclusion measure, similarity measure, compatibility measure in intuitionistic fuzzy systemsand multiple scale concept lattice. The main contribution of this dissertation can be generalizedas follows:
     (1) As one of the most important issues in rough set theory, roughness and fuzziness ofrough sets have been widely studied. Uncertainty of rough sets has close relativity with theknowledge granularities of the approximation space. We propose an improved method for mea-suring the uncertainty of rough sets based on fuzzy theory and granular computing theory. Adefinition of relative knowledge granulation and a concept of boundary entropy for an infor-mation system are given, under which the measure functions of roughness and fuzziness aremodified. The roughness of a rough set based on relative knowledge granularities not only re-?ects the action of the approximation space, but also gets rid of the effect of the negative regionof the rough set. Both of roughness and fuzziness are monotonously decreasing with the refin-ing of knowledge granularities in approximation spaces. Two matrix algorithms are presentedfor measuring the roughness and fuzziness of rough sets, which are easy to implement.
     (2) In intuitionistc fuzzy system, a new kind of entropy for intuitionistic fuzzy sets is pro-posed, and some basic properties are examined. An axiomatic definition of inclusion measurebetween intuitionistic fuzzy (IF for short) sets is established. Some kinds of IF inclusion mea-sures are constructed by different IF operators, especially by IF implicator. Some new methodsfor measuring the degree of similarity between IF sets are proposed. Moreover, the similaritymeasure obtained from IF inclusion measure holds properties of normal similarity measure. Therelationships between similarity measure and entropy of intuitionistic fuzzy sets are analyzed.We then define the compatibility measure by the predicates logical idea and construct severalfunctions to measure compatibility for an intuitionistic t-norm.
     (3) Intuitionistic fuzzy information systems are generalized models of single-valued fuzzyinformation systems. We propose some novel classification rules, totally ordered methods anduncertainty measures for intuitionistic fuzzy information systems. By introducing an absolutedominance relation in an intuitionistic fuzzy information system, a rough set approach is es-tablished, which can be extended to other forms of dominance relations in intuitionistic fuzzyinformation systems. For a given permissible discernibility degreeα, a novel rough set ap-proach based onα-indiscernibility relations is discussed and theα-determinant reductions areobtained. Furthermore, to evaluate uncertainty of an intuitionistic fuzzy information system,we design a roughness measure of a rough set depend on a relative knowledge granulation, bywhich the effect of the negative region of the rough set can be removed effectively. Then wedeal with attribute reductions of consistent and inconsistent intuitionistic fuzzy ordered decisioninformation systems based on the theory of dependence space.
     (4) As an effective method for date analysis, formal concept analysis has been applied tomany fields. The method given in this discussion can reduce the number of concepts efficientlywith conserved main formal structure. Based on a kind of Galois connection via a conceptof inclusion degree, a complete lattice, calledα(αis a real number in [0,1]) concept lattice,is produced. A formal context can be converted into an inducedαcontext through a kind ofinclusion degree which is used to cope with a partition of the objects’set. Moreover, it isproved that theαconcept lattice produced by the original context is equal to the concept latticeproduced by the inducedαcontext. Finally, the concept lattices determined by an inclusiondegree is constructed from the induced context by using the well-known software of Galicia.
引文
[1]张钹,张铃.问题求解理论及应用.北京:清华大学出版社, 1990.
    [2]张文修,梁怡,吴伟志.信息系统与知识发现.北京:科学出版社, 2003.
    [3]丁勇生.计算智能-理论、技术与应用.北京:科学出版社, 2004.
    [4]杨善林,倪志伟.机器学习与智能决策支持系统.北京:科学出版社, 2004.
    [5] Pawlak Z. Rough sets. International Journal of Computer Information Science, 1982, 11:321-336.
    [6] Cadenas J M, Garrido M C, Munoz E. Using machine learning in a cooperative hybrid parallelstrategy of metaheuristics. Infomation sciences, 2009, 179(19):3255-3267.
    [7] Mennis J, Guo D S. Spatial data mining and geographic knowledge diseovery an introduction.Computers, Environment and Urban Systems, 2009, 33(6):403-408.
    [8] Hulse J V, Khoshgoftaar T. Knowledge discovery from imbalanced and noisy data. Data & Knowl-edge Engineering, 2009, 68(12):1513-1542.
    [9] Liao C W, Perng Y H, Chiang T L. Diseovery of unapparent association rules based on extractedprobability. Decision Support Systems, 2009, 47(4):354-363.
    [10] Hong T P, Tseng L H, Chien B C. Mining from incomplete quantitative data by fuzzy rough sets.Expert Systems with Applications, 2010, 37(3):2644-2652.
    [11] Wang H, Wang S H. Discovering patterns of missing data insurvey databases: An application ofrough sets. Expert Systems with Applications, 2009, 36(3):6256-6260.
    [12] Sinha A P, Zhao H M. Incorporating domain knowledge into datamining classifiers: An applicationin indirect lending. Decision Support Systems, 2008, 46(1):287-299.
    [13] Beaubouef T, Petry F E, Ladner R. Spatial datamethods and vague regions:A rough set approach.Applied Soft Computing, 2007, 7(1):425-440.
    [14] Ziarko W. Probabilistic approach to rough sets. International Journal of Approximate Reasoning,2008, 49(2):272-284.
    [15] Zhang Z W, Shi Y, Gao G X. A rough set-based multiple criteria linear programming approach forthe medical diagnosis and prognosis. Expert Systems with Applications. 2009, 36(5):8932-8937.
    [16] Yamaguchi D, Li G D, Nagai M. A gray-based rough approximation model for interval data pro-cessing. Information Sciences, 2007, 177(21):4727-4744.
    [17] Chen Y, Hipe K W, et al. A strategic classification support system for brownfield redevelopment.Environmental Modelling & software, 2009, 24(5):647-654.
    [18] Sawicki P, Zak J. Technical diagnostic of a ?eet of vehicles using rough set theory. EuropeanJournal of Operational Research, 2009, 193(3):891-903.
    [19] Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Aea-demic Publishers, 1991.
    [20] Slowinski R. Itelligent Decision Support: Handbook of Application and Advances of Rough SetsTheory. Dordrecht: Kluwer Academic Publishers, 1992.
    [21] Pawlak Z, Grzymala-Busse J W, Slowinski R, et al. Rough Sets. Communication of ACM, 1995,38(11):89-95.
    [22]曾黄麟.粗集理论及其应用.重庆:重庆大学出版社, 1996.
    [23]王国胤. Rough集理论与知识获取.西安:西安交通大学出版社, 2001.
    [24]刘清. Rough集及其Rough推理.北京:科学出版社, 2001.
    [25]张文修,吴伟志,粱吉业等.粗糙集理论和方法.北京:科学出版社, 2001.
    [26]张文修,梁怡,吴伟志.信息系统与知识发现.北京:科学出版社, 2003.
    [27]张文修,吴伟志.粗糙集理论介绍和研究综述.模糊系统与数学, 2000, 14(4):1-12.
    [28] Pawlak Z. Rough set approach to knowledge-based decision support institute of Computer ScienceReports. Warsaw University of Technology, Warsaw, 1995.
    [29] Slowinski R, et al. Rough set sorting of firms according to bankruptcy risk. In: Applying MultipleCriteria aid for Decision to Environment Management, Dordrcht: Kluwer Academic Publishers,1994:339-357.
    [30] Slowinski R. Rough set approach to decision analysis. AI Expert, 1995(3):19-25.
    [31] Slowinski R, et al. Rough set reasoning about uncertain data. Foundamenial Informatica, 1996,27(2,3):229-243.
    [32] Parsons S, et al. A rough set approach to reasoning under uncertainty. Joumal of Experimental andTheoretical AI, 1995, 7(2):175-193.
    [33] Wojcik Z, et al. Application of rough sets for edge enhancing image filters. Proc. of IEEE Interna-tional Conference on Image Processing, Los Alamitos, 1994, 525-529.
    [34] Pawlak Z, et al. Rough stes. Communications of ACM, 1995, 38(11):89-95.
    [35] Teghem J, et al. Use of rough sets method to draw premonitory factors for earthquakes by empha-sizing gas geochemistry. In Slowinski R. Ed. Intelligent decision support-handbook of applicationsand advances of the rough sets theory. Dordrecht: Kluwer Academic Publishers. 1992, 165-179.
    [36] Deja R. Con?ict model with negotiations. In: Institute of Computer Science Reports. WarsawUniversity of Technology, Warsaw, 1995.
    [37] Godin R, Ziarko W. Methodology for stock market analysis utilizing rough set theory. Proc. ofIEEE/IAEE Conference on Computational Intelligence for Financial Enginerring, New Jersey,1995, 32-40.
    [38] Ziarko W, Shan N. KDD-R A Comprehensive System for Knowledge Discovery in Databases Us-ing Rough Sets Approach. In: Lin T. Y., Wildberger A. M., ed. Soft Computing, San Diego, CA:Simulation Councils Inc, 1995, 298-301.
    [39] Grzylmala-Busse J W. LERS-A System Learning form Examples Based on Rough Sets. In: Slowin-ski R. ed. Intelligent decision support-handhook of applications and advances of the rough setstheory. Dordrecht: Kluwer Academic Publishers, 1992, 3-18.
    [40] Grzymala-Busse J W. LERS: A System of Knowledge Diseovery Based on Rough Sets. Proc. of5th Int. Workshop RSFD’96, Tokyo, 1996.
    [41] Rossetta, a rough set toolkit for analyzing data [EB/OL], http://www.idi.ntnu.no/aleks/rosetta/.2002.
    [42] Slowinski R, Stefanowski J. RoughDAS and RoughClass software implementations of the roughsets approach. In: Slowinski R. ed. Intelligent decision support-handhook of applications and ad-vances of the rough sets theory. Dordrecht: Kluwer Academic Publishers, 1992, 445-456.
    [43] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8:338-353.
    [44] Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets. International Journal of General Sys-tems, 1990, 17:191-209.
    [45] Dubois D, Prade H. Putting rough sets and fuzzy sets together. In Intelligent Decision Support:Handbook of Applications and Advances of the Rough Sets Theory, Kluwer, Dordrecht, TheNetherlands, 1992, 2003-222.
    [46] Banerjee S, Pal S K. Roughness of fuzzy set. Information Sciences, 1996, 93: 235-246.
    [47] Nanda S, Majumda S. Fuzzy rough sets. Fuzzy Sets and Systems, 1992, 45: 157-160.
    [48] Sarkar M. Rough-fuzzy functions in classification. Fuzzy Sets and Systems, 2002, 132: 353-369.
    [49] Shen Q, Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recog-nition, 2002, 35: 2425-2438.
    [50] Yao Y Y. Combination of rough and fuzzy sets based onα-level sets. IN Rough Sets and DataMining: Analysis for Imprecise Data, chapter 1, 301-321, Kluwer Academic Publishers, 1997.
    [51] Zhang M, Wu W Z. Knowledge reduction with fuzzy decision information systems. Chinese Jour-nal of Engineering Mathematics, 2003,20(2):1-7.
    [52] Wu W Z, Mi J S, Zhang W X. Generalized fuzzy rough sets. Information Sciences, 2003, 151:263-282.
    [53] Wu W Z, Leung Y, Mi J S. On characterizations of (I,T)-fuzzy rough approximation operators.Fuzzy Sets and Systems, 2005, 154(1): 76-102.
    [54] Mi J S, Zhang W X. An axiomatic characterization of a fuzzy generalization of rough sets. Infor-mation Sciences, 2004, 160:235-249.
    [55] Mi J S, Leung Y, Wu W Z. An uncertainty measure in partition-based fuzzy rough sets. InternationalJournal of General Systems, 2005, 34: 77-90.
    [56] Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
    [57] Atanassov K. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989, 33: 37-46.
    [58] Atanassov K. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems,1994a, 61:137-142.
    [59] Atanassov K. Operations over nterval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems,1994b ,64:159-174.
    [60] Atanassov K. Remarks on the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1995,75(3): 401-402.
    [61] Atanassov K. Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg,1999.
    [62] Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning,(I)(II)(III). Information Science, 1975,8:199-249,8:301-357,9:43-80.
    [63] Gau W L, Buehrer D J. Vague sets. IEEE Transection Systems Man Cybernet, 1993, 23(2):610-614.
    [64] Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems,1996,79:403-405.
    [65] Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-balued fuzzy sets. FuzzySets and Systems, 1996, 78(3): 305-316.
    [66] Szmidt, Kacprzyk J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems,2001,118(3):467-477.
    [67] Deschrijver G, Kerre E E. On the composition of intuitionistic fuzzy relations. Fuzzy Sets andSystems, 2003, 136(3):333-361.
    [68] Cornelis C, Deschrijver G, Kerre E E. Implication in intuitionistic fuzzy and interval-valued fuzzyset theory: construction, classification, application. International Journal of Approximate Reason-ing, 2004, 35(1):55-95.
    [69] Lano K. Formal frameworks for approximate reasoning. Fuzzy Sets and Systems, 1992,51(2):131-146.
    [70] Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 2000,114(3):505-518.
    [71] Grzegorzewski P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy setsbased on the Hausdorff metric. Fuzzy Sets and Systems, 2004,148(2):319-328.
    [72] Li D F, Cheng C T. New similarity measures of intuitionistic fuzzy sets and application to patternrecongnitions. Pattern Recognition Letters, 2002, 23(1-3):221-225.
    [73] Liang Z Z, Shi P F. Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters,2003,24(15):2687-2693.
    [74] Hung W L, Yang M S. Similarity measures of intuitionistic fuzzy sets based on Housdorff distance.Pattern Recognition Letters, 2004,25(14):1603-1611.
    [75] Li D F. Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journalof Computer and System Sciences, 2005,70(1):73-85.
    [76]雷英杰,王宝树,苗启广.直觉模糊关系及其合成运算.系统工程理论与实践, 2005,25(2):113-118.
    [77]雷英杰,王宝树.直觉模糊逻辑的语义算子研究.计算机科学, 2004,31(11): 4-6.
    [78]徐泽水.直觉模糊信息集成理论及应用.北京:科学出版社, 2008.
    [79]李德毅,杜鹢.不确定性人工智能.北京:国防工业出版社, 2005.
    [80] Yao Y Y. Granular computing: Basic issues and possible solutions. In: Proceeding of the 5th JointConference on Information Sciences, 2000,186-189.
    [81] Banerjeem M, Pals K. Roughness of a fuzzy sets. Information Sciences, 1996, 93(3-4): 235-246.
    [82] Beaubouef T, Petry F E, Arora G. Information theoretic measures of uncertainty for rough sets andrough relational databases. Information Sciences, 1998, 109(1-4):185-195.
    [83] Shannon C E. The mathematical theory of communication. The Bell System Technial Journal,1948, 27(3-4): 373-423.
    [84] Wierman M J. Measuring uncertainty in rough set theory. International Journal of General Systems,1999, 28(4):283-297.
    [85] Duntsch I, Gediga G. Uncertainty measures of rough set prediction. Artifical Intellegence, 1998,106: 109-137.
    [86]苗夺谦,王珏.粗糙集理论中的知识粗糙性与信息熵的关系.模式识别与人工智能,1998, 1(1):34-40.
    [87] Liang J Y, Xu Z B. Uncertainty measures of roughness of knowledge and rough sets in incompleteinformation systems. Proceedings of the 3th World Congress on Intelligent Control and Automa-tion, Press of University of Science and Technology of China, 2000, 2526-2529.
    [88] Qian Y H, Liang J Y, Wang F. A new method for measuring the uncertainty in incomplete infor-mation systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2009, 17(6):855-880.
    [89] Qian Y H, Liang J Y, Yao Y Y, et al. MGRS: a mulit-granulation rough set. Information Sciences,2010,180:949-970.
    [90] Qian Y H, Liang J Y, Pedrycz W, et al. Positive approximation: an accelerator for attribute reductionin rough set theory. Artificial Intelligence, 2010,174:597-618.
    [91]张铃,张拔.模糊商空间理论.软件学报, 2003, 14(4):770-776.
    [92]王国胤,张清华.不同知识粒度下粗糙集的不确定性研究.计算机学报, 2008, 31(9):1588-1598.
    [93]李鸿儒,宋笑雪,魏平.信息系统诱导出的形式背景及其性质.工程数学学报, 2005,22(6): 970-974.
    [94] Carpineto C, Romano G. Exploiting the potential of concept lattices for Information Retrieval withCREDO. Journal of Universal Computer Science, 2004, 10(8): 985-1013.
    [95] Cole R, Eklund P, Stumme G. Document retrieval for e-mail search and discovery using FormalConcept Analysis. Applied Artificial Intelligence, 2003, 17(3): 257-280.
    [96] Diaz-Agudo B, Gonzalez-Calero P A. Formal concept analysis as a support technique for CBR.Knowledge-Based Systems, 2001, 14(3-4): 163-171.
    [97] Harms S K, Deogun J S. Sequencial accociation rule with time lags. Journal of Intelligent Infor-mation Systems, 2004,22(1):7-22.
    [98] Ganter B, Stahl J, Wille R. Conceptual measurement and many-valued contexts. In: W. Gaul,M. Schader (Eds.). Classification as a Tool of Research, Elsevier Science Publishers B.V., North-Holland, Amsterdam, 1986, 169-176.
    [99] Deogun J S, Saquer J. Monotone concepts for formal concept analysis. Discrete Applied Mathe-matics, 2004, 144(1-2):70-78.
    [100] Zhang W X, Ma J M, Fan S Q. Variable threshold concept lattices. Information Sciences,2007,177:883-892.
    [101] Prediger S. Formal Concept Analysis for general objects. Discrete Applied Mathematics, 2003,127:337-355.
    [102] Medina J, Ruiz-Calvino J. Towards multi-adjoint concept lattices. In: Information Processing andManagement of Uncertainty for Knowledge-Based Systems, IPMU’06, 2006, 2566-2571.
    [103] Medina J, Ojeda-Aciego M, Ruiz-Calvino J. Formal concept analysis via multi-adjoint conceptlattices. Fuzzy Sets and Systems, 2009, 160:130-144.
    [104] Belohlavek R. Fuzzy Galois connections. Mathematical Logic Quarterly, 1999, 45(4):497-504.
    [105] Belohlavek R. Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quarterly,2001, 47:111-116.
    [106] Belohlavek R. Logical precision in concept lattices. Journal of Logic and Computation, 2002,12(1):137-148.
    [107] Belohlavek R. Concept lattices and order in fuzzy logic. Annals of Pure and Apllied Logic, 2004,128(1-3):277-298.
    [108] Burusco A, Fuentes-Gonzalez R. Construction of the L-fuzzy concept lattice. Fuzzy Sets andSystems, 1998, 97(1):109-114.
    [109] Shao M W, Liu M, Zhang W X. Set approximations in fuzzy formal concept analysis. Fuzzy Setsand Systems, 2007, 23:2627-2640.
    [110] Hereth J, Stumme G, Wille R, et al. Conceptual knowledge discovery and data analysis. In B.Ganter, G. Mineau (eds.): Conceptual Structures: Logical, Linguistic and Computational Issues,pp. 421-437. LNAI 1867, Springer, Berlin-Heidelberg, New-York, 2000.
    [111] Stumme G, Taouil R, Bastide Y, et al. Computing iceberg concept lattices with titanic. Data andKnowledge Engineering, 2002, 42(2):189-222.
    [112] Pernelle N, Rousset M C, Soldano H, et al. ZooM: a nested Galois lattices-based system forconceptual clustering. Journal of Experimental& Theoretical Artificial Intelligence, 2002, 14:157-187.
    [113] Ventos V, Soldano H. Alpha Galois Lattices: An Overview. B. Ganter and R. Godin (Eds.): ICFCA2005, LNAI, 3403: 299-314, 2005.
    [114] Xu Z B, Liang J Y, et al. Inclusion degree: a perspective on measures for rough set data analysis.Information Sciences, 2002, 141: 227-236.
    [115]张文修,梁怡,徐萍.基于包含度的不确定推理,北京:清华大学出版社, 2007.
    [116]范周田.模糊矩阵理论与应用.北京:科学出版社, 2006.
    [117] Liang J Y, Shi Z Z. The information entropy , rough entropy and knowledge granulation in roughset theory. International Journal of Uncertainty, 2004,12(1):37-46.
    [118]王国胤,张清华.不同知识粒度下粗糙集的不确定性研究.计算机学报,2008,31(9):1588-1598.
    [119] Mi J S, Leung Y, Wu W Z. An uncertainty measure in partition-based fuzzy rough sets. Interna-tional Journal of General Systems, 2005,34:77-90.
    [120] Chan F T S, Kumar N. Global supplier development considering risk factors using fuzzy extendedAHP-based approach. Omega, 2007, 35:417-431.
    [121] Alsina C, Frank M J, Schweizer B. Associative Functions: Triangular Norms and Copulas, WorldScientific, Singapore, 2006.
    [122] Klir G J, Yuan B. Fuzzy Sets and Fuzzy Logic. Theory and Applications, Prentice-Hall, USA,1995.
    [123] Cornelis C, Kerre E E. Inclusion measures in the Intuitionistic fuzzy sets. ECSQARU 2003, Lec-ture Notes in Atif icial Intelligence 2711: 345-356, 2003.
    [124] Grzgorzewski P, Mrowka E. Subsethood measure for intuitionistic fuzzy sets. FUZZ-IEEE 2004,pp.139-142, 2004.
    [125] Young V R. Fuzzy subsethood. Fuzzy Sets and Systems, 1996, 77:371-384, .
    [126] Belohlavek R. Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publish-ers, Norwell, MA ,2002.
    [127] Acze′l J. Lectures on Functional Equations and Their Applications. Academic Press, USA, 1966.
    [128] Deschrijver G, Cornelis C, Kerre E. On the representation of intuitionistic fuzzy T-norms andT-conorms. IEEE Transactions on Fuzzy Systems, 2004, 12(1):45-61.
    [129] Zhang W X, Qiu G F. Uncertain Decision Making Based on Rough Sets, Science Press, Beijing,China, 2005.
    [130] Novotny M, Pawlak Z. On a problem concerning dependence spaces. Fund. Inform. 1992,16:275-287.
    [131] Novotny M. Dependence spaces of information systems. In: Ortowska E(ed) Incomplete informa-tion: rough set analysis. Physica-Verlag, Belin, pp:193-246, 1998.
    [132] Mi J S, Leung Y, Wu W Z. Dependence-space-based attribute reduction in consistent decisiontables. Soft Computing, 2011, 15(2):261-268.
    [133] Wille R. Restructuring lattice lattice theory: an approach based on hierarchies of concepts. In:Ordered sets Dordrecht-Boston: Reidel, 1982, 445-470.
    [134] Godin R. Incremental concept formation algorith based on Galois (concept) lattices. Computa-tional Intelligence, 1995,11(2):246-267.
    [135] Barbut M, Monjardet B. Order et Classification: Algee`bre et Combinatoire, Hachette, 1970.
    [136] Ganter B, Wille R. Formal concept analysis: mathematical foundations. Springer, Berlin, 1999.
    [137] http://www.iro.umontreal.ca/~galicia/goals.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700