用户名: 密码: 验证码:
塔里木早二叠世大火成岩省的岩浆演化与深部地质作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布面积达20万km~2的塔里木早二叠世火成岩一直以来是地质学家们研究的重点。本文系统研究塔里木早二叠世火成岩的年代学、岩石学、地球化学和同位素特征及岩石成因,重点探讨火成岩的演化序列及深部地质作用过程。论文取得了以下几点认识:
     1.在项目组提出塔里木早二叠世大火成岩省的基础上,进一步论证了塔里木大火成岩省的存在。大火成岩省岩石种类丰富,包括超基性岩类、基性岩类和中酸性岩类。超基性岩类为超镁铁质岩、爆破角砾岩和辉石岩,基性岩类包括玄武岩和辉绿岩,中酸性岩类为正长岩和正长斑岩。其中基性岩类范围最广,分布于阿瓦提坳陷、满加尔坳陷西部、塔北隆起西部、巴楚隆起和塔中隆起和塔西南坳陷等地区,估计分布面积在20万km~2以上。
     2.高精度锆石SHRIMP U-Pb定年结果显示,柯坪玄武岩最早喷发年代在290Ma左右(289.5±2.0Ma),最后一次喷发的时代大概在289Ma(288.9±3.4Ma);正长斑岩的SHRIMP U-Pb年龄为278.4±2.2Ma,与正长岩体的年龄相近(277~278Ma)。结合地层古生物等资料,认为塔里木早二叠世火成岩的时间序列为:早期玄武岩喷出和超基性岩的侵入,其后辉绿岩侵入,最后是正长岩体和正长斑岩岩脉的侵入。这一演化序列得到地球化学证据的支持。
     3.塔里木早二叠世大火成岩省各类火成岩的SiO_2含量为31~67%,且具有双峰式火成岩特征。瓦基里塔格爆破角砾岩和辉绿岩、塔北玄武岩、小海子超镁铁质岩和辉绿岩及正长岩和正长斑岩均为碱性系列;柯坪辉绿岩与柯坪玄武岩为碱性-亚碱性过渡系列。火成岩的地球化学组成以富集大离子亲石元素和高场强元素,亏损重稀土元素为特征,与OIB微量元素特征相似。Ta/Hf比值和Nd同位素初始值指示两类火成岩:一类为柯坪玄武岩,具有负的εNd值,主要与富集的大陆岩石圈地幔有关;另一类为塔北玄武岩及各区的侵入岩,εNd值大于0,代表亏损型地幔来源。
     4.塔里木早二叠世大火成岩省的岩浆演化以结晶分异为主,包括橄榄石、单斜辉石及斜长石的分离结晶,基本没有受到同化混染作用的影响。塔里木早二叠世大火成岩省主要来源于两种源区:柯坪玄武岩来源于尖晶石-石榴石二辉橄榄岩约5%的部分熔融;超镁铁质岩和辉石岩均来自石榴石二辉橄榄岩,熔融程度分别为~16%和~5%左右;其他岩类均为这两种岩浆演化或相互作用的产物。
     5.塔里木早二叠世大火成岩省源于地幔柱的作用。地幔柱上升引起区域地壳的抬升;巨量的大陆溢流玄武岩在短时间内喷发,持续时间为1~2Ma;发育大量的二叠纪基性岩墙群;酸性岩浆的侵入,代表幔柱岩浆活动的结束;高镁岩浆岩与地幔热柱有关;微量元素比值(如Ta/Hf>0.3)和同位素成分特征等都支持地幔柱成因假说。
     6.针对塔里木早二叠世大火成岩省的特征,提出塔里木大火成岩省成因模式,即早期高热的地幔柱引起了岩石圈地幔的低程度部分熔融,后期地幔柱绝热减压引起地幔柱自身熔融。它不同于巴哈纳型(单一的岩石圈熔融)和德干型(单一的地幔柱熔融)。
     7.塔里木早二叠世大火成岩省的演化过程为:地幔柱上升并与塔里木岩石圈地幔相互作用,引起了岩石圈地幔的低程度部分熔融,形成玄武质岩浆;当熔融的岩浆积聚到一定的压力,最终突破岩石圈,喷溢出地表,形成溢流玄武岩;玄武岩大面积喷发之后,地幔柱获得了更多的上升空间,短时间内迅速上升、减压,造成地幔柱本身开始熔融,形成高镁岩浆,可形成超镁铁质岩和爆破角砾岩筒;分离结晶出的辉石上升后形成辉石岩岩体;原始岩浆进一步演化,可以辉绿岩岩墙或塔北玄武岩的形式侵入或喷出地表;最后,玄武质岩浆经结晶分异作用演化为富碱富硅的中酸性岩浆,上侵形成正长岩体和正长斑岩岩脉。
Huge quantities of Early Permian igneous rocks were found in Tarim Basin, Xinjiang Province,NW China.The overall coverage of the igneous rocks was up to 200,000km~2.These igneous rocks have always been the key interest to geologists.In this thesis,systematic researches have been carried out as to Early Permian igneous rocks,focusing on the magma evolution and deep geological processes of the large igneous province.
     Up to now,several points have been addressed as follow:
     1.Based upon the nomination of Early Permian Tarim LIP by our research group, more works have been down to support the conclusion.Early Permian Tarim LIP consists of ultrabasic-basic-felsic rock types.The ultrabasic rocks are ultramafic rocks, explosive breccia and pyroxenite.Basalt and diabase are the main components of basic series,while felsic series outcropping as syenite and syenite porphyry.Basalts were widely erupted across the west,northwest,southwest part of the basin,with estimated area of more than 200,000km~2.
     2.According to Zircon SHRIMP U-Pb dating,The lowest unit of Keping basalts erupted at about 290Ma(289.5±2.0Ma),while the top unit reveals an age of 288.9±3.4Ma,which means the basalt eruption probably ended at 289Ma.SHRIMP U-Pb age of syenite porphyry is 278.4±2.2Ma,which is of the same age as syenite (277~278Ma).So the temporal series for Tarim LIP are:basalt eruption came first, ultramafic intrution,then diabase followed,syenite porphyry and syenite intruded at last.
     3.Early Permian Tarim LIP consists of a range of igneous rocks,with SiO_2 content ranging from 31%to 67%.All the igneous rocks are rich in large ion lithosphile elements(LILE) as well as high field-strength elements(HFSE),depleted in HREE.The geochemical features are to some extent similar to OIB.Wajilitag explosive breccia and diabase,Xiaohaizi ultramafic rocks and diabase,syenite, syenite porphyry are belonging to alkali series,while Keping basalt and diabase are at the boundary between alkali and sub-alkali series.Based on the apparent difference ofεNd and Ta/Hf value,two types of magma source were brought in to explain their petrogenesis:one is Keping basalts(εNd<0) derived from lithospheric mantle;another is intrusive rocks and Tabei basalts(εNd>0) related to depleted mantle.
     4.Magma evolution of Tarim LIP mainly happened in the way of crystal fractionation,including the fractionation of olivine,clinopyroxene and plagioclase. There are seldom captures found in Tarim igneous rocks,which means no significant crust contamination happened to Early Permian Tarim igneous rocks.Early Permian Tarim igneous rocks are mainly from two magma sources,ultramafic rocks and pyroxenite were respectively from~16%and~5%melting of garnet lherzolite; Keping basalts were probably from 5%melting of spinel-garnet lherzolite.All of the other igneous rocks are from these two magma sources.
     5.Early Permian Tarim large igneous province was caused by the action of mantle plume.A lot of evidences show that there was a plume under Tarim block during early Permian.Uprising of the plume resulted in uplift of the crust.Such huge quantities of flood basalts were erupted during such a short period(1~2Ma).A lot of dyke swarms occurred in Tarim basin.At the final stage of plume-caused magmatism, felsic magma was evolved in and intruded into the crust,ultra high MgO content magmatic rocks are related to hot mantle plume.Trace elements ratios(e.g.Ta/Hf>0.3) and isotopic data also support the existence of mantle plume.
     6.According to the characteristics of Early Permian igneous rocks in Tarim basin,we put forward a petrogenic model for the Tarim large igneous province.At the early stage,hot plume caused the low-level partial melting of lithosphere mantle;later, sudden uplift of plume lead to melting of itself due to its adiabatic pressure release. This is different from Bahana model and Deccan model,either by partial melting of lithosphere or mantle plume.
     7.The general evolution process of Tarim LIP should be like this:First,the uprising mantle plume met with the lithosphere mantle,causing the low degree partial melting of lithosphere mantle,forming the magma for Keping basalts.After eruption of basaltic magma,mantle plume got more room to move up,leading to pressure release and followed by plume melting.The magma can feed ultrarnafic intrusions and explosive breccia.Also,the evolved magma can be the parental magma for Tabei basalts and diobases,and even syenite porphyry and syenite.Pyroxenite can be the accumulates from the fractional crystallization of the primitive magma.
引文
陈汉林,杨树锋,董传万,竺国强,贾承造,魏国齐,汪振国.1997a.塔里木盆地地质热事件研究.科学通报,42(10):1097-1099.
    陈汉林,杨树锋,董传万,贾承造,魏国齐.汪振国.1997b.塔里木盆地二叠纪基性岩带的确定及大地构造意义.地球化学,26(6):77-87.
    陈汉林,杨树锋,贾承造,董传万,魏国齐.1998.塔里木盆地北部二叠纪中酸性火成岩带的厘定及其对塔北构造演化的新认识,矿物学报,18(6):370-376.
    陈汉林,杨树锋,王清华,罗俊成,贾承造,魏国齐,厉子龙,何光玉,胡安平.2006.塔里木板块早—中二叠世玄武质岩浆作用的沉积响应,中国地质,33(3):545-552.
    陈骏,王鹤年,2004.地球化学.北京:科学出版社.418.
    陈文,刘新宇,张思红.2002.连续激光阶段升温~(40)Ar/~(39)Ar地质年代测定方法研究。地质论评,48(增刊),127-134.
    陈业全,2004,塔里木盆地中部二叠系火山岩地层的划分与对比.石油大学学报(自然科学版),28:6-10.
    邓晋福.1984.原生玄武岩岩浆的起源及其识别标志.地质研究-岩石专辑,北京:武汉地质学院比较研究生部资料情报室,2:18-27.
    邓振球,王欣观,谢德顺.1992.新疆地球物理场特征.新疆地质,10(3):233-243.
    方大钧,沈中悦,谈晓东,陈汉林,2006.塔里木盆地显生宙古地磁与板块运动学,浙江大学出版社,364.
    高长林,叶德燎,张玉箴等.塔里木中新生代盆地扩张和盆地俯冲与地幔柱.石油实验地质.2003.25(6):661-669.
    高山,金振民.1997.拆沉作用(delamination)及其壳幔动力学意义.地质科技情报,16(1):1-9.
    顾家裕.1996.塔里木盆地沉积层序特征及其演化.北京:石油工业出版社,1-361
    何斌,徐义刚,肖龙,王雅玫,王康明,沙绍礼.2006.峨眉山地幔柱上升的沉积响应及其地质意义.地质论评.52(01):30-37.
    何登发,李德生.1996.塔里木盆地构造演化与油气聚集.北京:地质出版社,1-171.
    洪大卫,王式洗,韩宝福等.1995.碱性花岗岩的构造分类及其鉴别标志.中国科学(B辑),25(4):418-426.
    胡瑞忠,陶琰,钟宏,等.2005.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘, 12:42-34.
    贾承造,姚慧君,高杰等.1992a.塔里木盆地地层系统.童晓光,梁狄刚,主编.塔里木盆地油气勘探论文集.乌鲁木齐:新疆科技卫生出版社,34-64
    贾承造,姚彗君,魏国齐等.1992b.塔里木盆地板块构造演化和主要构造单元地质构造特征.见:童晓光,梁狄刚,主编.塔里木盆地油气勘探论文集.乌鲁木齐:新疆科技卫生出版社,207-225.
    贾承造.1992c.塔里木板块构造演化.李清波,戴金星,刘如琦,等.现代地质学研究文集(上).南京:南京大学出版社,22-31.
    贾承造,姚慧君,魏国齐等.1995.盆地构造演化与区域构造地质.北京:石油工业出版社,1-30
    贾承造,1997.中国塔里木盆地构造特征与油气.北京,石油工业出版社.1-438.
    贾承造,张师本,吴绍祖等.2004.塔里木盆地及周边地层.北京:科学出版社,1-600
    贾承造、王良书、魏国齐、陈汉林、杨树锋、贾东、郭召杰、肖安成.2004.塔里木盆地板块构造与大陆动力学.北京:石油工业出版社.
    贾承造.2004塔里木盆地板块构造与大陆动力学(卷一).北京:石油工业出版社,1-202
    贾润胥.1991.中国塔里木盆地北部油气地质研究(第一辑).武汉:中国地质大学出版社,1-336
    姜常义,穆艳梅.1999.南天山花岗岩类的年代学,岩石学,地球化学及其构造环境.岩石学报,15:298-308.
    姜常义等,2004a.柯坪玄武岩的岩石学、地球化学、Nd、Sr、Pb同位素组成与岩石成因.地质论评,50(5):492-500.
    姜常义,贾承造,李良辰等.2004b.新疆麻扎尔塔格地区铁富集型高镁岩浆的源区.地质学报,78(6):770-780.
    姜常义,张蓬勃,卢登荣,白开寅.2004c.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区.岩石学报,20(6):1433-1444.
    姜常义等,2005.新疆库鲁克塔格地区二叠纪脉岩群岩石地球化学特征,Nd、Sr、Pb同位素组成与岩石成因.地质学报,79(6):823-833.
    金振民,高山.1996.底侵作用(underplating)及其壳幔演化动力学意义.地质科技情报,15(2):1-12.
    李昌年.1992a.构造岩浆判别的地球化学方法及其讨论.地质科技情报.11(3):73-39.
    李昌年.1992b.火成岩微量元素岩石学.武汉:中国地质大学出版社.
    李昌年,路凤香,陈美华.2001.巴楚瓦吉里塔格火成杂岩体岩石学研究.新疆地 质,19(1):38-42.
    李永安,李强,张慧,孙东江,曹运动,吴绍祖.1995.塔里木及其周边古地磁研究与盆地形成演化,新疆地质,13(4):293-376.
    李勇,苏文,孔屏,钱一雄,张克银,张明利,陈跃,蔡习尧,尤东华.2007.塔里木盆地塔中-巴楚地区早二叠世岩浆岩的LA-ICP-MS锆石U-Pb年龄.岩石学报,23(5)1097-1107.
    厉子龙,杨树锋,陈汉林,等,2008.塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约.岩石学报,24(5):959-970.
    刘玉琳,张志诚,1999,库鲁克塔格基性岩墙群K-Ar等时年龄测定及其有关问题讨论.高校地质学报,5:54-58.
    卢记仁,张光弟,张承信,等.1988.攀西层状岩体及钒钛磁铁矿床成因模式.矿床地质,7(2):3-11.
    路远发.2004.GeoKit:一个用VBA构建的地球化学工具软件包.地球化学,33(2):459-464.
    罗静兰,翟晓先,蒲仁海,何发歧,赵会涛,俞任连,周家驹.2006.塔河油田火山岩的层位归属、火山岩岩石学与岩相学特征.地质科学,41:378-391.
    骆耀南.1981.攀枝花地区辛阶含钛铬铁矿的层状超镁铁-镁铁岩岩体的矿化特征.地球化学,10:66-74.
    毛景文,李红艳,王登红,等.1998.华南地区中生代多金属矿床形成与地幔柱关系.矿物岩石地球化学通报,17(2):130-132.
    邱家骧,林景仟.1991.岩石化学.北京:地质出版社,120-136.
    宋彪,张玉海,万渝生.2002a.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    宋彪,张玉海,刘敦一.2002b.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学.质谱学报,23(1):58-62.
    孙伯年,等.1991.塔里木盆地北缘二叠纪植物地理区系探讨,中国塔里木盆地北部油气地质研究(第一辑).武汉:中国地质大学出版社.
    孙林,李秋玲.1997.火成岩伴生圈闭地震资料处理解释技术研究.塔里木油田.
    孙林华,王岳军,范蔚茗,彭头平.2007.新疆巴楚辉绿岩岩脉的岩石成因和大地构造意义,23(6):1369-1380.
    汤良杰.1996.塔里木盆地演化和构造样式.北京:地质出版社,1-136.
    陶琰,高振敏,罗泰义,祁敬东,禾英军,杨廷祥.2002.云南金宝山超镁铁岩原始岩浆成分反演.岩石学报,18(1):70-82.
    滕吉文,主编.塔里木地球物理场与油气:塔里木油气地质(2).北京:科学出版社, 1991.1-121.
    田在艺,柴桂林,林梁.1990.塔里木盆地的形成与演化.新疆石油地质11(4):259-275.
    童晓光.塔里木盆地的地质结构和油气聚集.见:童晓光,梁狄刚,主编.塔里木盆地油气勘探论文集.乌鲁木齐:新疆科技卫生出版社,1992.17-22.
    汪云亮,张成江,修淑芝.2003.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报,17(3):413-433.
    王炳章,徐雷鸣,王世星.2006.塔中围斜区碎屑岩储层火成岩侵入体预测.石油物探,45:602-606.
    王德滋,周金城.2005.大火成岩省研究新进展.高校地质学报,22(1):1-8.
    王登红.2001.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨.地学前缘,8(3):67-72.
    王汝成,翟建平,陈培荣,凌洪飞.1999.地球科学现代测试技术.南京:南京大学出版社,159-165.
    王廷印,等.1991.塔里木盆地成盆期及裂谷作用初探.中国塔里木盆地北部油气地质研究(第二辑).北京:中国地质大学出版社.
    王毅,张一伟.1999.塔里木盆地构造-层序分析.地质论评,45(5):504-513
    王正文,李国雄,张师本,等.塔里木盆地柯坪地区晚震旦世-早二叠世地层、沉积相及含油性研究报告.新疆石油管理局南疆石油勘探公司塔里木地区二队.1988.
    魏春生.2000.A型花岗岩成因模式及其地球动力学意义.地学前缘,7(1):238.
    肖龙,徐义刚,何斌,2003.峨眉地幔柱-岩石圈的相互作用:来自低钛和高钛玄武岩的Sr-Nd和O同位素证据.高校地质学报,9(2):207-217.
    肖龙,Pirajno F.何琦.2007.试论大火成岩省与成矿作用.高校地质学报.13(02):148-160.
    新疆地质矿产局地质矿产研究所等.1991.新疆古生界.乌鲁木齐:新疆人民出版社.383-415.
    新疆石油管理局南疆石油勘探公司,江汉石油管理局勘探开发研究院.塔里木盆地震旦纪至二叠纪地层古生物(Ⅱ)柯坪-巴楚地区分册.石油工业出版社.1991.
    徐学义,何世平,马中平,杨建国.2002.新疆柯坪库木如吾祖克地区二叠纪火山岩.西北地质.3:35-41.
    徐义刚,钟孙霖.2001,峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学,30(1):1-9.
    徐义刚,2002,地幔柱构造、大火成岩省及其地质效应.地学前缘,9(04):341-353.
    徐义刚,何斌,黄小龙,罗震宇,朱丹,马金龙,邵辉.2007,地幔柱大辩论及如何验证地幔柱假说.地学前缘,14(02):1-9.
    杨华.1983.塔里木盆地地磁场构造及含油远景.北京:科学出版社.
    杨树锋,陈汉林,董传万等.1994塔里木盆地古生代火山作用与地质热事件研究.
    杨树锋,陈汉林,董传万等.1996a.塔里木盆地二叠纪正长岩的发现及其构造意义.地球化学.25(2):121-128.
    杨树锋,陈汉林,董传万,贾承造,魏国齐.1996b.塔里木盆地晚古生代火山岩的分布与油气演化的关系.见:童晓光,梁狄刚,贾承造主编,塔里木盆地石油地质研究新进展.北京:科学出版社,150-158.
    杨树锋,陈汉林,董传万,等.1997.塔里木盆地地质热事件研究.科学通报,42(10):1096-1099.
    杨树锋.陈汉林,冀登武,厉子龙,董传万.2005.塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义.高校地质学报,11(04):504-511.
    杨树锋,厉子龙,陈汉林,肖文交,余星,林秀斌,施锡桂.2006.塔里木二叠纪石英正长斑岩岩墙的发现及其构造意义.岩石学报,22(5):1405-1412.
    杨树锋,余星,陈汉林,厉子龙,王清华,罗俊成.2007.塔里木盆地巴楚小海子二叠纪超基性脉岩的地球化学特征及其成因探讨.岩石学报,23(5):1087-1096.
    雍天寿,刘万祥.1992.塔里木古生代地层.见:童晓光,梁狄刚,主编.塔里木盆地油气勘探论文集.乌鲁木齐:新疆科技卫生出版社,25-33.
    张光亚.2000.塔里木古生代克拉通盆地形成演化与油气.北京:地质出版社,1-115
    张贵山,温汉捷,裘愉卓.2004.闽西晚中生代基性岩脉的地球化学研究.地球化学,33(3):243-253.
    张红斌,牛淑琴,邓小力.塔中西部火成岩特征及其地震假构造校正.海相油气地质.1999,4(3):55-60.
    张洪安,李曰俊,吴根耀,苏文,钱一雄,孟庆龙,蔡习尧,韩利军,赵岩,刘亚雷.2009.塔里木盆地二叠纪火成岩的同位素年代学.地质科学,(1):137-158.
    张师本等.2003.塔里木盆地周缘地层考察指南.北京:石油工业出版社.
    张守安,李德茂.1998.塔里木盆地构造-地层组合特征.新疆石油地质,19(4):299-302
    张耀荣.1980.塔里木盆地重力解释成果报告,石油部塔里木重力解释会战小组.
    张耀荣.1984.塔里木盆地背景磁场特征与古基底结构及其油气远景的探讨.新疆 石油地质,2(4):12-18.
    张招崇,王福生.2002.峨眉山玄武岩区两类玄武岩的地球化学:地幔柱-岩石圈相互作用的证据.地质学报.(02).229-237.
    张志诚,刘树文,1998.新疆库鲁克塔格斜长角闪岩岩石地球化学特征及其地质意义.岩石矿物学杂志,17:128-135.
    赵霞.2000.塔里木盆地塔中45井及柯坪西克尔萤石成因的讨论.西北地质.33(3):33-36.
    赵治信,雍天寿,贾承造,1997.等.塔里木盆地地层.北京:石油工业出版社,1-203.
    钟广法,邓常念,周志松.1997.塔中地区火成岩的地震相及圈闭特征.江汉石油学院学报.19(3):34-37.
    周志毅,陈丕基.1990.塔里木生物地层和地质演化.北京:科学出版社,1-366
    周志毅,赵治信,胡兆询,等.2001.塔里木盆地各纪地层.北京:科学出版社,1-359.
    朱毅秀,金之钧,林畅松,吕修祥,解启来.2005.塔里木盆地塔中地区早二叠世岩浆岩及油气成藏关系.石油实验地质,27:50-54.
    Anderson D L.2004.地球动力学中的简单尺度关系:压力在地幔对流和地幔柱形成中的作用.科学通报,49(20):2025-2028.
    Aldanmaz E,Pearce JA,Thirlwall MF,Mitchell JG,2000.Petrogenetic evolution of late Cenozoic,post-collision volcanism in western Anatolia,Turkey.J.Volcanol.Geotherm.Res.102:67-95.
    Ali J.R.,Thompson G.M.,Zhou M.F.and Song X.2005.Emeishan large igneous province,SW China.Lithos,79:475-489.
    Black,LP,Kamo SL,Allen CM,Aleinikoff JN,D.W.Davis,R.J.Korsch,and C.Foudoulis,2003,TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology,200:155-170.
    Campbell IH.2005.Large Igneous Provinces and the Mantle Plume Hypothesis.Elements,1:265-269.
    Chen W,Zhang Y,JI Qg,Wang SS,Zhang JX.2002.The magmatism and deformation times of the Xidatan rock series,East Kunlun Mountain.Science in China,Series B,45(Supplement):20-27.
    Chen ZQ,Shi GR 2003.Late Paleozoic depositional history of the Tarim basin,northwest China:An integration of biostratigraphic and lithostratigraphic constraints.American Association of Petroleum Geologists,Bulletin 87,1323-1354.
    Coffin MF, and Eldholm O. 1994. Large igneous provinces: crustal structure, dimensions, and external consequences, Reviews of Geophysics, 32, 1-36.
    Compston, W., Williams, I.S., Kirschvind, J.L., Zichao, Z. and Guogan, M.A., 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London, 149(2): 171-184.
    Condie, KC. 2001.Mantle Plumes and Their Record in Earth History. Cambridge: Cambridge University Press.306 pp.
    Davies G.F.. 2005.A case for mantle plumes. Chinese Science Bulletin. 50(15):1541-1554.
    Deng JF. 1984. Origin of primitive basaltic magma and its indicators. Geology Research. (2): 18-27.
    Depaolo DJ, 1988. Neodymium Isotope Geochemistry: An Introduction. Springer Verlag, NewYork.
    Foulger GR, M.J. Pritchard, B.R. Julian, J.R. Evans, R.M. Allen, G. Nolet, W.J. ,2000The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper, Geophys. J. Int., 142, F1-F5.
    Frey FA. 1978. Intergrated models of basaltic petrogenesis: A study of quartz tholeiite to olivine melilite from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19: 463-513.
    Frey, F.A., Garcia, M.O., Wise, W.S., Kennedy, A., et al., 1993. The evolution of Mauna Kea volcano, Hawaii: petrogenesis of tholeiitic and alkali basalts. J. Geophys. Res. 96,14347-14375.
    Green DH. 1975. Genesis of archean peridotic magmas and constraints on archean geothermal gradients and tectonics. Geology, 3: 15-18.
    Griffiths RW, Campbell IH. 1990 .Stirring and st ructure in mantle starting plumes. Earth Planet Sci Lett, 99 : 66-78.
    He B, Xu YG, Huang XL, Luo ZY, Shi YR, Yang QJ and Yu SY. 2007. Age andduration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters, 255 : 306-323.
    Hofmann AW, Jochum KP, Seufert M, et al.. 1986. Nd and Pb in oceanic basalts: New constraints on mantle evolution . Earth Planet Sci Lett, 79: 33-45.
    Hofmann AW. 1988. Chem ical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science L etters, 90:297-314.
    Jiang C.Y., Li Y.Z. Zhang P.B. Ye, S.F., 2006. Petrogenesis of Permian Basalts on the Western Margin of the Tarim Basin, China. Russian Geology and Geophysics. 47(2):232-241.
    Le Maitre RW.1976.The chemical variability of some common igneous rocks.J Petrol,17(4):589-637.
    Li Y, Su W, Kong P, Qian YX et al.. 2007. Zircon U-Pb ages of the Early Permian magmatic rocks in the Tazhong-Bachu region, Tarim basin by LA-ICP-MS. Acta Petrologica Sinica. 23(05) .1097-1107.
    Li ZL,Yang SF, Chen HL et al., 2008. Chronology and geochemistry of Taxinan basalts from the Tarim basin: evidence for Permian plume magmatism. Acta Petrologica Sinica. 24(5): 959-970.
    Liu JK. 1991. Petrological features and age of basalts from north part of Tarim Basin. In: Oil and gas geology research in north part of Tarim Basin (part II). Wuhan: China University of Geology Press. 194-201.
    Mckenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Geology, 29:625-679.
    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol, 56: 207-218.
    Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite frequency tomography reveals a variety of plumes in the mantle. Science 303:338-343.
    Moores, EM, Fairbridge, R.W., 1997. Encyclopedia of European and Asian Regional Geology. Chapman & Hall. Springer, 804 .
    Morgan, WJ. 1972. Deep mantle convection plume and plate motions: American Association of Petroleum Geology Bulletin, 56: 203-312.
    Nasdala L, W. Hofrneister, N. Norberg, J. M. Martinson, F. Corfu, S. L. Kamo, A. K. Kennedy, A. Kronz, P. W. Reiners, D. Frei, J. Kosler, Y. Wan, G, J. tze, H, T. ger, Kr, A. ner, and J. W. Valley, 2008, Zircon M257 - a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon, 32: 247-265.
    Neal CR and Taylor LA, 1989. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism?. 53(5): 1035-1040.
    Ormerod DS, Hawkesworth CJ, Rogers NW, et al.. 1988. Tectonic and magmatic transitions in the Western Great Basin, USA. Nature, 333(6171-6172): 349-353
    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983
    Pitcher WS. 1983. Granite type and tectonic environment. In: Hsu K ed. Mountain Building Processes. London: Academic Press, 19-40.
    Rogers N , 2000 McDonald R., Fitton J.G., George R., Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts, Earth Planet. Sci. Lett. 176, pp. 387-400
    Saunders AD., Englanda RW., Reichowa MK. and White RV. 2005.a mantle plume origin for the Siberian Traps: Uplift and extension in the West Siberian Basin, Russia: Lithos, v. 79, p. 407-424.
    Sheth H.C., 1999. Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, and fallacy, Tectonophysics, 311: 1-29.
    Steiger, RH. and Jager, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36:359-362.
    Stein, M and Hofmann, AW, 1994. Mantle plumes and episodic crustal growth, Nature, 372, 63-68.
    Sun, SS, McDonough, WE, 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Spec. Publ., 42, Geol. Soc, London, 313-345.
    Taylor SR, Mclennan SM. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33(2): 241-265
    Taylor SR., Mclennan SM. 1985. The continental crust: its composition and evolution. Blackwell,Oxford. 312.
    Turner S, Hawkesworth CJ, Gallagher K, et al. 1996. Mantle plumes, flood basalts, and thermal models for melt gen-eration beneath continents: assessment of a conductive heating model and application to the Parana. J Geophys Res, 101: 11503-11518.
    Wang CY., Zhou MF, Qi L., 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chemical Geogloy, 243 : 317-343.
    
    White WM. 2001. Geochemistry. John Hopkins University Press. 701
    Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth Science Reviews, 53 : 1-33.
    
    Wilson J T. 1963, A possible origin of the Hawaiian islands .Can J Phys, 41 : 863-870.
    Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London, 245-285 pp.
    Winchester JA, Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol, 20:325-343.
    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustalcontamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett, 50: 11-30.
    Woodhead J D, McCulloch M T. 1989.Ancient seafloor signals in Pitcairn Island lavas and evidence for large amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Lett, 94(3): 257-273.
    Xiao L, Xu YG, Mei HJ, Zheng Y, He B, Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228 : 525-546.
    Xu YG, Chung SL, Jahn BM,et al. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos,58:145-168.
    Yang SF, Li ZL, Chen HL, Dong CW, Yu X. 2006. Permian large volume basalts in Tarim basin. June 2006 LIP of the Month, in LIP record. Http://www.largeingeousprovinces.org/06june.html.
    Yang SF, Jia CZ, Chen HL, Wei GQ, Cheng XG, Jia D, Xiao AC and Guo SJ. 2002. Tectonic Evolution of Tethyan Tectonic Field, Formation of Northern Margin Basin and Explorative Perspective of Natural Gas in Tarim Basin. Chinese Science Bulletin, 47(Sup.): 34-41.
    Yang SF, Li ZL, Chen HL, Chen W, Yu X. 2006. ~(40)Ar-~(39)Ar dating of basalts from Tarim Basin, NW China and its implication to a Permian thermal tectonic event. Journal of Zhejiang University SCIENCE A. 7(suppl. II): 320-324.
    Yang, S.F., Li, Z.L., Chen H.L. et al., 2007. Permian bimodal dyke of Tarim Basin, NW China: Geochemical characteristics and tectonic implications., Gondwana Research. 12(1-2): 113-120.
    
    Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14: 493-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700