用户名: 密码: 验证码:
模拟生物运动的流固耦合数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物运动中的流固祸合广泛存在于自然界中,其数值模拟方法和相关的物理机理对于人们认识生物运动规律具有重要的作用。此外,此类研究有助于仿生技术的发展,为国民经济建设和国防事业提供技术储备。本文发展了一种新型的罚内置边界-格子玻尔兹曼方法,并围绕柔性丝线/柔性板和流体的相互作用进行了若干研究。主要工作和研究成果如下
     (1)发展了适合于具有质量的弹性丝线与周围粘性流体相互作用的罚内置边界玻尔兹曼方法。在这种方法中,丝线上的速度边界条件是通过将其对流体的应力分布到周围流体点上来实现的。为了计算丝线的惯性效应,假定物理丝线仪含有弹性特性,并与流体直接作用;引入只有惯性特性的虚拟(ghost)丝线,它携带丝线的所有质量,但不与流体直接相互作用。物理丝线和虚拟丝线之间通过虚拟弹簧相连,使得物理丝线和虚拟丝线的综合行为与具有惯性特性和弹性特性的丝线相当。这样处理能增加数值稳定性,突破了格子玻尔兹曼方法难以模拟具有质量的弹性丝线与周围流体相互作用的局限性。
     (2)研究了弹性丝线和下游刚体的相互干扰。通过改变Reynolds数和丝线与刚体的间距,发现了五种耦合模态,分别为静止状态、涡脱落模态、摆动抑制模态、摆动解耦模态和摆动增益模态。进一步分析发现丝线摆动加剧是由于两物体上脱落涡的同步与合并引起的,尽管在动增益模态中丝线摆动振幅很大,但丝线仍然获得良好的减阻效果,这是圆柱阻塞效应导致丝线有效来流速度的减小和丝线背风面压力的提升引起的。丝线长度和质量比对丝线和刚体相互作用的定性结果影响不大,此外,处于尾迹区的刚体总是获得减阻。
     (3)研究了三根并行排列丝线的耦合摆动问题。通过系统地改变丝线间的侧向距离,发现了七种不同的丝线耦合摆动模态,包括单丝模态、对称模态、反相摆动模态、半频摆动模态、无理频率摆动模态、同相摆动模态和不规则摆动模态。通过对流场结构演化的分析,在丝线尾迹中发现了四种典型涡结构,包括合并涡结构、对称涡结构、不规则涡结构和独立涡街结构。通过对比分析发现,涡结构与丝线耦合模态和动力学特征密切相关。此外.在不同的模态中丝线的机械能不同,低机械能的模态更容易被激发。(4)研究了均匀来流中三维柔性板摆动的流固耦合问题。在数值模拟中观察到无质量柔性板的整体稳定性现象,即无论其他参数或者扰动有多大,柔性板总会恢复到静止伸展状态。在一定的参数范围内,系统存在双稳定性现象,即在不同的初始扰动之下,柔性板可能恢复到静止伸长状态(扰动较小时),也可能会失稳进入持续摆动状态(扰动较大时)。将Squire定理加以推广来解释三维柔性板的稳定性和二维丝线情况的区别和联系。此外,通过对柔性板流体小扰动系统能量特性和柔性板周围压力场分布情况的分析,发现系统在正能量波与负能量波的交汇处失稳,要维持持续摆动状态,柔性板必须和周围流体交换能量。
Flow-structure interaction problems inspired from bio-locomotion are ubiquitous in nature. The relevant numerical methods and the basic mechanism of flow-structure interaction are important for understanding the biobehavior. In addition, this issue has the potential to revolutionize our sensing and information gathering capabilities in arcas such as environmental monitoring and homeland security. In this thesis, a new version of penalty immersed boundary method (IBM) based on multi-block lattice Boltzmann method (LBM) is developed, and several topics on interaction be-tween flexible filament(s)/plate and the ambient viscous fluid are studicd. The main conclusions are given as follows:
     (1) A modified penalty IBM based on a multi-block LBM is developed to solve the flow-structure interaction problems involving the massive filaments. The effect of the filament is handled by the IBM in which the stress exerted by the filament on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the filament is incorporated by connecting this filament through virtual springs to a ghost filament with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problem.
     (2) A filament flapping in the bow wake of a rigid body is considered numerically in order to study the hydrodynamic interaction between flexible and rigid bodies in tandem arrangement. It is shown that the results largely depend on the gap between the two bodies and the Reynolds number. The flexible filament may have larger vibration amplitude but meanwhile experience a reduced drag force. On the other hand, the trailing rigid body enjoys a drag reduction. The qualitative behavior of the filament is independent of the filament's length and mass ratio, and the shape of the rigid body for the parameter regime considered. The result is in contrast with the interaction between two rigid or two flexible objects in tandem arrangement.
     (3) A viscous flow past three filaments in side-by-side arrangement at low Reynolds number is studied by numerical simulations and is accolnpanied by a linear sta-bility analysis for inviscid flow. The dynamic characteristics of the filaments are studied while varying the separation distance between the filaments, Reynolds number, and bending rigidity. Seven distinct coupling modes of the filaments including the single-filament mode, symmetrical mode, out-el-phase mode, half-frequency mode, irrational-frequency mode, in-phase synchronized mode, and an erratic flapping state are identified as the separation distance is varied. Four typical vortex structures are observed in the wake of the filaments and are de-scribed as the coalesced vortices, symmetrical vortices, erratic vortices and inde-pendent vortex streets. The vortex structures are highly related to the coupling modes and dynamic characteristics of the filaments. As the Reynolds number is increased or as the bending rigidity is reduced, the filaments gain more energy and may transition from one coupling mode to another.
     (4) A three dimensional flexible plate in a uniform flow is numerically and analyt-ically studied. The globally stable motion is observed for the massless plate. The sustained flapping of the plate only occurs when plate mass is involved. Within a certain range of parameters, the system is bistable, which means that the plate can settle into either rest state or sustained flapping depending on the initial conditions. The Squire's theorem is developed to explain the stability and the transformation is obtained using the incoming flow velocity or flutter speed and wave numbers as the transform variables. The analysis of the energy prop-erties in the plate-fluid system and the pressure distribution around the plate reveals that the onset of instability occurs when positive and negative energy waves coalesce and the energy exchange between the plate and the ambient fluid is necessary for the plate to perform sustained flapping.
引文
ABRAHAMS, I. D. 1988 Acoustic scattering by a finite nonlinear elastic plate Ⅱ. Coupled primary and secondary resonances. Proc. R. Soc. Loud. A 418, 247-260.
    AIDUN, C. K. & CLAUSEN, J. R. 2010 Lattice-Boltzmann method for complex flows Annu. Rev. Fluid Mech. 42, 439-472.
    AKHTAR, I., MITTAL, R. & AN E. DRUCKER, G. V. L. 2007 Hydrodynamic of biologically inspired tandem flapping foil configuration. Theor. Comput. Fluid Dyn. 21, 155-170.
    ALBEN, S. 2008a The flapping-flag instability as a nonlinear eigenvalue problem. Phys. Fluids 20, 104106.
    ALBEN, S. 2008b Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355-380.
    ALBEN, S. 2009a Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228, 2587-2603.
    ALBEN, S. 2009b Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641,489-496.
    ALBEN, S. & SHELLEY, M. 2005 Coherent locomotion as an attracting state for a free flapping body. Proc. Natl. Acad. Sci. USA 102, 11163-11166.
    ALBEN, S. & SHELLEY, M. 2008 Flapping states of a flag in an inviscid fluid: bista-bility and the transition to chaos. Phus. Rev. Lett. 100, 074301.
    ALEXANDER., R. M. 1993 Principles of Animal Locomotion. New Jersey: Princeton University Press.
    ALEXANDER, R. M. 1995 Springs for wings. Science 268, 50-51.
    ALEXEEV, A., VERBERG, R. & BALAZS, A. C. 2005 Modeling the motion of mi-crocapsules on compliant polymeric surfaces. Macromolecules 38, 10244-10260.
    ALLEN, J. J. & SMITS, A. J. 2001 Energy harvesting ell. J. Fluids Struct. 15, 629-640.
    ANDERSON, J. D., ed. 2002 The Airplane, a History of Its Technolog. Virginia: AIAA.
    AONO, H., LIANG, F. & LIU, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Exp. Biol. 211,239-257.
    AONO, H., SHYY, W. & LIU, H. 2009 Near wake vortex dynamics of a hovering hawkmoth. Acta. Mech. Sin. 25, 23-36.
    ARGENTINA, M. & MAHADEVAN, L. 2005 Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. U.S.A. 102, 1829-1834.
    AZUMA, A. 1988 Flight performance of a dragonfly. J. Exp. Biol. 137, 221-252.
    AZUMA, A. 2006 The Biokinetics of Flying and Swimming, 2nd edn. Virginia: AIAA.
    BALINTA, T. S. & LUCEY, A. 2005 Instability of a cantilevered flexible plate in viscous channel flow. J. Fluids Struct. 20, 893-912.
    BAO, C. Y., TANG, C., YIN, X. Z. & LU, X. Y. 2010 Flutter of finite-span flexible plates in uniform flow. Chin. Phys. Lett. 27, 064601.
    BATCHELOR, G. K. & LIFSHITZ, E. M. 1967 An Introduction to Fluid Dynamics Cambridge: Cambridge University Press.
    BATOZ, J. L. 1982 An explicit formulation for an efficient triangular plate-bending element. Int. J. Num. Meth. Eng. 18. 1077-1089.
    BATOZ, J. L., BATHE, K. J. & HO, L. W. 1980 A study of three-node triangular plate bending elements. Int. J. Num. Meth. Eng. 15, 1771-1812.
    BEAL, D. N., HOVER, F. S., TRIANTAFYLLOU, M. S., LIAO, J. C. & LAUDER, G. V. 2006 Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385-402.
    VAN DEN BERG, C. & ELLINGTON, C. P. 1997a The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth. Phil. Trans. R. Soc. Lond. B 352,329-340.
    VAN DEN BERG, C. & ELLINGTON, C. P. 1997b The vortex wake of a 'hovering' model hawkmoth. Phil. Trans. R. Soc. Lend. B 352, 317-328.
    BERGAN, P. G. & FELIPPA, C. A. 1995 A triangular membrane element with rota-tional degrees of freedom. Comput. Meth. Appl. Mech. Eng. 50, 25-69.
    BERGOU, A. J., RISTROPH, L., GUCKENHEIMER, J., COHEN, I. & WANG, Z. J. 2010 Fruit flies modulate passivewing pitching to generate in-flight turns. Phys. Rev. Lett. 104, 148101.
    BERKOOZ, G., HOLMES, P. & LUMLEY. J. L. 1993 The proper orthogonal decom-position in the analysis of turbulent flow. Annu. Rev. Fluid Mech. 25, 539-575.
    BIRCH, J. M. & DICKINSON, M. H. 2002 Spanwise flow and the attachment of the leading-edge vortex on insect wings, Nature 412, 729-733.
    BIRCH, J. M. & DICKINSON, M. H. 2003 The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257-2272.
    BLAKE, R. W., ed. 1983 Fish Locomotion. Cambridge: Cambridge University Press.
    BLONDEAUX, P., FORNARELLI, F. & GUGLIELMINI, L. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601.
    BORAZJANI, I. & SOTIROPOULOS, F. 2008 Numerical investigation of the hydrody-namics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211, 1541-1558.
    BORAZJANI, I. & SOTIROPOULOS, F. 2009 Numerical investigation of the hydrody-namics of anguilliform swimming in the transitiorial and inertial flow regimes. J. Exp. Biol. 212, 576-592.
    BORAZJANI, I. & SOTIROPOULOS, F. 2010 On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Exp. Biol. 213, 89-107.
    BOSE, N. & LIEN, J. 1990 Energy absorption from ocean waves: a free ride for cetaceans. Proc. R. Soc. Lond. B 240, 591-605.
    BREDER, C. M. 1967 On the survival value of fish schools. Zoologica 52, 25-40.
    BURTON, M., ed. 1980 The New Larousse Encyclopedia of Animal Life. London: Hamlyn.
    CAIRNS, R. A. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech. 92, 1-14.
    CANDELIER, F., BOYER, F. & LEROYER, A. 201.1 Three-dimensional extension of Lighthill's large-amplitude elongated-body theory of fish locomotion. J. Fluid Mech. 674, 196-226.
    CARLING, J., WILLIAMS, T. L. & BOWTELL. G. 1998 Self-propelled anguilliform swimming: simultaneous sohition of the two-dimensional Navier-Stokes equations and Newton's laws of motion. J. Exp. Biol. 201, 3143-3166.
    CARRUTHERS, A. C. & FILIPPONE, A. 2007 Drag and flutter characteristics of loop membranes. J. Aircraft, 44, 317-322.
    CHEN, D. J., LIN, K. H. & LIN, C. A. 2007 Immersed boundary method based lattice. Boltzmann method to simulate 2D and 3D complex geometry flows. Int. J. Modern Phys. C 18, 585-594.
    CHEN, S. & DOOLEN, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329-364.
    CHENG, J. Y., ZHUANG, L. X. & TONG, B. G. 1991 Analysis of swimming three-dimensional waving plates. J. Fluid Mech. 232, 341-355.
    CHENG, P., HU, J., ZHANG, G., HOU, L., XU, B. & WU, X. 2007 Deforma-tion measurements of dragonfly's wings in free flight by using Windowed Fourier Transform. Opt. Lasers Eng. 46, 157-161.
    CHENG, Y. & ZHANG, H.2010 Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow. Comput. Fluids 39,871-881.
    CHILDRESS, S.1981 Mechanics of Swimming and Flying. New York:Cambridge University Press.
    CONNELL, B. S. H. & YUE, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech.581,33-67.
    COPPI, B., ROSENBLUTH, M. N. & SUDAN, R. N.1969 Nonlinear interactions of positive and negative energy modes in rarefied plasmas (Ⅰ). Ann. Phys.55,207-247.
    COURSNT, R. & HILBERT, D.1953 Methods of Mathematical Physics,1st edn., Wiley Classics Library, vol.1. New York:Wiley Interscience.
    CRIGHTON, D. G. & OSWELL, J. E.1991 Fluid loading with mean flow. I. Response of an elastic plate to localized excitation. Phil. Trans. R. Soc. Lond.335,557-592.
    DEMONT, M. E. & GOSLINE, J. M.1988a Mechanics of jet propulsion in the hy-dromedusan jellyfish, Poly orchis Pexicillatus:Ⅰ. Mechanical properties of the loco-motor structure. J. Exp. Biol.134,313-332.
    DEMONT, M. E. & GOSLINE, J. M.1988b Mechanics of jet propulsion in the hy-dromedusan jellyfish, Poly orchis Pexicillatus:Ⅱ. Energetics of the jet cycle. J. Exp. Biol.134,333-345.
    DEMONT, M. E. & GOSLINE, J. M.1988c Mechanics of jet propulsion in the hy-dromedusan jellyfish, Poly orchis Pexicillatus:Ⅲ. A natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure. J. Exp. Biol.134,346-361.
    DICKINSON, M. H.1996 Unsteady mechanisms of force generation in aquatic and aerial locomotion. Am. Zool.36,537-554.
    DICKINSON, M. H. & GOTZ, K. G.1996 The wake dynamics and flight forces of the fluit fly Drosophila melanogaster. J. Exp. Biol.199,2085-2104.
    DICKINSON, M. H., LEHMANN, F. O. & SANE, S. P.1999 Wing rotation and the aerodynamic basis of insect flight. Science 284,1954-1960.
    DICKINSON, M. H. & LIGHTON, J. R. B.1995 Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268,87-90.
    DILLON, R. H., FAUCI, L. J., OMOTO, C. & YANG, X.2007 Fluid dynamic models of flagellar and ciliary beating. Ann. N. Y. Acad. Sci.1101,494-505.
    DOMENICI, P. & BLAKE, R. W.1991 The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei). J. Exp. Biol.156,187-205.
    DONG, G. J. & LU, X. Y.2007 Characteristics of flow over traveling-wavy foils in a side-by-side arrangement. Phys. Fluids 19,057107.
    DONG, H., BOZKURTTAS, M., MITTAL, R., MADDEN, P. & LAUDER, G. V.2010a Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech.645,345-373.
    DONG, H., KOEHLER, C., LIANG, Z., WAN, H. & GASTON, Z.2010b An integrated analysis of a dragonfly in free flight. AIAA Paper 2010-4390.
    DOYLE, J. F.1991 Static and dynamic analysis of structures. Dordrecht:Kluwer Academic Publishers.
    DOYLE, J. F.2001 Nonlinear analysis of thin-walled structures: statics, dynamics, and stability. New York:Springer-Verlag.
    DRUCKER, E. G. & LAUDER, G. V.1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image ve-locimctry. J. Exp. Biol.202,2393-2412.
    DRUCKER, E. G. & LAUDER, G. V.2001 Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J. Exp. Biol.204, 2943-2958.
    DRUCKER, E. G. & LAUDER, G. V.2005 Locomotor function of the dorsal fin in rainbow trout:kinematic patterns andhydrodynamic forces. J. Exp. Biol.208, 4479-4494.
    DU, G. & SUN, M. 2010 Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol.213,2273-2283.
    DUDLEY, R., ed.2000 The Biomechanics of Insect Flight. New Jersey:Princeton University Press.
    DUPUIS. A., CHATELAIN, P.& KOUMOUTSAKOS, P. 2008 An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J. Comput. Phys.227,4486-4498.
    EDWARDS, R. H.& CHENG, H. K.1981 The separation vortex in the Weis-Fogh circulation-generation mechanism. J. Fluid Mech.120,463-473.
    ELDREDGE, J. D. & PISANI, D.2008 Passive locomotion of a simple articulated fish-like system in the wake of an obstacle. J. Fluid Mech.607,279-288.
    ELDREDGE, J. D., TOOMEY, J. & MEDINA, A.2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech.659,94-115.
    ELLINGTON, C. P.19S4a The aerodynamics of hovering insect flight. Ⅱ. Morpholog-ical parameters. Phil. Trans. R. Soc. Lond. B 305,17-40.
    ELLINGTON, C. P. 1984b The aerodynamics of hovering insect flight. Ⅲ. Kinematics. Phil. Trans. R. Soc. Lond. B 305, 41-78.
    ELLINGTON, C. P., VAN DEN BERG, C.; WILLMOTT, A. & THOMAS, A. L. R. 1996 Leading-edge vortices ininseet flight. Nature 384, 626-630.
    ELOY, C., LAGRANGE, R., SOUILLIEZ, C. & SCHOUVEILER, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97-106.
    ELOY, C., SOUILLIEZ, C. & SCHOUVEILER, L. 2007 Flutter era rectangular plate. J. Fluids Struct. 23, 904-919.
    ENNOS, A. R. 1987 A comparative study of the flight mechanism of Diptera. J. Exp. Biol. 127, 355-372.
    ENNOS. A. R. 1988a The importance of torsion in the design of insect wings. J. Exp. Biol. 140, 137-160.
    ENNOS, A. R. 1988b The inertial cause of wing rotation in Diptera. J. Exp. Biol. 140, 161-169.
    ENNOS, A. R. 1989 Inertial and aerodynamic torques on the wings of Diptera in flight. J. Exp. Biol. 142, 87-95.
    EPPS, B. P. & TECHET, A. H. 2007 Impulse generated during unsteady maneuvering of swimming fish. Exp. Fluids 43, 691-700.
    EPUREANU, B. I., TANG, L. S. & PAIDOUSSIS, M. P. 2004 Coherent structures and their influence on the dynamics of aeroelastic panels. Int. J. Non-Linear Mech. 39, 977-991.
    FAIRTHORNE, R. A. 1930 Drag of flags. ARC Reports and Memoranda No. 1345. London.
    FARNELL, D. J. J., DAVID, T. & BARTON, D. C. 2004 Coupled states of flapping flags. J. Fluids Struct. 19, 29-36.
    FAVRET, E. A. & FUENTES, N. O., ed. 2009 Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications. Singapore: World Sci-entific.
    FEJER, A. A. 1960 Porpoises and the bow-riding of ships under way. Nature 188, 700-703.
    FENG, Z. G. & MICHAELIDES, E. E. 2004 The immersed boundary-lattice Boltz-mann method for solving fluid-particles interaction problems. J. Comput. Phys. 195, 602-628.
    FENG, Z. G. & MICHAELIDES, E. E. 2005 Proteus: a direct forcing method in the simulatious of particulate flows. J. Comput. Phys. 202, 20-51.
    FERZIGER, J. H. & PERIC, M. 1996 Computational Methods in Fluid Dynamics. New York: Springer-Verlag.
    FILIPPOVA, O. & HANEL, D. 1998 Grid refinement for lattice-BGK models. J. Com-put. Phys. 147, 219-228.
    FISH, F. E. & LAUDER, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193-224.
    FOREMAN, M. B. & EATON, R. C. 1993 The direction change concept for reticu-lospinal control of goldfish escape. J. Neurosci. 13, 4101-4113.
    FRITH, H. R. & BLAKE, R. W. 1995 Mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts. J. Exp. Biol. 198, 1863-1873.
    FRY, S. N., SAYAMAN, R. & DICKINSON, M. H. 2003 The aerodynamics of free-flight maneuvers in Drosophila. Science 200,495-498.
    GAO, T., TSENG, Y. H. & LU, X. Y. 2007 An improved hybrid cartesian/immersed boundary method for fluid-solid flows, Int. J. Numer. Meth. Fluids 55, 1189-1211.
    GERSTNER, C. L. 1999 Maneuverability of four species of coral-reef fish that differ in body and pectoral-fin morphology. Can. J. Zool. 77, 1102-1110.
    VON GLEICH, A., PADE, C., PETSCHOW, U. & PISSARSKOI E. 2010 Potentials and Trends in Biomimetics. Berlin: Springer-Verlag.
    GORDON, N. D., MCMAHON, T. A., FINLAYSON, B. L., GIPPEL, C. J. & NATHAN, R. J. 2004 Stream Hydrology: An Introduction for Ecologists. Chich-ester: John Wiley & Sons.
    GRAY, J. 1955 The movement of sea-urchin spermatozoa. J. Exp. Biol. 32,775-801.
    GREEN, M. R. & CRIGHTON, D. G. 2001 Fluid-loaded elastic plate with mean flow: point forcing and three-dimensional effects. J. Fluid Mech. 428, 305-331.
    GRESHO, P. M., CHAN, S. T., LEE, R. L. & UPSON, C. D. 19S4 A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations, part 2: Applications. Int. J. Numer. Moth. Fluids 4, 619-640.
    GUERRERO, J. E. 2010 Wake signature and Strouhal number dependence of finite-span flapping wings. J. Bionics Eng. 7, S109-S122.
    GUO, C. Q. & PAIDOUSSIS, M. P. 2000 Stability of rectangular plates with free side-edges in two-dimensional inviseid channel flow. J. Appl. Mech. 67, 171-176.
    GUO, Z. L., ZHENG, C. G. & SHI, B. C. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. PAys. Rev. E 65, 046308.
    GUSTAFSON, K. & LEBEN, R. 1991 Computation of dragonfly aerodynamics. Com-put. Phus. Commun. 65, 121-132.
    HAMLET, C., SANTHANAKRISHNAN, A. & MILLER, L. A. 2011 A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea spp. J. Exp. Biol. accepted.
    HANCOCK, G. J. 1953 Self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A 217, 96-121.
    HAO, J. & ZHU, L. 2010 A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction. Comput. Math. Appl. 59, 185-193.
    HASEGAWA, A. 1968 Theory of longitudinal plasma instabilities. Phys. Rev. A 169, 204-214.
    HELFMAN, G. S., COLLETTE, S. B., FACEY, D. F. & BOWEN. B. W. 2009 The Diversity of Fishes: Biology, Evolution and Ecology, 2nd edn. Chichester: Wiley Blackwell.
    HERTEL, H. 1966 Structure, Form, Movement. New York: Reinhold.
    HIRT, C. W., AMSDEN, A. A. & COOK, J. L. 1974 An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227-253.
    HU, T., SHEN, L., LIN, L. & XU, H. 2009 Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mech. Mach. Theor. 44. 633-645.
    HUANG, L. 1995 Flutter of cantilevered plates. J. Fluids Struct. 9, 127-147.
    HUANG, W. X., SHIN, S. J. & SUNG, H. J. 200 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 2206-2228.
    HUANG, W. X. & SUNG, H. J. 2009 An immersed boundary method for fluid-flexible structure interaction. Comput. Meth. Appl. Mech. Engrg. 198, 2650-2661.
    HUANG, W. X. & SUNG, H. J. 2010 Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653,301-336.
    ISHIHARA, D., HORIE, T. & DENDA, M. 2009 A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. J. Exp. Biol. 212, 1-11.
    JACKSON, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 23-45.
    JAYNE, B. C. & LAUDER, G. V. 1993 Red and white muscle activity and kinematics of the escape response of the bluegill sunfish during swimming. J. Comp. Physiol. A 173, 495-508.
    JIA, L. B., LI, F., YIN, X. Z. & YIN, X. Y. 2007 Coupling modes between two flapping filaments. J. Fluid Mech. 581, 199-220.
    JIA, L. B. & YIN, X. Z. 2008 Passive oscillations of two tandem flexible filaments in a flowing soap film. Phys. Rev. Lett. 100, 228104.
    JIA, L. B. & YIN, X. Z. 2009 Response modes of a flexible filament in the wake of a cylinder in a flowing soap film. Phys. Fluids 21, 101704.
    JING, J., YIN, X. Z. & LU, X. Y. 2004 The hydrodynamic analysis of C-start in Crucian Carp. J. Bionics Eng. 1, 102-107.
    JING, J., YIN, X. Z. & LU, X. Y. 2005 Experimental and theoretical investigation on fast-start of yellow catfish (Pelteobagrus fulvidraco). Prog. Nat. Sci. 15, 34-40.
    JONES, R. T. 1946 Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound. NACA rep. 835.
    KANG, S. 2003 Characteristics of flow over two circular cylinders in a side-by-side arrangement at low reynolds numbers. Phys. Fluids 15, 2486.
    KIM, S., HUANG, W. X. & SUNG, H. J. 2010 Constructive and destructive interac-tion modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511-521.
    KIM, Y. & PESKIN, C. S. 2006 2-D parachute simulation by the immersed boundary method. SIAM J. Sci. Comput. 28, 2294-2812.
    KIM, Y. & PESKIN, C. S. 2007 Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids 19, 053103.
    KIM, Y., ZHU, L., WANG, X. & PESKIN, C. S. 2003 On various techniques for computer simulation of boundaries with mass. In Computational Fluid and Solid Mechanics: Proceedings Second M.I.T. Conference on Computational Fluid and Solid Mechanics (ed. K. J. Bathe), pp. 1746--1750. Elsevier.
    KOLOMENSKIY, D., MOFFATT, H. K., FARCE, M. & SCHNEIDER, K. 2011 The lighthill-weis-fogh clap-fling-sweep mechanism revisited. J. Fluid Mech. in press, 1-36.
    KORNECKI, A., DOWELL, E. H. & O'BRIEN, J. 1976 On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47, 163-178.
    KRAFCZYK, M., TOLKE, J., RANK, E. & SCHULZ, M. 2001 Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods, Comput. Struct. 79, 2031-2037.
    KRUGER, T., VARNIK, F. & RAABE, D. 2010 Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. to appear.
    KUMAR, B. & MITTAL, S. 2006 Prediction of the critical Reynolds number for flow past a circular cylinder. Comput. Meth. Appl. Mech. Engrg. 195, 6046-6058.
    KYLE, C. R. 1979 Reduction of wind resistance and power output of racing cyclists and runners travelling in groups. Ergonomics 22, 387-397.
    LADD, A. J. C. 1994 Numerical simulation of particulate suspensions via a discretized Boltzmann equation, part 1. theoretical foundation. J. Fluid Mech. 271, 285-309.
    LALLEMAND, P. & LUO, L. S. 2003 Lattice Boltzmann method for moving bound-aries. J. Comput. Phys. 184, 406-421.
    LAMB, H. 1908 Negative energy waves. On the kinetic stability 80, 168-177.
    LANDAU, L. D. & LIFSHITZ, E. M. 1986 Theory of Elasticity. New York: Pergamon.
    LANDAU, L. D. & LIFSHITZ, E. M. 1987 Fluid Mechanics. New York: Pergamon.
    LASHMORE-DAVIES, C. N. 2005 Negative energy waves. J. Plasma Phys. 71, 101-109.
    LAUDER, G. V. & MADDEN, P. G. A. 2008 Dissecting insect flight. Annu. Rev. Physiol. 70, 143-163.
    LAUDER, G. V., MADDEN, P. G. A., HUNTER, I., TANGORRA, J., DAVIDSON, N., PROCTOR, L., MITTAL, R., DONG, H. & BOZKURTTAS, M. 2005 Design and performance of a fish fin-like propulsor for AUVs. Proc. 14th Internat. Symp. Unmanned Untethered Submersible Technology (UUST)
    LAUDER, G. V. & TYTELL, E. D. 2005 Hydrodynamics of undulatory propulsion. In Fish Biomechanics (ed. R. E. Shadwick & G. V. Lauder), Fish Physiology, vol. 23, pp. 425-468. California: Academic Press.
    LE, D. V., WHITE, J., PERAIRE, J., LIM, K. M. & KHOO, B. C. 2009 An implicit immersed boundary method for three-dimensional fluid-membrane interactions. J. Comput. Phys. 228, 8427-8445.
    LEE, S. W., FISCHER, P. F., LOTH, F., ROYSTON, T. J., GROGAN, J. K. & BASSIOUNY, H. S. 2005 Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20,837-852.
    LEHMANN, F. O. 2009 Wing-wake interaction reduces power consumption in insect tandem wings. Exp. Fluids 46, 765-775.
    LEHMANN, F. O. & PICK, S. 2007 The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings. J. Exp. Biol. 210, 1362-1377.
    LEHMANN, F. O., SANE, S. P. & DICKINSON, M. H. 2005 The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 208, 3075-3092.
    LEMAITRE, C., HEMON, P. & DE LANGRE, E. 2005 Flutter of cantilevered plates. J. Fluids Struct. 20, 913-925.
    LENTINK, D., DICKSON, W. B.AND VAN LEEUWEN, J. L. & DICKINSON, M. H. 2009 Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438-1440.
    LEVIN, D., DASER, G. & SHPUND, Z. 1997 On the aerodynamic drag of ribbons. AIAA paper 1997-1525.
    LIANG, J., WANG, T. & WEN, L. 2011 Development of a two-joint robotic fish for real-world exploration. J. Field Robotics 28, 70-79.
    LIAO, J. C. 2007 A review of fish swimming mechanics and behaviour in altered flows Phil. Trans. R. Soc. B 362, 1973-1993.
    LIAO, J. C., BEAL, D. N., LAUDER, G. V. & TRIANTAFYLLOU, M. S. 2003a Fish exploiting vortices decrease muscle activity. Science 302, 1566-1569.
    LIAO, J. C., BEAL, D. N., LAUDER., G. V. & TRIANTAFYLLOU, M. S. 2003b The karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol. 206, 1059-1073.
    LIGHTHILL, M. J. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9, 305-317.
    LIGHTHILL, M. J. 1969 Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1, 413-446.
    LIGHTHILL, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265-301.
    LIGHTHILL, M. J. 1971 Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B 179, 125-138.
    LIGHTHILL, M. J. 1973 On the Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60, 1-17.
    LIGHTHILL, M. J. 1975 Biofluiddynamics. Philadelphia: Society for Industrial and Applied Mathematics.
    LIGHTHILL, M. J. & BLAKE, R. 1990 Biofluiddynamics of balistiform and gymno-tiform locomotion. Part 1. Biological background, and analysis by elongated-body theory. J. Fluid Mech. 212, 183-207.
    LIMA E SILVA, A. L. F., SILVEIRA-NETO, A. & DAMASCENO, J. J. R. 2003 Numerical simulation of two-diinensional flows over a circular cylinder using the immersed boundary method. J. Comput. Phys. 189, 351-370.
    LIU, H. 2002 Computational biological fluid dynamics: digitizing and visualizing animal swimming and flying. Integr. Comp. Biol. 42. 1050-1059.
    LIU, H. & AONO, H. 2009 Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir. Biomim. 4, 1-13.
    LIU, H., ELLINGTON, C. P., KAWACHI, K., VAN DEN BERG, C. & WILLMOTT, A. P. 1998 A computational fluid dynamics study of hawkmoth hovering. J. Exp. Biol. 206, 461-477.
    LIU, H. & EAWACHI, K. 1998 A numerical study of insect flight, J. Comput. Phys. 146, 124-156.
    LIU, H. & KAWACHI, K. 1999 A numerical study of undulatory swimming. J. Com-put. Phys. 155, 223-247.
    LIU, H., WASSERSUG, R. & KAWACHI, K. 1996 A computational fluid dynamics study of tadpole swimming. J. Exp. Biol. 199, 1245-1260.
    LIU, H., WASSERSUG, R. & KAWACHI, K. 1997 The three-dimensional hydrody-nainics of tadpole locomotion. J. Exp. Biol. 200, 2807-2819.
    LIU, H., ANG Z. XIONG, H. D. & ZHU, X., ed. 2010 Intelligent Robotics and Applications: Third International Conference, New York. Springer-Verlag.
    LIU, Y., So, R. M. C., LAU, Y. L. & ZHOU, Y. 2001 Numerical studies of two side-by-side elastic cylinders in a cross-flow. J. Fluids Struct. 15, 1009-1030.
    LOWORN, J. R., JONES, D. R. & BLAKE. R. W. 1991 Mechanics of underwater locomotion in diving ducks: drag, buoyancy and acceleration in a size gradient of specffis. J. Exp. Biol. 159, 89-108.
    LU, X. Y. & LIAO, Q. 2006 Dynamic responses of a two-dimensional flapping foil motion. Phys. Fluids 18, 098104.
    LUCEY, A. D. & CARPENTER, P. W. 1993 The hydroelastic stability of three-dimensional disturbances of a finite compliant wall. J. Sound Vib. 165,527-552.
    LUMLEY, J. L. 1967 The structure of inhomogeneous turbulent flow. In Atmospheric Turbulence and Radio Wave Propagation (ed. A. M. Yaglom & V. I. Tatarski), pp. 166-178. Moscow: Nauka.
    LUO, H., MITTAL, R,., ZHENG, X., BIELAMOWICZ, S., WALSH, R. & HAHN, J. 2008 An immersed-boundary method for flow-structure interaction in biological systems with application to phonation. J. Comput. Phys. 227, 9303-9332.
    LUO, H., YIN, B., DAI., H. & DOYLE, J. F. 2010 A 3D computational study of the flow-structure interaction in flapping flight. AIAA Paper 2010-556.
    MACHIN, K. E. 1953 Wave propagation along flagella. J. Exp. Biol. 35, 796-806.
    MASOUD, H. & ALEXEEV, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81, 056304.
    MEYER, K. E., PEDERSEN, J. M. & OZCAN, O. 2007 Proper orthogonal decompo-sition on a jet in crossflow. J. Fluid Mech. 583, 199-227.
    MICHELIN, S. & LLEWELLYN SMITH, S. G. 2009 Linear stability analysis of coupled parallel flexible plates in an axial flow. J. Fluids Struct. 25, 1136-1157.
    MICHELIN, S., LLEWELLYN SMITH, S. G. & GLOVER, B. J. 2008 Vortex shedding model of a flapping flag. J. Fluid Mech. 617, 1-10.
    MILANO, M. & GHARIB, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403-409.
    MILLER, L. A. & PESKIN, C. S. 2004 When vortices stick: an aerodynamic transition in tiny insect flight. J. Exp. Biol. 207, 3073-3088.
    MILLER, L. A. & PESKIN, C. S. 2005 A computational fluid dynamics of 'clap and fling' in the smallest insects. J. Exp. Biol. 208, 195-212.
    MILLER, L. A. & PESKIN, C. S. 2009 Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212, 3076-3090.
    MILNE-THOMSON, L. M. 1966 Theoretical Aerodynamics, 4th edn. New York: Macmillan.
    MITTAL, R., DONG, H., BOZKURTTAS, M., NAJJAR, F. M., VARGAS, A. & VON LOEBBECKE, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227. 4825-4852.
    MITTAL, R. & IACCARINO, G. 2005 Immersed boundary method. Annu. Rev. Fluid Mech. 37, 239-261.
    MITTAL, S. & SINGH, S. 2005 Vortex-induced vibrations at subcritical Re. J. Fluid Mech. 534, 185-194.
    MORZYNSKI, M. & THIELE, F. 1991 Numerical stability analysis of a flow about a cylinder. Z. Angew. Math. Mech. 71, T424-T428.
    MULLER, U. K. 2003 Fish'n flag. Science 302, 1511-1512.
    NAGAI, M. 2002 Thinking Fluid Dynamics with Dolphins. Netherlands: IOS Press Inc.
    NIU, X. D., SHU, C., CHEW, Y. T. & PENG, Y. 2006 A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. PAys. Lett. A 354, 173-182.
    OSKOUEI, B. G., KANSO, E. & NEWTON, P. K. 2010 Streamline bifurcations and scaling theory for a multiple-wake model. Int. J. Non-Linear Mech. in press, 1-10.
    OSTROVSK(?), L. A., RYBAK, S. A. & TSIMRING, L. S. 1993 The role of negative energy waves in linear and nonlinear shear flow instability in hyperelastic fluid-filled tubes. Q. J. Mech. Appl. Math. 46, 657-681.
    PANG, Z., JIA, L. B. & YIN, X. Z. 2010 Flutter instability of rectangle and trapezoid flags in uniform flow. Phys. Fluids 22, 121701.
    PARRISH, J. K. & EDELSTEIN-KESHET, L. 1999 Complexity, pattern, and evolu-tionary trade-offs in animal aggregation. Science 284, 99-101.
    PARTRIDGE, B. L. & PITCHER, T. J. 1979 Evidence against a hydrodynamic func tion for fish schools. Nature 279, 418-419.
    PEAKE, N. 1997 On the behaviour of a fluid-loaded cylindrical shell with mean flow. J. Fluid Mech. 434, 387-410.
    PEAKE, N. 2004 On the unsteady motion of a long fluid-loaded elastic plate with mean flow. J. Fluid Mech. 507, 335-366.
    PENG, Y., SHU, C., CHEW, Y. T., NIU, X. D. & LU, X. Y. 2006 Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows. J. Comput. Phys. 218, 460-478.
    PESAVENTO, U. & WANG. Z. J. 2009 Flapping wing flight can save aerodynamic power compared to steady flight. Phys. Rev. Lett. 103, 118102.
    PESCHARD, I. & LE GAL, P. 1996 Coupled wakes of cylinders. Phys. Rev. Lett. 77, 3122.
    PESKIN, C. S. 1972 Flow patterns around heart valves: a digital computer method for solving the equations of motion. PhD thesis, Yeshiva University.
    PESKIN, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220-252.
    PESKIN, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479-517.
    PREMPRANEERACH, P., HOVER, F. S. & TRIANTAFYLLOU, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. Proc. 13th Int. Symp. on Unmanned Untethered Submersible Technolog.
    QI, D. 2006 Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows. J. Chem. Phys. 125, 114901.
    QI, D. 2007 A new method for direct simulations of flexible filament suspensions in non-zero Reynolds number flows. Int. J. Numer. Meth. Fluids 54, 103-118.
    QI, D. & AIDUN, C. K. 1998 A new method for analysis of the fluid interaction with a deformable membrane. J. Stat. Phys. 90, 145-158.
    QIAN, Y. H., D'HUMIeRES, D. & LALLEMAND, P. 1992 Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479-484.
    RAMAMURTI, R. & SANDBERG, W. C. 2007 A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J. Exp. Biol. 210, 881-896.
    RAMAMURTI, R., SANDBERG, W. C., LOHNER, R., WALKER, J. A. & WESTNEAT, M. W. 2002 Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. J. Exp. Biol. 205, 2997-3008.
    RAMANANARIVO, S., GODOY-DIANA, R. & THIRIA, B. 2011 Rather than reso-nance, flapping wing flyers may play on aerodynamics to improve performan Proc. Natl. Acoad. Sci. USA 108, 5964-5969.
    RAMASAMY, M. & LEISHMANN, J. G. 2006 Phase-locked particle image velocimetry measurements of a flapping wing. J. Aircraft 43, 1867-1875.
    RAYLEIGH, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 4-13.
    RISTROPH. L., BERGOU. A. J., RISTROPH, G., OOUMES, K., BERMAN, G. J. GUCKENHEIMER, J., WANGE, Z. J. & COHEN, I. 2010 Discovering the flight autostabilizer of fruit files by inducing aerial stumbles. Proc. Natl. Acod. Sci. USA 107, 4820-4824.
    RISTROPH, L., BERMAN, G. J., BERGOU, A. J., WANG, Z. J. & COHEN, I. 2009 Automated hull reconstruction motion tracking (HRMT) applied t maneuvers of free-flying insects. J. Exp. Biol. 212, 1324-1335.
    PISTROPH, L. & ZHANG, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 194502.
    RIVAL, D., PRANGEMEIER, T. & TROPEA, C. 2009 The influence of air foil kine-matics on the formation of leading-edge vortices in bio-inspired flight. Exp. Fluids 46, 823-833.
    ROMANENKO, E. V. 2002 Fish and Dolphin Swimming. Sofia-Moscow: Pensoft.
    ROPCHAN, C. B. & SWATERS. G. E. 1993 The role of negative energy waves in linear and nonlinear shear flow instability in hyperelastic fluid-filled tubes. Q. J. Mech. Appl. Math. 46, 657-681.
    ROSENBLUTH, M. N., COPPI, B. & SUDAN, R. N. 1969 Nonlinear interactions of positive and negative energy modes in rarefied plasmas (Ⅱ). Ann. Phys. 55, 248-270.
    SAAD, Y. & SCHULTZ, M. H. 1986 GMRES: a generalized minimal residual al-gorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-869.
    SAHARON, D. & LUTTGES, M. W. 1987 Three-dimensional flow produced by a pitching-plunging model dragonfly wing. AIAA Paper 87-0121.
    SAHARON, D. & LUTTGES, M. W. 1988 Visualization of unsteady separated flow produced by mechanically driven dragonfly wing kinematics model. AIAA Paper 88-0569.
    SAHARON, D. & LUTTGES, M. W. 1989 Dragonfly unsteady aerodynamics-The role of the wing phase relations in controlling ths produced flows. AIAA Paper 89-0832.
    SANE, S. P. 2003 The aerodynamics of insect flight. J. Exp. Biol. 206, 4191-4208.
    SANE, S. P. & DICKINSON, M. H. 2002 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087-1096.
    SATO, M. & AZUMA, A. 1997 The flight performance of a damselfly Ceriagrion. melanurum Selys. J. Exp. Biol. 200, 1765-1779.
    SAWADA, T. & HISADA, T. 2007 Fluid-structure intcraction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method. Comput. Fluids 36, 136-146.
    SCHOLANDER, P. F. 1959 Wave-riding dolphins, how do they do it? Science 129, 1085-1087.
    SCHOUVEILER, L. & ELOY, C. 2009 Coupled flutter of parallel plates. Phgs. Fluids 21, 081703.
    SFAKIOTAKIS, M., LANE, D. M. & DAVIES, J. B. C. 1999 Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24, 237-252.
    SHAO, X., PAN, D., DENG, J. & YU, Z. 2010 Hydrodynamic performance of a fishlike undulating foil in the wake of a cylinder. Phys. Fluids 22, 111903.
    SHATARA, S. W., ed. 2009 Development of Small Biomimetic Robotic Fish with On-board Fine-Grained Localization. Michigan: proQuest.
    SHAYO, L. W. 1980 The stability of cantilever panels in uniform incompressible flow. J. Sound Vib. 68, 341-350.
    SHELLEY, M., VANSENBERGHE, N. & ZHANG, J. 2005 Heavy flags undergo spon-taneous oscillations in flowing water. Phys. Rey. Lett. 94, 094302.
    SHELLEY, M. & ZHANG, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43,449-465.
    SHI, X. & LIM, S. P. 2007 A LBM-DLM/FD method for 3D fluid-structure inter-actions. J. Comput. Phys. 226, 2028-2043.
    SHU, C., LIU, N. & CHEW, Y, T. 2007 A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder. J. Comput. Phys. 226, 1607-1622.
    SHU, Q. W. 1997 Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No.97-65, 325-432.
    SHYY, W., AONO, H., CHIMAKURTHI, S. K., TRIZILA, P., KANG, C. K., CESNIK, C. E. S. & LIU, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Progr. Aerospace Sci. 46, 284-327.
    SHYY, W., LIAN, Y., TANG, J., LIU, H., TRIZILA, P., STANFORD, B., BERNAL, L., CESNIK, C., FRIEDMANN, P. & IFJU, P. 2008a Computational aerodynamics of low reynolds number plunging, pitching and flexible wings for MAV applications. Acta. Mech. Sin. 24, 351-373.
    SHYY, W., LIAN, Y., TANG, J., VHERU, D. & LIU, H. 2008b Aerodynamics of Low Reunolds Number Flyers. New York: Cambridge University Press
    SHYY, W. & LIU, H. 2007 Flapping wings and aerodynamics lift: the role of leading-edge vortices. AIAA J. 45, 2817-2819.
    SHYY, W., TRIZILA, P., KANG, C. & AONO, H. 2009 Can tipvortices enhance lift of a flapping wing? AIAA J. 47, 289-293.
    SMITH, M. J. C., WILKIN, P. J. & WILLIAMS, M. H. 1996 The advances of an unsteady method in modeling the aerodynamic forces on rigid flapping wings. J. Exp. Biol. 199, 1073-1083.
    SONG, F., LEE, K. L., SOH, A. K., ZHU, F. & BAI, Y. L. 2008a Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae) Mater. Sci. Eng. A 457, 254-260.
    SONG, F., XIaO, K. W., BAI, K. & BAI, Y. L. 2008b Microstructure and nanome-chanical properties of the wing membrane of dragonfly. Mater. Sci. Eng. A 457, 254-260.
    SORIA, J. & CANTWELL, B. J. 1993 Identification and classification of topological structures in free shear flows. In Eddy Structure Identification in Free Turbulent Shear Flows (ed. J. P. Bonnet & M. N. Glauser), pp. 379-390. Dordrecht: Kluwer Academic Publishers.
    SORIA, J. & CANTWELL, S. J. 1994 Topological visualisation of focal structures in free shear flows. Appl. Sci. Res. 53, 375-386.
    FERREIRA DE SOUSA, P. J. S. A. & ALLEN, J. J. 2011 Thrust efficiency of har-monically oscillating flexible flat. plates. J. Flurid Mech. 674, 43-66.
    SPAGNOLIE, S. E., MORET, L., SHELLEY, M. & ZHANG, J. 2010 Surprising be-haviors in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.
    SPEDDING, G. R., RAYNER, J. M. V. & PENNYCUICK, C. J. 1984 Momentum and energy in the wake of a pigeon (Columba livia) in slow flight. J. Exp. Biol. 111, 81-102.
    SQUIRE, H. B. 1933 On the stability for three-dimnsional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. Lond. 142, 641-648.
    SRYCLEY, R. B. & THOMAS, A. L. R. 2002 Unconventional lift-generating mecha-nisms in free-flying butterflies. Nature 420, 660-664.
    STANDEN, E. M. & LAUDER, G. V. 2005 Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J. Exp. Biol. 208, 2753-2763.
    STANDEN, E. M. & LAUDER, G. V. 2007 Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J. Exp. Biol. 210, 325-339.
    STOCKER, S. 1999 Models for tuna school formation. Math. Biosci. 156, 167-190.
    STURROCK, P. A. 1960 In what sense do slow waves carry negative energy. J. Appl. Phys. 31, 2052-2056.
    SUI, Y., CHEW, Y. T., ROY, P. & Low, H. 2008 A hybrid method to study flow-induced deformation of three-dimensional capsules. J. Comput. Phys. 227, 6351-6371.
    SUI, Y., CHEW, Y. T., ROY, P. & LOW, H. T. 2007 A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions. Int. J. Numer. Meth. Fluids 53, 1727-1754.
    SUMNER, D., WONG, S. S. T., PRICE, S. J. & PAIDOUSSIS, M. P. 1999 Fluid behaviour of side-by-side circular cylinders in steady cross-flow. J. Fluids Struct. 13, 309-338.
    SUN, M. & TANG, J. 2002 Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55-70.
    TAGUCHI, M. & LIAO, J. C. 2011 Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J. Exp. Biol. 214, 1428-1436.
    TAIRA, K. & COLONIUS, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low reynolds numbers. J. Fluid Mech. 623, 187-207.
    TANG, J., VIIERU, D. & SHYY, W. 2007 A study of aerodynamics of low Reynolds number flexible airfoils. AIAA Paper 2007-4212.
    TANG, L. & PAIDOUSSIS, M. P. 2009 The coupled dynamics of two cantilevered flexible platesinaxialflow. J. Sound Vib. 323, 790-801.
    TAYLOR, G. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209, 447-461.
    TAYLOR, G. 1952a The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. Lond. A 211, 225-239.
    TAYLOR, G. 1952b Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A 214, 158-183.
    TAYLOR, G. K., NUDDS, R. L. & THOMAS, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707-711.
    TAYLOR, G. W., BURNS, J. R., KAMMANN, S. M., POWERS, W. B. & WELSH, T. R. 2001 The energy harvesting eel: a small subsurface ocean/river power generator. IEEE J. Ocean. Engng 26, 539-547.
    TEZDUYAR, T. E., BEHR, M. & LIOU, J. 1992 A new strategy fur finite element computations involving moving boundaries and interfaces-The deforming-spatial-domain/space-time procedure: Ⅱ. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Meth. Appl. Mech. Engrg. 94, 353-371.
    THEODORSEN, T. 1935 General theory of aerodynamic instability and the mechani of flutter. NASA Tech. Rep. No. 496.
    THOMAS, A. L. R., TAYLOR, G. K. & SRYGLEY, R. B. 2004 Dragonfly flight: freeflight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207, 4299-4323.
    TIAN, F. B., LUO, H., ZHU, L., LIAO, J. C. & LU, X. Y. 2011 An immersed boundary-lattice Boltzmann method for elastic boundaries with mass. J. Comput. Phys. Accepted.
    TRIANTAFYLLOU, G. S. 1992 Physical condition for absolute instability in inviscid hydroelastic coupling. Phys. Fluids A 4, 544-552.
    TRIANTAFYLLOU, G. S., TRIANTAFYLLOU, M. S. & GROSENBAUGH, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205-224.
    TRIANTAFYLLOU, M. S., TECHET, A. H. & HOVER, F. S. 2004 Review of experi-mental work in biomimetic foils. IEEE J. Ocean. Eng. 29,585-594.
    TRIANTAFYLLOU, M. S., TRIANTAFYLLOU, G. S. & GOPALKRISHNAN, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3; 2835-2837.
    TRIANTAFYLLOU, M. S., TRIANTAFYLLOU, G. S. & YUE, D. K. P. 2000 Hydro-dynamics of fish swimming. Annu. Rev. Fluid Mech. 32, 33-53.
    TSENG, Y. H. & FERZIGER, J. H. 2003 A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593-623.
    TYTELL, E. D., BORAZJANI, I., SOTIROPOULOS, F., BAKER, T. V., ANDERSON, E. J. & LAUDER, G. V. 2010a Disentangling the functional roles of morphology and motion in the swimming of fish. Integ. Comp. Biol. 50, 1140-1154.
    TYTELL, E. D., HSU, C. Y., WILLIAMS, T. L., COHEN, A. H. & FAUCI, L. J. 2010b Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Natl. Acad. Sci. USA 107, 19832-19837.
    TYTELL, E. D. & LAUDER, G. V. 2002 The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J. Exp. Biol. 205, 2591-2603.
    VANELLA, M., FITZGERALD, T., PREIDIKMAN, S., E., B. & BALACHANDRAN, B. 2009 Influence of flexibility on the aerodynamic performance of a hovering profile. J. Exp. Biol. 212, 95-105.
    VIDELER, J. J., ed. 1993 Fish Swimming. New York: Chapman & Hail.
    VOGEL, S. 1994 Life in Moving Fluids, 2nd edn. New Jersey: Princeton University Press.
    WAKELING, J. M. & ELLINGTON, C. P. 1997a Dragonfly flight. Ⅰ. Gliding flight and steady-state aerodynamic forces. J. Exp. Biol. 200, 543-556.
    WAKELING, J. M. & ELLINGTON, C. P. 1997b Dragonfly flight. Ⅱ. Velocities accel-erations and kinematics of flapping flight. J. Exp. Biol. 200, 557-582.
    WAKELING, J. M. & ELLINGTON, C. P. 1997c Dragonfly flight. Ⅲ. Lift and power requirements. J. Exp. Biol. 200,583-600.
    WANG, H., ZENG, L., LIU, H. & YIN, C. 2003 Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in drag-onflies. J. Exp. Biol. 206, 745-757.
    WANG, S. Y., JIA, L. B. & YIN, X. Z. 2009 Kinematics and forces of a flexible body in karman vortex street. Chin. Sci. Bull. 54, 556-561.
    WANG, Z. J. 2000a Two dimensional mechanism for insect hovering. Phys. Rev. Lett. 85, 2216-2219.
    WANG, Z. J. 2000b Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323-341.
    WANG, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183-210.
    VAN WASSENBERGH, S., STROTHER, J. A. AND, F. B. E. A. F.-G. L. A. & AERTS, P. 2008 Extremely fast prey capture in pipefish is powered by elastic recoil. J. R. Soc. Interface 5,285-296.
    WATANABE, Y., ISOGAI, K., SUZUKI, S. & SUGIHARA, M. 2002a An theoretical study of paper flutter. J. Fluids Struct. 16, 543-560.
    WATANABE, Y., SUZUKI, S., SUGIHARA, M. & SUEOKA, Y. 2002b An experimental study of paper flutter. J. Fluids Struct. 16, 529-542.
    WEBB, P. W. 1998 Entrainment by river chub nocomis micropogon and smallmouth bass Micropterus dolomicu on cylinders. J. Exp. Biol. 201, 2403-2412.
    WEBB, P. W. & FAIRCHILD, A. G. 2001 Performance and maneuverability of three species of teleostean fishes. Can. J. Zool. 79, 1866-1877.
    WEBB, P. W., KOSTECKI, P. T. & STEVENS, E. D. 1984 The effect of size and swimming speed on the locomotor kinematics of rainbow trout. J. Exp. Biol. 109, 77-95.
    WEIHS, D. 1973 Hydromechanics of fish schooling. Nature 241, 290-291.
    WEIHS, D. 1975 Some hydrodynamical aspects of fish schooling. In Swimming and Flying in Nature (ed. T. Wu, C. Brokaw & C. Brennen), , vol. 2, pp. 703-718. New York: Plenum Press.
    WEIS-FOGH, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230.
    WILLMOTT, A. P. & ELLINGTON, C. P. 1997 The mechanics of flight in the hawk-moth Manduca sexta. Ⅰ. Kinematics of hovering and forward flight. J. Exp. Biol. 200, 2705-2722.
    WILLMOTT, A. P., ELLINGTON, C. P. & THOMAS, A. L. R. 1997 Flow visualiza tion and uusteady aerodymamics in the flight of the hawkmoth, Manduca sexta. Phil. Trans. R. Soc. Lond. B 352, 303-316.
    WILSON, M. M. & ELDREDGE, J. D. 2011 Performance improvement through pas-sive mechanics in jellyfish-inspired swimming. Int. J. Non-Linear Mech. in press, 1-11.
    WOLFGANG, M. J. 1999 Hydrodynamics of flexible-body swimming motions. PhD thesis, Massachsetts Institute of technology.
    WOOTTON, R. J. 1999 Invertebrate paraxial locomotory appendages: Design, defor-mation and control. J. Exp. Biol. 202, 3333-3345.
    WOOTTON, R. J., HERBERT, R. C., YOUNG, P. G. & EVANS, K. E. 2003 Ap-proaches to the structural modelling of insect wings. Phil. Trans. R. Soc. Lond. B 358, 1577-1587.
    WU, C. J. & WANG, L. 2010 Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school. Acta. Mech. Sin. 26, 25-45.
    WU, G. H., YANG, Y. & ZENG, L. J. 2007a Routine turning maneuvers of koi carp Cyprinus carpio koi: effects of turning rate on kinematics and hydrodynamics. J. Exp. Biol. 210; 4379-4389.
    WU, J. & SHU, C. 2009 Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J. Comput. Phys. 228, 1963-1979.
    WU, J. & SHU, C. 2010 An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows. J. Comput. Phys. 229, 5022-5042.
    WU, J., SHU, C. & ZHANG, Y. H. 2010 Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method. Int. J. Numer. Meth. Fluids 62, 327-354.
    WU, J. C. 2005 Elements of Vorticity Aerodynamics. Beijing: Tsinghua University Press & Springer.
    WU, J. Z., LU, X. Y. & ZHUANG, L. X. 2007b Integral force acting on a body due to local flow structures. J. Fluid Mech. 576, 265-286.
    WU, J. Z., MA, H. Y. & ZHOU, M. D. 2006 Vorticity and Vortex Dynamics. Berlin: Springer-Verlag.
    WU, J. Z., PAN, Z. L. & LU, X. Y. 2005 Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys. Fluids 17, 0981026.
    WU, T. Y. 1961 Swimming of a waving plate. J. Fluid Mech. 10, 321-344.
    WU, T. Y. 1971a Hydromechanies of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46, 337-355.
    WU, T. Y. 1971b Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 46, 521-544.
    WU, T. Y. 1971c Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J. Fluid Mech. 46,545-568.
    WU, T. Y. 2001 On theoretical modeling of aquatic and aerial animal locomotion. Adv. Appl. Mech. 38, 291-353.
    WU, T. Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 25-58.
    XIAO, K. W., BAI, K., WANG, W. & SONG, F. 2007 Experimental study for the mierostructure and nanomechanical properties of the wing membrane of dragonfly Acta. Mech. Sin. 23, 281-285.
    XIE, M., XIONG, Y., XIONG, C., LIU, H. & HU, Z., ed. 2009 Intelligent Robotics and Applications: Second International Conference, New York. Springer-Verlag.
    XIONG, C., LIU, H., HUANG, Y. & XIONG, Y., ed. 2008 Intelligent Robotics and Applications: First International Conference, New York. Springer-Verlag.
    XU, S. & WANG, Z. J. 2006 An immersed interface method for simulating the interaction of a fluid with moving boundaries. J. Comput. Phys. 216, 454-493.
    YADYKIN, Y., TENETOV, V. & LEVIN, D. 2003 The added mass of a flexible plate oscillating in a fluid. J. Fluids Struct. 17, 115-123.
    YANG, J. M. & BALARAS, E. 2006 An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215, 12-40.
    YIN, B. & LUO, H. 2010 Effect of wing inertia on hovering performance of flexible flapping wings. Phys. Fluids 22, 111902.
    YU, D., MEI, R. & SHYY, W. 2002 A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Meth. Fluids 39, 99-120.
    YU, J., WANG, S. & TAN, M. 2005 A simplified propuisive model of bio-mimetic robot fish and its realization. Robotica 23, 103-107.
    ZDRAVKOVICK, M. M. 1977 Review of flow interference between two circular cylinders in various arrangement. J. Fluids Engrg. 99, 618-633.
    ZHANG, J. 2010 Private communication
    ZHANG, J., CHILDRESS, S., LIBCHABER, A. & SHELLEY, M. 2000 Flexible filaments in a flowing soap film as a, model for one-dimensional flags in a two-dimcnsional wind. Nature 408, 835-839.
    ZHANG, J., JOHNSON, P. C. & POPEL, A. S. 2007 An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4, 285-295.
    ZHANG, J., LIU, N. S. & Lu. X. Y. 2009 Route to chaotic state in flow past an inclined flat plate. Phys. Rev. E 79, 045306.
    ZHANG, J., LIU, N. S. & Lu, X. Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 43-68.
    ZHANG, J. & LU, X. Y. 2009 Aerodynamic performance due to forewing and hind-wing interaction in gliding dragonfly flight. Phys. Reu. E 80, 017302.
    ZHOU, Y., WANG, Z. J., SO, R. M. C., XU, S. J. & JIN, W. 2001 Free vibrations of two side-by-side cylinders in a cross-flow. J. Fluid Mech. 443, 197-229.
    ZHU, L. 2007 Viscous flow past an elastic fibre tethered at its center point: vortex shedding. J. Fluid Mech. 587, 217-234.
    ZHU, L. 2009 Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455-475.
    ZHU, L., HE, G., WANG, S., MILLER, L., ZHANG, X., YOU, Q. & FANG, S. 2011 An immersed boundary method by the lattice Boltzmann approach in three dimensions with application. Comput. Math. Appl. to appear.
    ZHU, L. & PESKIN, C. S. 2002 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452-468.
    ZHU, L. & PRSKIN, C. S. 2003 Interaction of two flapping filaments in a flowing soap film. Phys. Flvids 15, 1954-1960.
    ZHU, Q. & SHOELE, K. 2008 Propulsion performance of a skeleton-strengthened fin. J. Exp. Biol. 211, 2087-2100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700