用户名: 密码: 验证码:
施氮量、氮源及栽培模式对小麦、玉米生理特性及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素供应是影响作物生长情况的重要限制因素之一,然而,目前氮素在作物上的利用率很低。过量施氮造成的氮素淋失和环境污染是目前全球人类共同关注的问题。为了合理运筹氮肥,减少氮素的损失和种植者的经济损失,提高作物产量。本研究分别以小麦和玉米为研究对象,在作物产量形成的关键时期即冬小麦籽粒灌浆期及玉米苗期和吐丝期,研究栽培模式、施氮量和氮源对作物生长发育的影响,探讨不同施氮量、氮源以及施氮时期对作物生长发育的影响,为小麦、玉米优质高产栽培及氮素的合理利用提供理论依据,实现精确农业的发展,提高农业生产效益和减少农业生态环境污染。本研究得出以下主要结论:
     1.在小麦籽粒灌浆期,叶片叶绿素含量、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性呈下降趋势,丙二醛(MDA)等膜脂过氧化产物积累,导致膜结构和生理机能受到破坏,叶绿素含量下降。不同叶位叶绿素含量、POD活性和CAT活性均表现为旗叶>倒二叶>倒三叶,MDA含量表现为旗叶<倒二叶<倒三叶。不同栽培模式和施氮量均显著影响冬小麦顶三叶叶绿素含量、POD活性、CAT活性以及MDA含量。覆草栽培模式结合120 kg ha-1施氮量时,冬小麦叶片叶绿素含量最高,叶片衰老速度缓慢,代谢强度降低缓慢,膜脂化程度低,有利于小麦后期生长和籽粒灌浆。
     2.在小麦籽粒灌浆期,籽粒淀粉含量与可溶性总糖、蔗糖含量的变化趋势相反,可溶性总糖和蔗糖含量呈逐渐下降的趋势,淀粉含量则呈一直上升的趋势。不同栽培模式和施氮量均显著影响冬小麦籽粒可溶性总糖、蔗糖含量和淀粉含量。覆草栽培和地膜覆盖模式下,可溶性总糖、蔗糖的合成代谢和物质转化能力高于常规栽培,淀粉含量高于常规栽培,且籽粒的饱满指数和产量均高于常规栽培。增施氮肥可以提高灌浆前期籽粒可溶性总糖含量和蔗糖含量,降低籽粒灌浆后期籽粒中可溶性总糖含量和蔗糖含量,具有较强的同化物转化利用能力,促进了籽粒淀粉积累。但是过量的氮素并未提高籽粒可溶性总糖、蔗糖的合成代谢和物质转化能力。施氮量为120 kg ha-1结合覆草栽培或地膜覆盖模式时,灌浆前期冬小麦籽粒可溶性总糖含量和蔗糖含量较高,且灌浆后期同化物转化利用能力强,籽粒淀粉含量较高,有利于冬小麦后期生长和籽粒灌浆。
     3.玉米试验结果表明,追肥前,最上一片全展开叶的SPAD值、净光合速率(PN)、叶面积指数(LAI)、地上部生物量、冠层叶绿素密度(SPAD×LAI)、冠层光合能力(PN×LAI)均随施氮量的增加而增加,Dualex值随着施氮量的增加而降低。同等施氮量下,基肥配合追肥显著提高叶片SPAD值;而追肥对叶片Dualex值和PN无显著影响。基肥量45 kg ha-1能较好地满足玉米前期生长,但总施氮量113 kg ha-1不能满足玉米全生育期的需求,需要进一步的评估适宜的施氮量。同等施氮量下,基肥配合追肥显著提高玉米籽粒产量。SPAD值和Dualex值均与玉米植株氮含量显著相关,SPAD和Dualex可以作为实时快速指导玉米追肥的有效工具。
     4.玉米吐丝后,穗位叶SPAD值、地上部生物量以及产量随着追施氮肥量的增加而增加,Dualex值随着追氮量的增加而降低。追氮101、135、169和203 kg ha-1各处理的SPAD-氮饱和指数(SPAD-NSI)在各测定日期均大于0.95。追氮101 kg ha-1处理的Dualex-氮饱和指数(Dualex-NSI)在吐丝后18 d至46 d大于0.95;追氮135、169和203 kg ha-1各处理的Dualex-NSI在各测定日期均大于0.95。SPAD值、Dualex值、SPAD-NSI和Dulaex-NSI均与追氮量显著相关。在拔节期追氮101或135 kg ha-1即可满足玉米生长后期对氮素的需求,达到最大的经济产量。当超过最大产量施肥量时,氮肥用量的增加对SPAD值、Dualex值、地上部生物量以及产量均无显著的影响。追肥不仅可以达到与在播种时一次性施肥同样的产量效果,而且还可以减少氮肥的施用量,减少种植者的经济投入。
     5.在玉米上建立氮饱和参考小区时,水分状态和施肥方式对氮饱和参考小区的建立均无影响。基于本研究,种植者既可以在播种时撒施氮肥也可以在出苗后沟施氮肥,这就使氮饱和参考小区的构建具有一定的灵活性。不同氮源同样对氮饱和参考小区的建立没有影响,然而,综合考虑环境因素和经济因素,尿素和液态硝胺尿素被推荐为建立氮饱和参考小区适宜的氮源。相对于相对荧光能力(RCFC),相对光合能力(RPC)被认为是监测氮素对玉米生长影响更好的指标。
     6.在使用SPAD、归一化植被指数(NDVI)、叶片上表面的Dualex值(DUAD)和SPAD值与叶片上表面Dualex值的比值(Chl/DUAD)等4个快速、无损指标进行玉米氮素营养形态评估时,通过SPAD和Chl/DUAD计算的NSI相对其它指标在不同试验年份均较稳定。由于NDVI可以评估作物群体氮素形态,因此基于NDVI计算NSI也是快速、无损评估氮素形态适宜的指标。在本试验条件下,使用DUAD计算的NSI在不同年份间不稳定,因此相对于其他指标,不适宜用来进行计算NSI值。水分状态和施肥方式对SPAD-NSI、DUAD-NSI、NDVI-NSI和Chl/DUAD-NSI影响均不显著。
     7.土壤电导率、海拔高度、坡度、地形弯曲度和坡向等土壤和地形结构中,土壤电导率和海拔高度主要影响不施氮和氮饱和处理玉米的NDVI值,然而当使用氮饱和指数(NDVI_NSI)来评估玉米氮素形态时,土壤和地形结构等因素中,无显著影响玉米NDVI_NSI的因素。通过建立氮饱和参考小区和使用NSI可以实现大田作物精确氮素管理,减少土壤和地形结构对作物氮素形态诊断的影响,减少种植者的经济投入,降低氮素的淋失和对环境的污染,提高产量。
Nitrogen (N) is one of the most important nutrients influencing both yield and grain quality, and N supply is one of the few production factors that can be controlled and which is known to effectively influence crop performance. However, current N management systems for corn have resulted in low nitrogen use efficiency (NUE). Nitrogen leaching and environmental pollution have attracted the attention of the worldwide researchers. With good management of N fertilizer, N losses and economic loss can be kept to a minimum and improve protection of water quality and crop grain yield. The objectives of this study were to evaluate N application rates, N sources and management effects on physiological characteristics and grain yield of wheat at the filling stage and corn at vegetable stage and after silking stage. The results can provide theoretical proof for high quality and high yield of crop and good management of N fertilization; implement the development of precision agriculture. It got the following main conclusions:
     1. The chlorophyll content, peroxidase (POD) activities and catalase (CAT) activities of leaf decreased during the filling stage of wheat, the malondialdehyde (MDA) content increased during the filling stage of wheat. The chlorophyll content, POD activities and CAT activities of different leaf position appeared to decline in the order of the flag leaves, the second leaves from top and the third leaves from top in wheat. The MDA content of different leaf position appeared to increase in the order of the flag leaves, the second leaves from top and the third leaves from top of wheat during the filling stage of wheat. Different farming modes and N application rate significantly influenced the chlorophyll content, POD activities, CAT activities and MDA content of leaves in wheat. Straw multh cultivation modes with 120 kg N ha-1, the chlorophyll content of leaf was the highest, the speed of flag leaf aging was slow, the extent of declining metabolizability was slow too. And it was of great benefit to growth and filling at the late filling stage of wheat.
     2. The trend of starch content was opposite to the trend of total soluble sugar content and sucrose content in wheat grains during the filling stage of wheat. The soluble sugar content and sucrose content of grains decreased, and the starch content increased during the filling stage of wheat. Different farming modes and N application rate significantly influenced the soluble sugar content, sucrose content and starch content. Compared with flat farming, the total soluble sugar contents and sucrose contents in straw mulching and plastic film-mulching were higher than that in flat farming, the starch contents in straw mulching and plastic film-mulching were higher than that in flat farming during the filling stage, and satiety index of wheat grain and the yield were all higher than that in flat farming. Nitrogen enhanced the total soluble sugar contents and sucrose contents during the early filling stage, decrease the total soluble sugar contents and sucrose contents during the lately filling stage. Nitrogen promoted the ability supplying utilizing assimilate and the starch accumulation of grain in wheat. However, excess N didn’t enhance the anabolism of total soluble sugar and sucrose of grain and the ability supplying utilizing assimilate in wheat. Straw multh cultivation modes and plastic film-mulching with 120 kg N ha-1, the total soluble sugar and sucrose were higher in the early filling stage, the ability supplying utilizing assimilate were strong and increased the starch accumulation of grain in wheat during grain filling stage. That was of great benefit to growth and filling at the late filling stage of wheat with straw multh or plastic film-mulching and 120 kg N ha-1.
     3. SPAD reading, net photosynthetic rate (PN), leaf area index (LAI), aboveground dry biomass, canopy chlorophyll density (SPAD×LAI) and canopy photosynthetic capacity (PN×LAI) of the uppermost fully developed leaves of the corn increased with basal N rates increasing before side-dressing. However, Dualex reading showed an opposite trend in response to basal N rates. Split N application significantly increased SPAD reading, however, no significant influence on Dualex reading and PN of leaf. Split N application significantly increased corn grain yield compared to only one application at sowing, and 45 kg N ha-1 was better than 20 kg N ha-1. Under our experimental condition, a total N application with 113 kg N ha-1 did not produce the same corn grain yield as saturated N rate plot (SAT225). Both SPAD and Dualex readings showed significant correlation with corn plant N concentration, and then can be used as an instant and non-destructive diagnostic tools for corn N status evaluation.
     4. SPAD reading of ear leaf, aboveground dry biomass and corn grain yield increased with increasing side-dressing N rates, Dualex reading decreased with increasing side-dressing N rates after silking. The SPAD-N sufficiency index (SPAD-NSI) of side-dressing N with 101, 135, 169 and 203 kg N ha-1 were always higher than 0.95 at all samplings dates. The Dualex-N sufficiency index (Dualex-NSI) of side-dressing N with 101 kg N ha-1 were higher than 0.95 from 18 d to 46 d; the Dualex-N NSI of side-dressing N with 135, 169 and 203 kg N ha-1 were also higher than 0.95 at all samplings dates. SPAD reading, Dualex reading, SPAD-NSI and Dualex-NSI were strongly related to side-dressing N rates. The maximum yield has been reached when side-dressing N with 101 or 135 kg N ha-1 at jointing stage. When maximum yield has been reached, any additional N has no significant effect on SPAD reading, Dualex reading, aboveground dry biomass and corn grain yield. There was no significant difference between splitting the N into two applications and put all N at sowing on grain yield, however, splitting the N into two applications significantly decreased the N application rate and growers’inputs.
     5. When established the N saturated reference plot in corn, water status and N application methods have no influence on N saturated reference plot establishment. Based on this study, growers can either broadcast at sowing or band along the rows at a later time when corn is emerged, which will give flexibility to N saturated reference plots establishment. All N sources (calcium ammonium nitrate (CAN), urea ammonium nitrate (UAN), urea (URE), polymer-coated urea (PCU), and environmentally smart N (ESN)) had the equivalence performance on N saturated reference plot establishment in our experimental conditions. However, when consider the environmental and economic factors, URE and UAN were recommended as adequate and affordable N sources for reference plot establishment. PN or relative photosynthetic capacity (RPC) was found to be a better indicator of photosynthetic performance under contrasting N supply than Fv/Fm (or Fv’/Fm’) or relative chlorophyll fluorescence capacity (RCFC).
     6. The instant, non-destructive and sensitive parameters for N diagnostic criteria were compared: chlorophyll meter (SPAD), normalized difference vegetation index (NDVI), Dualex and combined SPAD and Dualex measurements in the form of the ratio Chl/DUAD in this study. SPAD readings and Chl/DUAD were the earliest and most stable indicators when expressed in the form N sufficiency index (NSI). NDVI was measured with Greenseeker could evaluate the N status in crop population, so, NDVI was also a suitable indicators for evaluation N status when expressed in the form NSI. Dualex reading varied and was instability among years when expressed in the form NSI, therefore, Dualex reading was not a suitable indicator for calculationg NSI in corn. Water status and N application methods have no significant influence on SPAD reading, Dualex, NDVI and Chl/DUAD when expressed in the form NSI.
     7. In the soil or terrain properties including soil electrical conductivity (ECa), elevation, slope, curvature of the terrain, and aspect of the terrain, ECa and elevation were the dominant factors influencing the NDVI both in null N and saturated N rate (250 kg N ha-1). When using NDVI_N sufficiency index (NDVI_NSI) evaluated the N status in corn, none of soil or topographic properties was the important factor influencing NDVI_NSI of corn. Hence, using NDVI_NSI for site-specific N management can eliminate the soil or topographic properties on corn growth, decreased the economic input of growers, decreased the N loss and environmental pollution, and improved the grain yield of corn.
引文
[1]刘志先.世界玉米经济的现状和发展趋势[J].国外农学-杂粮作物,1998,18(2):7-11.
    [2]蒋仁成,历志华,李德民.施肥对小麦、玉米产量和品质的影响[J].土壤肥料,1991(1):13-16.
    [3]李金洪,李伯航.矿质营养对玉米籽粒营养品质的影响[J].玉米科学,1995,3(3):54-57.
    [4]汪芝寿,孔令聪等.施肥对土壤肥力和作物产量及品质的影响[J].安徽农业科学,1995,23(3):240-242.
    [5] Elia A, Santamaria P, Serio F. Nitrogen nutrition, yield and quality of spinach [J]. Journal of the Science of Food and Agriculture, 1998, 76: 341-346.
    [6] Ferguson R B, Hergert G W, Schepers J S, et al. Site-specific nitrogen management of irrigated maize: Yield and soil residual nitrate effects [J]. Soil Science Society America Journal, 2002, 66: 544-553.
    [7] Samonte S O P B, Wilson L T, Medley J C, et al. Nitrogen Utilization Efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice [J]. Agronomy Journal, 2006, 98: 168-176.
    [8]王胜佳,王家玉.复膜尿素对水稻的增产效应及生理基础[J].浙江农业学报,1997,9(3):118-122.
    [9]中国农业科学院土壤肥料研究所主编.中国肥料[M].上海科学技术出版社.1994.
    [10] Schr?der J J, Neeteson J J, Oenema O, et al. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art [J]. Field Crops Research, 2000, 66(2): 151-164.
    [11] Carpenter S R, Caraco N F, Correll D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen [J]. Ecological Applications, 1998, 8:559-568.
    [12] Matson P A, Naylor R, and Monasterio I O. Integration of environmental, agronomic, and economic aspects of fertilizer management [J]. Science, 1998, 280:112-115.
    [13] Tremblay N. Determining nitrogen requirements from crop characteristics. Benefits and challenges [A]. Recent Res. Dev. Agron. Hort. 2004, 1:157-182.
    [14]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3-N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538-546.
    [15]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报[J],2000,11(2):240-242.
    [16]连纲,王德建,林静惠,等.太湖地区稻田土壤养分淋洗特征[J].2003,14(11):1879-1883
    [17]朱兆良.中国土壤氮素[M].南京:江苏出版社,1992:213-249.
    [18] Yeomans J C, Bremner J M, and McCarty G W. Denitrification capacity and denitrification potential of subsurface soils [J]. Communications in Soil Science and Plant Analysis, 1992, 23:919-927.
    [19] Prunty L, and Montgomery B R. Lysimeter study of nitrogen fertilizer and irrigation rates on quality of recharge water and corn yield [J]. Journal Environmental Quality, 1991, 20:373-380.
    [20]彭少兵,黄家良,钟旭华,等.中国水稻提高氮肥利用效率的挑战和机遇[J].中国农业科学,2002,35:1095-1103.
    [21] USEPA. Safe drinking water act, Section 1429. Ground water report to congress. EPA-816-R-99-016. USEPA, Washington, DC. 1999.
    [22] Comly, H.H. 1945. Cyanosis in infants caused by nitrates in well water. JAMA 29:112.
    [23] Gelberg K H, Church L, Casey G, et al. Nitrate levels in drinking water in rural New York State [J]. Environment Research Section A, 1999, 80:34-40.
    [24] Prasad R., and Power J F. Nitrification inhibitors for agriculture, health, and environment [J]. Advances in Agronomy. 1995, 54: 233-281.
    [25] Health Canada. Guidelines for Canadian drinking water quality [M]. 6th ed. Canada Communications, Ottawa, ON. 1996.
    [26] Randall, G.W., D.R. Huggins, M.P. Russelle, D.J. Fuchs, W.W. Nelson, and J.L. Anderson. 1997. Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. J. Environ. Qual. 26:1240-1247.
    [27] Thompson, T. L., T. A. Doerge, and R. E. Goudin. 2000. Nitrogen and water interactions subsurface drip-irrigated cauliflower:Ⅱ. Agronomic, economic, and environmental outcomes. Soil Sci. Soc. Am. J. 64:412-418.
    [28] Weil, R.R.,R.A.Weismiler, and R.S. Turner. 1990. Nitrate contamination of groundwater under irrigated Coastal Plain soils. J. Environ. Qual. 19:441-448.
    [29] Swistock, B.R., W.E. Sharpe, and P.D. Robillard. 1993. A survey of lead, nitrate and radon contamination of private individual water systems in Pennsylvania. J. Environ. Health 55:6-12.
    [30] Madramootoo, C.A.,K.A.Wayo, and P. Enright. Nutrient losses through tile drains from potato fields [J]. Appl. Eng. Agric. 1992, 8:639-646.
    [31] Debaeke, P., P. Rouet, and E. Justes. Relationship between the normalized SPAD index and the nitrogen nutrition index: Application to durum wheat [J]. Journal of Plant Nutrition 2006, 29: 75-92.
    [32] Wiesler, F., Bauer, M., Kamh, M., Engels, T., Reusch, S. The crop as indicator for sidedress nitrogen demand in sugar beet production: Limitations and perspectives [J]. Journal of Plant Nutrition and Soil Science, 2002, 165(1), 93-99
    [33] Delin S. Within-field variations in grain protein content: Relationships to yield and soil nitrogen and consistency in maps between years [J]. Precision Agriculture, 2004, 5:565-577.
    [34] Hartz T K. Vegetable production best management practices to minimize nutrient loss [J]. Horttechnology, 2006, 16(3): 398-403.
    [35]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9 (1):1-6.
    [36]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998:56-87.
    [37]何萍,金继运,林葆.氮肥用量对春玉来叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3):66-71.
    [38] Oaks A, Aslam M, Boesel Z. Ammonium and amino acid as regulators of nitrate reductase in corn roots [J] . Plant Physiology, 1977, 59:391-394.
    [39] Jacob J , Lawlor D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants [J]. Journal of Experimental Botany, 1991, 42(241): 1003-1011.
    [40] Rodriguez D , Andrade F H , Goudriaan J . Effects of phosphorus nutrition on tiller emergence in wheat [J]. Plant and Soil, 1999, 209: 283-295.
    [41]王月福,于振文,李尚霞,等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学,2002,35(9):1071-1078.
    [42]姜宗庆,封超年,黄联联,等.施磷量对不同类型专用小麦产量和品质的调控效应[J].麦类作物学报,2006,26(5):113-116.
    [43]孙慧敏,于振文,颜红,等.施磷量对小麦产量和品质及氮素利用率的影响[J].麦类作物学报,2006,26 (2):135-138.
    [44]裴雪霞,王秀斌,何萍,等.氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响[J].植物营养与肥料学报,2009,15(1):9-15.
    [45]张福锁.环境胁迫与植物营养.北京:北京农业大学出版社,1993:127-138.
    [46]张国梁,章申.农田氮素淋失研究进展[J].土壤,199,6:291-297.
    [47]李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报,1999,5 3):193-205.
    [48]张民,史衍玺,杨守祥.控制和缓释肥的现状与进展[J].化肥工业,2001,28(5):27-30.
    [49] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91:357-363.
    [50] Cassman K G, Dobermann A, and Walters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management [J]. Ambio, 2002, 31:132-140.
    [51] Mamo M, Malzer G L, Mulla D J, et al. Spatial and temporal variation in economically optimum nitrogen rate for corn [J]. Agronomy Journal, 2003, 95:958-964.
    [52] Scharf P C, Kitchen N R, Sudduth K A, et al. Field-scale variability in optimal nitrogen fertilizer rate for corn [J]. Agronomy Journal, 2005, 97:452-461.
    [53] Lory J A, and Scharf P C. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn [J]. Agronomy Journal, 2003, 95:994-999.
    [54] Algerbo P A. Variable nitrogen application: effects on crop yield and quality [C]. Fourth International Conference on Precision Agriculture, Madison, WI, ASA-CSSASSSA.1999.
    [55] Haneklaus S, Schroeder D, and Schnug E. Strategies for Fertilizer Recommendations based on Digital Agro Resource Maps [C]. In "3rd International Conference on Precision Agriculture", ASA, SSSA, Minneapolis.1996, pp. 361-368.
    [56] Long D S, Carlson G R, and Nielsen G A. Cost analysis of variable rate application of nitrogen and phosphorus for wheat production in northern Montana [C]. In "3rd International Conference on Precision Agriculture" (ASA-CSSASSSA, ed.), Minneapolis, MN.1996, pp. 1019-1031.
    [57] Snyder C, Schroeder T, Havlin J, and Kluitenberg G. An economic analysis of variable rate nitrogen management [C]. In "3rd International Conference on Precision Agriculture" (ASA-CSSA-SSSA, ed.), Minneapolis, MN.1996, pp. 989-998.
    [58]王康,沈荣开,唐友生.用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究[J].灌溉排水,2002,21(4):01-03.
    [59]陈防,鲁建巍.SPAD-502叶绿素计在作物营养快速诊断上的应用[J].湖北农业科学,1996,(2):31-34.
    [60]唐延林,王人潮,张金恒,等.高光谱与叶绿素计快速测定大麦氮素营养状况研究[J].麦类作物学报,2003,23(1):63- 66.
    [61]吴良欢,陶勤南.水稻叶绿素计诊断追氮法研究[J].浙江农业大学学报,1999,25(2):135-138.
    [62] Chapman S C, Barreto HJ . Using a chlorophyl meter to estimate specific leaf nitrogen of tropical maize during vegetative growth [J ]. Agronomy Journal, 1997, 89: 557- 562.
    [63] Earl H J, Tolhnaar M. Maize leaf absorptance of photosynthetically active radiation and its estimation using a chlorophyll meter [J]. Crop Science, 1997, 37: 436- 440.
    [64] Arregui L M, Lasa B, Lafarga A, et al. Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions [J]. Europen Journal Agronomy, 2006, 24:140-148.
    [65] Turner F T, Jund M F. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice [J]. Agronomy Journal, 1991, 83:926-928.
    [66] Varvel G E, Schepers J S, Francis D D. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters [J]. Soil Science Society America Journal, 1997, 6: 1233-1239.
    [67] Wood C W, Reeves D W, Duffield R R, et al. Field chlorophyll measurements for evaluation of corn nitrogen status [J]. Journal of Plant Nutrition, 1992, 15: 487-500.
    [68] Smeal D, Zhang H. Chlorophyll meter evaluation for nitrogen management in corn [J]. Communications in Soil Science and Plant Analysis, 1994, 25(9-10): 1495-1503.
    [69] Blackmer T M, Schepers J S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn [J]. Journal of Production Agriculture, 1995, 8(1): 56-60.
    [70] Schepers J S, Francis D D, Vigil M, Below F E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings [J]. Communications in Soil Science and Plant Analysis, 1992, 23: 2173-2187.
    [71] Waskom R M, Westfall D G, Spellman D E, Soltanpour PN. Monitoring nitrogen status of corn with a portable chlorophyll meter [J]. Communications in Soil Science and Plant Analysis, 1996, 27(3-4): 545-560.
    [72] Follett R H, Follett R F. Use of a chlorophyll meter to evaluate the nitrogen status of dryland winter wheat [J]. Communications in Soil Science and Plant Analysis, 1992, 23(7-8): 687-697.
    [73] Fox R H, Piekielek W P, Macneal K M. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat [J]. Communications in Soil Science and Plant Analysis, 1994, 25:171-181.
    [74] Reeves D W. Determination of wheat nitrogen statuswith a hand-held chlorophyll meter: Influence of management practices [J]. Journal of Plant Nutriton, 1993,16(5): 781-796·
    [75] Roth G W, Fox R H. Tissue test for predicting nitrogen fertilizer requirement of winter wheat [J]. Agronomy Journal, 1989, 81: 502-507.
    [76] Caldwell M M, Gold W G, Harris G, et al. A modulated lamp system for solar UV-B (280–320 nm) supplementation studies in the field [J]. Photochem Photobiol, 1983, 37: 479-485.
    [77] Cerovic Z G, Ounis A, Cartelat A, et al. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves [J]. Plant, Cell and Environment, 2002, 25: 1663-1676.
    [78] Cartelat A, Cerovic Z G, Goulas Y, et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.) [J]. Field Crops Research, 2005, 91: 35-49.
    [79] Kandil F E, Grace M H, Seigler D S, Cheeseman J M. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence [J]. Trees, 2004, 18:518–528.
    [80] Tremblay N, Wang Z J, and Bélec C. Evalution of the Dualex for the assessment of corn nitrogen status [J]. Journal of Plant Nutrition, 2007, 30:1355-1369.
    [81] Peckol P, Yates J and DeMeo-Anderson B. Effects of nutrient availability and grazing on polyphenolic concentrations in marine algae: a temperate and tropical comparison [J]. Bulletin of the Ecological Society of America, 1992, 73:300.
    [82] Bryant J P, Chapin F S, and Klein D R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J]. Oikos, 1983, 40:357-368.
    [83] Jones C G, and Hartley S E. A protein competition model of phenolic allocation [J]. Oikos, 1999, 86: 27-44.
    [84] Goulas Y, Cerovic Z G, Cartelat A, et al. Dualex: A new instrument for field measurements of epidermal UV-absorbance by chlorophyll fluorescence [J]. Applied Optics, 2004, 43: 4488-4496.
    [85] Mass S J, and Dunlap J R. Reflectance, transpiration, and absorptance of light by normal, etiolated, and albino corn leaves [J]. Agronomy Journal, 1989, 81:105-110.
    [86]谭昌伟,王纪华,黄文江,等.不同株型夏玉米群体冠层光谱特性及其应用研究[J].遥感技术与应用,2004,19(4):225-231.
    [87] Blackmer, T.M., Schepers, J.S., Varvel, G.E.,Walter-Shea, E.A., 1996. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies [J]. Agronomy Journal, 88, 1-5.
    [88] Ma B L, Morrison M J, Dwyer L M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize [J]. Agronomy Journal, 1996, 88: 915-920.
    [89] Osborne S L, Schepers J S, Francis D D, et al. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements [J]. Agronomy Journal, 2002, 94: 1215-1221.
    [90]王磊,白由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学.2005,38(11):2268-2276.
    [91]谭昌伟,郭文善,朱新开,等.不同条件下夏玉米冠层反射光谱响应特性的研究[J].农业工程学报.2008,24(9):31-135.
    [92] Stone M L, Solie J B, Raun W R, et al. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat [J]. Transaction of ASAE, 1996, 39(5):1623-1631.
    [93] Mullen R W, Freeman K W, Raun W R, et al . Identifying an in-season response index and the potential to increase wheat yield with nitrogen [J]. Agronomy Journal, 2003 , 95 : 347-351.
    [94]宋文冲,胡春胜,程一松,等.作物氮营养诊断方法研究进展[J].土壤通报,2006,37(2):369-372.
    [95]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006,195-196.
    [96] Curran P J, Dungan J L, Macler B A, et al. Reflectance spectroscopy of fresh whole leaves for the estimation concentration [J]. Remote Sensing Environment, 1992, 35: 415- 420.
    [97]郭建华,王秀,孟志军,等.主动遥感光谱仪Greenseeker与SPAD对玉米氮素营养诊断的研究[J].植物营养与肥料学报,2008,14(1):43-47.
    [98]卢艳丽,白由路,杨俐苹,王磊.利用GreenSeeker法诊断春玉米氮素营养状况的研究[J].玉米科学.2008,16(1):111-114.
    [99] Evans J R. Niortgen and Photosynthesis in the flag leaf of wheat [J].PlantPhysiolo.1983. (72):297-302.
    [100]荆家海.植物生理学[M].西安:陕西科技出版社.1994,13-35.
    [101] Senis S.A., Gnanam A.1981. Isozymes of glucose 262 phosphate dehydrogenase andNAD+2 malate dehydrogenase in shoot froming foliar discs of tobacc.Plan Cell physiol.22:968-975.
    [102]田纪春.氮素追肥后移对小麦子粒产量和旗叶光合特性的影响[J].中国农业科学,2001,34(1):1-4.
    [103] Banziger M.Edmeades G O.Beck D. Breeding for dorught and nitorgen stress to tolerance in Maize: From Theory to Practice [M]. Mexico, D.E:CIMMYT,2000, 20-21.
    [104]谢华,沈荣开,徐成剑,等.水、氮效应与叶绿素关系试验研究[J].中国农村水利水电.2003,8:40-43.
    [105]刘克礼,盛晋华.春玉米叶片叶绿素含量与光合速率的研究[J].内蒙古农牧学院学报,1989,19(2):48-51.
    [106]关迎春,安福全,赵菊,等.氮素对玉米生理特性的影响[J].现代化农业.2007,3:14-16.
    [107]吕丽华,赵明,赵久然,等.不同施氮量下夏玉米冠层结构及光合特性的变化[J].中国农业科学,2008,41(9):2624-2632.
    [108]王帅,韩晓日,战秀梅,等.氮肥不同追施方法对春玉米光合特性的影响[J].杂粮作物,2008,28(3):169-171.
    [109]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162.
    [110]蒋家慧.氮肥运筹对小麦碳素同化、运转和产量的影响[J].麦类作物学报,2004,24(3):69-72.
    [111]郭天财,姚战军,王晨阳,等.水肥运筹对小麦旗叶光合特性及产量的影响[J].西北植物学报,2004,24(10):1786-1791.
    [112]郭天财,冯伟,赵会杰,等.两种穗型冬小麦品种旗叶光合特性及氮素调控效应[J].作物学报,2004,30(2):115-121.
    [113]康国章,王永华,郭天财,等.氮素施用对超高产小麦生育后期光合特性及产量的影响[J].作物学报,2003 ,29(1) :82-86.
    [114]王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报,2002,22(2):55-59.
    [115]李友军,熊瑛,陈明灿,等.不同品质类型小麦叶绿素荧光特性及其与籽粒产量和淀粉积累的关系[J].麦类作物学报,2005,25(6):82-86.
    [116]董彩霞,赵世杰,田纪春,等.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响[J].作物学报,2002,28(1):59-64.
    [117]张雷明,上官周平,毛明策,等.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,2003,14(5):695-698.
    [118]赵俊晔,于振文.施氮量对小麦旗叶光喝速率和光化学效率、籽粒产量与蛋白质含量的影响[J].麦类作物学报,2006,26(5):92-96.
    [119]关义新,林葆凌,碧莹光.氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,2002,6(2):152-158
    [120] Lu C, Zhang J , Zhang Q, et al. Modification of photosystemⅡphotochemistry in nitrogen deficient maize and wheat plants [J]. Plant physiology, 2001, 158 (11): 1 423-1 430.
    [121]孙年喜,宗学凤,王三根.不同供氮水平对玉米光合特性的影响[J].西南农业大学学报(自然科学版),2005,27(2):389-392.
    [122] Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin [J]. Science, 1995, 270(22): 1986-1988.
    [123]王亚琴,梁承邺,黄江康.植物叶片衰老的特性、基因表达及调控[J].华南农业大学学报(自然科学版),2002,23(3):87-90.
    [124]梁秋霞,曹刚强,苏明杰,等.植物叶片衰老研究进展[J].中国农学通报,2006,22(8):282-285.
    [125]王旭军,徐庆国,杨知建.水稻叶片衰老生理的研究进展[J].中国农学通报,2005,21(3):187-191.
    [126]段留生,何钟佩.DPC对棉花叶片发育及活性氧代谢的影响[J].棉花学报, 1996, 8(6): 312-315.
    [127] Pettigrew W T. Potassium deficiency increase specific leaf weightsand leaf glucose levels infield-grown cotton [J]. Agronomy Journal, 1999, 91: 962-968.
    [128]石明岩,吕锡武,稻森悠平. N2O的环境效应及其防逸技术的发展趋势[J].城市环境与城市生态, 2002, 15(5): 45-47.
    [129]李宏伟,王淑霞,李滨等.早衰和正常小麦近等基因系旗叶光合特性与产量比较研究[J].作物学报,2006,32(11):1649-1655.
    [130]刘道宏.植物叶片的衰老[J].植物生理学通讯,1983,(2):14-19.
    [131] Hardy R F W, Khavelka U D, Quebedeaux B. Increasing crop productivity: the problem, stragtegies approach and selected rate-limitations to photosynthesis Proceeding of 4th International Congress of Photosynthesis[C]. London: Biochemical Society, 1978: 695-719.
    [132] Devos N M. Cultivar difference in plant crop photosynthesis [A]. In: Spiertz J, Kramer T H. Crop physiology and Breeding [M]. Pudoe Wageningen, 1979: 71-74.
    [133]张黎萍,荆奇,戴廷波,等.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响[J].应用生态学报,2008,19 (2):311-316.
    [134] Valentinuz O R, Tollenaar M. Vertical profile of leaf senescence during the grain-Filling period in older and newer maize hybrids [J]. Crop Science, 2004, 44: 827-834.
    [135]段巍巍,李慧玲,肖凯,等.氮肥对玉米穗位叶光合作用及其生理生化特性的影响[J].华北农学报,2007,22(1):26-29.
    [136] Molisch H. The Longerity of Plant [M]. PA: Science Press, 1938, 123-143.
    [137]王万里,林芝萍,章秀英,等.灌浆-成熟期间土壤干旱对小麦籽粒充实和物质运转的影响[J].植物生理学报,1982,8(1):67 -80.
    [138] Feller U. Proteolytic in relation to leaf senescence [A]. In Dalling MT(ed). Plant Proteolytic Enzymes(Vol 2)[M]. Boca Raton, FL:CRC Press, 1986, 49-84.
    [139] Leopold A C. Senescence in Plant development [J]. Science, 1961, 34: 1727-1741.
    [140] Leopold A C. Aging,senescence and turnover in plants [J]. Bioscience, 1975, 25: 659-712.
    [141] Leshem Y Y, Halevy A H, Frankel C. Processes and Control of Plant Senescence [M]. New York: EL Seviser Science Press, 1986.
    [142] Nooden L D. Integration of soybean pod development and monocarpic senescence [J]. Physiology Plant, 1984, 62: 273-282.
    [143] Thimann K V. The Senescence of Leaves [A]. In Thimann KV (ed). Senescence in Plants [M]. Boca Raton: CRC Press, 1980, 85-115.
    [144] Thomas H, Stoddart J L. Leaf senescence [J]. Annuual Review of Plant Physiology, 1980, 31: 83-111.
    [145] Woolhouse HW. Leaf senescence [A]. In Smith H, Grierson D (eds). The Molecular Biology of Plant Development[M]. Oxford: Blackwell. 1982, 256-281.
    [146] Woolhouse H W. The biochemistry and regulation of senescence in chloroplasts [J].Canadican Journal of Botany, 1984, 62: 2934-2942.
    [147] Harman D. Aging: a theory based on free radical and radiation chemistry [J]. Journal of Gerontology, 1956, 11(3): 298-300.
    [148] Mccord J M, Fridovich I. Superoxide Dismutase: an Enzymic, Function for Erythrocuprein (Hemocuprein)[J]. Journal of Biological Chemistry, 1969, 244: 6049-6055.
    [149] Harman D. The aging process [J]. Proceedings of the National Academy of Sciences of the United States of America-Physical Sciences, 1981, 78: 7124-7128.
    [150]阎成士,李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通报,1999,16(4):398-404.
    [151]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26:605-615.
    [152]段咏新,李松泉,傅家瑞等.钙对延缓杂交水稻叶片衰老的作用机理[J].杂交水稻, 1997, 12(6): 23-25.
    [153] Foyer C H, Lopez-Del G H, Dat J F, et al. Hydrogen peroxide and glutat hione-associated mechanism of acclamatory st ress tolerance and signaling[J]. Physiology Plant, 1997, 100: 241-254.
    [154] Alscher R C, Donahue J L, Cramer C L. Reactive oxygen species and antioxidant: relationship in green cells [J]. Physiology Plant, 1997, 100: 224-233.
    [155] Noctor C, Foyer C H. Ascorbate and glutat hione: Keeping active oxygen under control [J]. Annuual Review of Plant Physiology and Plant Molecular.Biology, 1998, 49: 249-279.
    [156]杨淑慎,高俊凤,李学俊.高等植物叶片的衰老[J].西北植物学报2001,21(6):1271-1277.
    [157]战秀梅,韩晓日,杨劲峰,等.不同施肥处理对玉米生育后期叶片保护酶活性及膜脂过氧化作用的影响[J].玉米科学,2007,15(1):123-127.
    [158] Mohammadi M, Karr A L. Membrane lipid peroxidation , nitrogen fixation and leghemoglobin content in soybean root nodules [J]. Journal of Plant physiology, 2001, 158(1): 9-19.
    [159]肖凯.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制[J].植物营养与肥料学报,1998,4(4):371-378.
    [160]林琪,侯立白,韩伟,等.干旱胁迫对小麦旗叶活性氧代谢及灌浆速率的影响[J].西北植物学报,2003,23(12):152-156.
    [161]上官周平,李世清.旱地作物氮素营养生理生态[M].北京:科学出版社,2004.
    [162]张绪成,上官周平.不同抗旱性小麦叶片膜脂过氧化的氮素调控机制[J].植物营养与肥料学报,2007,13(1):106-112.
    [163]王进军,柯福来,白鸥,等.不同施氮方式对玉米干物质积累及产量的影响[J].沈阳农业大学学报,2008,39(4):392-395.
    [164]崔振岭,陈新平,张福锁,等.华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量[J].应用生态学报,2007,18(10):2227-2232.
    [165]王志敏,王树安,苏宝林.小麦穗粒数的调节[C]∥作物高产高效生理学研究进展.北京:科学出版社,1996:108-116.
    [166]蔡大同,苑泽圣.氮肥不同时期施用对优质小麦产量和加工品质的影响[J].土壤肥料,1994,(2):19-24.
    [167]俞仲林,黄德明.氮肥用量对小麦籽粒产量和品质的影响[J].南京农业大学学报,1987,10 (4):9-10.
    [168]曾浙荣,庞家智.我国北部冬麦区小麦品种籽粒灌浆特性的研究[J].作物学报,1996,6:721-727.
    [169]戴忠民.氮素代谢对小麦生理特性的影响研究进展[J].河南农业科学,2008,7:10-13.
    [170] Kayode G O, and Agboola A A. Effect of different nitrogen levels, plant population and soil nutrient status on yield and yield components of maize (Zea mays L.) in different ecological zones of Nigeria [J]. Fertilizer Research .1981, 2: 177-191.
    [171]马兴林,王庆祥,钱成明,等.不同施氮量玉米超高产群体特征研究[J].玉米科学2008,16(4):158-162.
    [172]戴明宏,陶洪斌,王利纳,等.不同氮肥管理对春玉米干物质生产、分配及转运的影响[J].华北农学报.2008,23(1):154-157.
    [173] Borras L, Otegui M E. Maize kernel weight response to post-flowering source-sink ratio [J] . Crop Science, 2001, 49: 1816-1822.
    [174] Uhart S A, Andrade F H. Nitrogen deficiency in maize:ⅠEffects on crop growth, development, dry matter partitioning and kernel set [J]. Crop Science, 1995, 35: 1376-1383.
    [175]赵艳花,张鹏,王朝明,等.氮肥用量与追肥方式对安单3号产量的影响[J].种子,2008,27(8):71-73.
    [176]王双,陈家宙,罗勇.施氮水平对不同干旱程度夏玉米生长的影响[J].植物营养与肥料学报2008,14(4):646-651.
    [177]程国平,安兴智,和盛,等.氮肥对黔兴201植株性状和产量的影响[J].种子.2008,27(4):55-56.
    [178]孙宝启.硝酸还原酶与氮素利用的关系及其在作物育种中的应用[J].北京农业大学学报. 1993, 19(3): 29- 33.
    [179]何世炜,常生华,张建全,等.氮素用量和密度对玉米营养体产量的影响[J].草业科学,2003,12(1):74- 79.
    [180]申建波,张福锁,毛达如.植物矿质营养的生态意义Ⅱ植物对矿质养分的吸收、利用和分配[J].生态农业研究,1997,(5):11-14.
    [181]耿玉翠,范树仁.玉米氮肥适宜追肥期研究[J].山西农业科学,1999,27(1):21- 29.
    [182]杨国航,陈国平,王荣焕,等不同氮肥和密度水平对京单28产量效应的研究[J].玉米科学。2008,16(4):176-178.
    [183]杨德光,牛海燕,张洪旭,等.氮胁迫和非胁迫对春玉米产量和品质的影响[J].玉米科学,2008,16(4):55-57.
    [184]樊廷录,王勇,崔明九.旱地地膜小麦研究成效和加快发展的必要性及建议[J].干旱地区农业研究,1997,15 (1):27-32.
    [185]张保军,郭立宏.浅谈我国地膜小麦的理论研究与实践应用[J].水土保持学报,2000,7(1):54-58.
    [186]王勇,樊廷录,王立明,等.旱塬冬小麦周年覆膜穴播栽培技术研究[J].干旱地区农业研究,1999,17 (1):13-19.
    [187]牛俊义,李兴涛,盖玥,等.地膜覆盖栽培对春小麦叶片衰老特性的影响[J].麦类作物学报,2005,25 (5):92-95.
    [188]牛一川,姚天明,安建平,等.地膜覆盖栽培对冬小麦衰老进程的影响[J].麦类作物学报,2004,24 (3):90-92.
    [189]王俊,李凤民,宋秋华,等.地膜覆盖对土壤水温和春小麦产量形成的影响[J].应用生态学报,2003,14 (2):205-210.
    [190] Steiner J L.Crop residue effects on water conservation [A]. In Managing Agricultural Residues [C]. Lewis Publishers Inc. ,Boca Raton, Florida, USA, 1994, 41-76.
    [191]李其,张萍,贾晓东,等.秸秆覆盖对冬小麦的影响[J].农机化研究,2009,3:137-140.
    [192]籍增顺,王盛霞,洛希图,等.旱地玉米免耕覆盖土壤水分研究[J].山西农业科学,1994,22 (3):7-12.
    [193]谷洁,高华,方日尧.施肥和秸秆覆盖对旱地作物水分利用效率的影响[J].农业工程学报,1998,14 (2):160-164.
    [194]武志杰,张海军,许广山,等.玉米秸秆还田培肥土壤的效果[J].应用生态学报,2002,13 (5):539-542.
    [195]李全起,陈雨海,吴巍,等.秸秆覆盖和灌溉对冬小麦农田光能利用率的影响[J].应用生态学报,2006,17 (2):243-246.
    [196]杨荣光,毕建杰,王升国,等.秸秆覆盖对麦田土壤含水量及小麦生长状况的影响[J].山东农业科学,2009,2:43-44.
    [197]曲成文,孙美芝,綦长海,等.冬小麦莱州137特性及超高产栽培技术[J].山东农业科学,2000,1:21-22.
    [198] Hussain F, Bronson K F, Yadvinder S, et al. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia [J]. Agronomy Journal, 2000, 92: 875-879.
    [199] Solari F, Shanahan J, Ferguson R, et al. Active sensor reflectance measurements of corn nitrogen status and yield potential [J]. Agronomy Journal, 2008, 100: 571-579.
    [200] Clay D E, Kim K I, Chang J, et al. Characterizing water and nitrogen stress in corn using remote sensing [J]. Agronomy Journal, 2006, 98: 579-587.
    [201] Mullen R W, Freeman K W, Ranu W R, et al. Identifying an in-season response index and the potential to increase wheat yield with nitrogen [J]. Agronomy Journal, 2003, 95: 347-351.
    [202] Tremblay N, and Bélec C. Adapting nitrogen fertilization to unpredictable seasonal conditions with the least impact on-the environment. Horttechnology, 2006, 16(3): 408-412.
    [203] Shapiro C.A. Using a chlorophyll meter to manage nitrogen applications to corn with high nitrate irrigation water [J]. Communications in Soil Science and Plant Analysis, 1999, 30: 1037-1049.
    [204] Harre E A, and Bridges J D. Importance of urea fertilizers [M]. In B.R. Bock and D.E. Kissel (ed.) Ammonia volatilization from urea fertilizers. Bull. Y-206.Natl. Fert. Dev. Ctr., TVA, Muscle Shoals, AL. 1988, p. 1-15.
    [205] Al-Kanani T, MacKenzie A F, and Barthakur N N. Soil water and ammonia volatilization relationships with surface-applied nitrogen fertilizer solutions [J]. Soil Science Society America Journal, 1991, 55: 1761-1766.
    [206] Stumpe J M, Vlek P L G, and Lindsay W L. Ammonia volatilization from urea and urea phosphates in calcareous soils [J]. Soil Science Society America Journal, 1984, 48: 921-927.
    [207] Shoji S, Delgado J, Mosier A, et al. Use of N0led release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality [J]. Communications in Soil Science and Plant Analysis, 2001, 32: 1051-1070.
    [208] Zvomuya F, Rosen C J, Russelle M P, et al. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato [J]. Journal Environmental Quality, 2003, 32:480-489.
    [209] Fox R H, Piekielek W P, and Macneal K E. Estimating ammonia volatilization losses from urea fertilizers using a simplified micrometeorological sampler [J]. Soil Science Society America Journal, 1996, 60: 596-601.
    [210] Stumpe J M, and Vlek P L G. Acidification induced by different nitrogen sources in columns of selected tropical soils [J]. Soil Science Society America Journal, 1991, 55: 145-151.
    [211] Pleysier J L, Arora Y, and Juo A S R. Nitrogen leaching and uptake from calcium cyanamide in comparison to urea and calcium ammonium nitrate in an Ultisol from the humid tropics [J]. Fertilizer Research, 1987, 12: 193-199.
    [212] Bergstrom L, Johansson R. Leaching of nitrate from monolith lysimeters of different types of agricultural soils [J]. Journal Environmental Quality, 1991, 20:801-807
    [213]郭庆法,王庆成,汪黎明.中国玉米栽培学[M].上海:上海科学技术出版社,2004.
    [214] Maddux L D, Kissel D E, and Barnes P L. Effect of nitrogen source, placement, and application time on irrigated corn [J]. Journal of Fertilizer Issues, 1984,1: 86-90.
    [215] Bjorneberg D L, Karlen D L, Kanwar R S, et al. Alternative N fertilizer management strategies effects on subsurface drain effluent and N uptake [J]. Appled Engineering in Agriculture, 1998, 14: 469-473.
    [216] Blackmer A M, and White S E. Using precision farming technologies to improve management of soil and fertilizer nitrogen [J]. Australia Journal of Agriculture Research, 1998, 49:555-564.
    [217] Schmitt M A, and Randall G W. Developing a soil nitrogen test for improved recommendations for corn [J]. Journal Production Agricuture, 1994, 7:328-334.
    [218] Afyuni M M, Cassel D K, and Robarge W P. Effect of landscape position on soil water and corn silage yield [J]. Soil Science Society America Journal, 1993, 57:1573-1580.
    [219] Moulin A P, Anderson D W, and Mellinger M. Spatial variability of wheat yield, soil properties and erosion in hummocky terrain [J]. Canadian Journal of Soil Science, 1994, 74:219-228.
    [220]肖凯,王殿武,张荣铣,等.小麦叶片衰老生理变化的研究[J].麦类作物,1994,(1):46-48.
    [221]冯佰利,王长发,苗芳,等.抗旱小麦的冷温特性研究[J].西北农林科技大学学报(自然科学版),2002,30 (2):6-10.
    [222]冯佰利,高小丽,王长发,等.干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究[J].中国生态农业学报,2005,13(4):74-76.
    [223]王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,(1):1-7.
    [224]魏道智,戴新宾,许晓明,等.植物叶片衰老机理的几种假说[J].广西植物,1998,18(1):89-96.
    [225] Kaiser W M. The effect of hydrogen peroxidide on CO2 fixation of isolated intact chlorolasts. Biochem Biophys Acta, 1976,400: 476-482.
    [226]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    [227]姜东,于振文,许玉敏,等.有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响[J].土壤学报,1999,36 (4) :440-447.
    [228]李卫民,周凌云,徐梦雄.土壤水分胁迫下氮素营养对冬小麦光合生理和环境的关系的影响[J].土壤学报,2002,39(3):397-403.
    [229]陈建军,任永浩,陈培元,等.干旱条件下氮素营养对小麦不同抗旱品种生长的影响[J].作物学报,1996,22(4):483-489.
    [230]王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究[J].西北植物学报,2000,20(5):727-732.
    [231]高俊凤.植物生理学实验技术[M] .西安:世界图书出版公司,2000,101-103.
    [232]苏正淑,张宪政.几种测定植物叶绿素含量的方法比较[J].植物生理学通讯,1989,(5):77-78.
    [233]钱嘉渊译.施特尔马赫B.酶的测定方法[M].北京:中国轻工业出版社,1992,186-194.
    [234] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation [J]. Arch Biochem Biophys, l968, 125: l89-198.
    [235]胡小平,王长发.SAS基础及统计实例教程[M].西安:西安地图出版社,2001.
    [236]许长成,邹琦.大豆叶片旱促衰老及其与膜脂过氧化的关系[J].作物学报,1993,19(4):359-364.
    [237] Foyer C, Rowell J ,Waler D. Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination [J]. Planta, 1983, 157: 239-244.
    [238]潘瑞炽,豆志杰,叶庆生.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响[J].植物生理学报,1995,21(3):221-228.
    [239] Asada K, Kiso K, Yoshikawa K. Univalent reduction of molecular oxygen by spinach choloroplasts on illumination [J]. Journal of Biological Chemistry, 1974(249): 2175-2184.
    [240] Halliwell B. Chloroplasts Metabolism[M]. Oxford:Clarendon Press.1981:179.
    [241]刘萍,郭文善,浦汉春,等.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响[J].中国农业科学,2005,8(12):2403-2407.
    [242]郭天财,王晨阳,朱云集,等.后期高温对冬小麦根系及地上部衰老的影响[J].作物学报,1998,24:957-962.
    [243]汪景宽,须湘成,张旭东,等.长期地膜覆盖对土壤磷素状况的影响[J].沈阳农业大学学报.1994,25(3):311-315.
    [244]沈新磊,黄思光,王俊等.半干旱农田生态系统地膜覆盖模式和施氮对小麦产量和氮效率的效应[J].西北农林科技大学学报(自然科学版),2003,31(1):1-14.
    [245] Visser R G F, Stolte A, Jacobsen E. Towards modifying plants for altered starch content and composition[J]. Plant Science, 1994, 11: 63-68.
    [246]张立言,刘树欣,李振国,等.高产麦田开花后干物质积累、运转、分配与产量构成[J].北京农学院学报,1988,3(2):76-83.
    [247]姜东,于振文,李永庚,等.冬小麦叶茎粒可溶性糖含量变化与籽粒淀粉积累的关系[J].麦类作物学报,2001,21(3):38-41.
    [248] Dougllas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize[J]. Plant Physiology, 1988, 86: 1013-1019.
    [249]张秋英,刘娜,金剑,等.春小麦籽粒淀粉和蛋白质积累与底物供应的关系[J].麦类作物学报,2000,29(1):55-58.
    [250]刘仲齐,吴兆苏,俞世蓉.吲哚乙酸和脱落酸对小麦籽粒淀粉积累的影响[J].南京农业大学学报,1992,15(1):7-l2.
    [251] Lingle S E, Chevalier P.Movement and metabolism of sucrose in developing barley kernels.Crop Science, 1984, 24: 3l5-3l9.
    [252]赵会杰,邹琦,张秀英.两个不同穗型小麦品种生育后期碳水化合物代谢的比较研究[J].作物学报,2003,29(5):676-681.
    [253]李友军,熊瑛,吕强,等.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系[J].中国农业科学,2005,38(11):2219-2226.
    [254]姜东,于振文,李永庚,等.施氮水平对鲁麦22籽粒淀粉合成的影响[J].作物学报,2003,29(3):462-467.
    [255]张睿,刘党校,李景琦,等.地膜覆盖对低群体冬小麦生长发育效应的研究[J].麦类作物,1998,18(1):55-57.
    [256]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49
    [257]刘晓冰,宋春雨,Stephen J.Herbert,等.覆盖作物的生态效应[J].应用生态学报,2002,13(3):365-368.
    [258]何照范主编.粮油籽粒品质及其分析技术[M].北京:农业出版社,1985.
    [259]张元培.展望新世纪的优质小麦品种研究与开发(二)[J].粮食与饲料工业,1998(8):1-3.
    [260]高松洁,王文静,郭天财,等.不同穗型冬小麦品种灌浆期旗叶碳氮代谢特点及籽粒淀粉积累动态[J].作物学报,2003,29(3):427-431.
    [261]刘晓冰,李文雄,张志学.春小麦子粒灌浆过程中淀粉和蛋白质积累规律的初步研究[J].作物学报,1996,22(6):736-740.
    [262]李友军,熊瑛,陈明灿,等.氮、磷、钾对豫麦50旗叶蔗糖和籽粒淀粉积累的影响[J].应用生态学报,2006,17(7):1196-1120.
    [263] Vyn, T J, Janovicek K J, Miller M H, et al. Soil nitrate and crop response to preceding small grain fertilization and cover crops [J]. Agronomy Journal, 1999, 91:17-24.
    [264] Arora Y, Juo A S R. Leaching of fertilizer ions in a Kaolinitic Ultisol in the high rainfall tropics: Leaching of nitrate in field plots under cropping and bare fallow [J]. Soil Science Society America Journal, 1982, 46: 1212-1218.
    [265] Randall G W, Vetsch J A, Huffman J R. Corn production on a subsurface-drained mollisol as affected by time of nitrogen application and nitrapyrin [J]. Agronomy Journal, 2003, 95:1213-1219.
    [266] Fox R H, Kern J M, Piekielek W P. Nitrogen fertilizer source, and method and time of application effects on no-till corn yields and nitrogen uptake [J]. Agronomy Journal, 1986, 78:741-746.
    [267] Russelle M P, Delbert E J, Hauck R D, et al. Effects of water and nitrogen management on yield and 15N-depleted fertilizer use efficiency of irrigated corn [J]. Soil Science Society America Journal, 1981, 45:553-558.
    [268] Randall G W, Iragavarapu T K, Bock B R. Nitrogen application methods and timing for corn after soybean in a ridgetillage system [J]. Journal Production Agriculture, 1997, 10: 300-307.
    [269] Scharf P C, Wiebold W J, Lory J A. Corn yield response to nitrogen fertilizer timing and deficiency level [J]. Agronomy Journal, 2002, 94:435-441.
    [270] Sripada, R P, Heiniger R W, White J G, Weisz R. Aerial color infrared photography for determining late-season nitrogen requirements in corn [J]. Agronomy Journal, 2005, 97:1443-1451.
    [271]沈秀瑛,戴俊英,胡安畅,等.玉米群体冠层特征与光截获量及产量关系的研究[J].作物学报,1993,19(3):246-252.
    [272]黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报,2001,7(3):293-297.
    [273] Hinzman L D, Bauer M E, Daughtry C S T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat [J]. Remote Sensing of Environment, 1986, 19: 47-61.
    [274] Ritchie S W, Hanway J J, Benson G O. How a corn plant develops [R]. Special Report (No. 48). Ames, IA, USA: Iowa State University of Science and Technology Cooperative Extension Service. 1993.
    [275] Lachat Instruments. Methods list for automated ion analyzers (flow injection analyses, ionchromatography) [EB/OL]. 2005. Available at www.lachatinstruments.com/applications/MethodsList.PDF (accessed 17 Dec. 2007). Lachat Instruments, Loveland, CO.
    [276] Jiang D, Dai T, Jing Q, et al. Effects of long-term fertilization on leaf photosynthetic characteristics and grain yield in winter wheat [J]. Photosynthetica, 2004, 42(3): 439-446.
    [277] Ma B L, Dwyer L M, Gregorich E G. Soil N amendment, effects on seasonal N mineralization and N cycling in maize production [J].Agronomy Journal, 1999, 91:1003-1009.
    [278]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米[J].生态学报,2002,22 (1):49-53.
    [279]范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化[J].应用生态学报,2008,19(4):799-806.
    [280] Elmi A A, Madramootoo C, Egeh M, et al.Environmental and agronomic implications of water table and nitrogen fertilization management [J]. Journal of Environmental Quality, 2002, 31: 1858– 1867.
    [281]贾良良,陈新平,张福锁.作物氮素营养诊断的无损测试技术[J].世界农业,2001,(6):36-371.
    [282] Welch L F, Mulvaney D L, Oldham M G, et al. Corn yields with fall, spring, and sidedress nitrogen [J]. Agronomy Journal, 1971, 63:119-123.
    [283]鱼欢,冯佰利,邓文明,等.施氮量和栽培模式对旱地冬小麦旗叶衰老及其活性氧代谢的研究[J].西北植物学报,2007,7(10):2065-2071.
    [284] Delgado J A, Ristau R J, Dillon M A, et al. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations [J]. Communication in Soil Science and Plant Analysis, 2001, 32(7-8): 1321-1354.
    [285] Tremblay N, Fallon E, Bélec C, et al. Growing season and soil factors related to predicting corn nitrogen fertilization in Quebec. Managing crop nitrogen for weather [M]. American: T.W. Bruulsema, Ed. 2007, 132 p.
    [286] Argenta G, Ferreira da Silva P R, and Sangoi L. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize [J]. Ciência Rural, 2004, 34 (5): 1379-1387.
    [287] Blackmer, T M, and Schepers J S. Techniques for monitoring crop nitrogen status in corn [J]. Communications in Soil Science and Plant Analysis, 1994, 25: 1791-1800.
    [288]朱新开,盛海君,顾晶,等.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究[J].麦类作物学报,2005,25(2):46-50.
    [289]蒋阿宁,黄文江,刘克礼,等.利用叶绿素计进行冬小麦变量施肥及其效应研究[J].植物营养与肥料学报,2007,13(6):1092-1097.
    [290] Bronson K F, Chua T T, Booker J D, et al. In-Season nitrogen status sensing in irrigated cotton: II. Leaf nitrogen and biomass [J]. Soil Science Society America Journal, 67: 1439-1448.
    [291] Stevens W B, Blaylock A D, Krall J M, et al. Sugarbeet yield and nitrogen use efficiency with preplant broadcast, banded, or point-injected nitrogen application[J]. Agronomy Journal, 2007, 99: 1252-1259.
    [292] Bandel V A, Dzienia S, and Stanford G. Comparison of N fertilizers for no-till corn [J]. Agronomy Journal, 1980, 72: 337-341.
    [293] Hashimoto M, Herai Y, Nagaoka T, and Kouno K. Nitrate leaching in granitic regosol as affected by N uptake and transpiration by corn[J]. Soil Science and Plant Nutrient. 2007, 53(3): 300-309.
    [294] Maxwell K. and Johnson G N. Chlorophyll fluorescence—A practical guide [J]. Journnal of Experimental Botany, 2000, 51: 659-668.
    [295] Leakey A D B, Uribelarrea M, Ainsworth E A, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought [J]. Plant Physiol. 2006, 140: 779-790.
    [296] Xu Z Z, Zhou G S, Wang Y L, et al. Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages [J]. Journal Plant Growth Regulation, 2008, 27: 83-92.
    [297] Zhao D L, Reddy K R, Kakani V G, et al. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil. 2003, 257: 205-217.
    [298] O’Neill P M, Shanahan J F, Schepers J S, et al. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen [J]. Agronomy Journal, 2004, 96: 1660-1667.
    [299] Halvorson A D, Grosso S J D, and Reule C A. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems [J]. Journal of Environmental Quality, 2008, 37: 1337-1344.
    [300] Maddux L D, Barnes P L, Raczkowski C W, et al. Broadcast and subsurface-banded urea nitrogen in urea ammonium nitrate applied to corn [J]. Soil Science Society America Journal, 1991, 55: 264-267.
    [301] Tomar J S, and Soper R J. Fate of tagged urea N in the field with different methods of N and organic matter placement [J]. Agronomy Journal, 1981, 73: 991-995.
    [302] Binder D L, Sander D H, and Walters D T. Maize response to time of nitrogen application as affected by level of nitrogen deficiency [J]. Agronomy Journal, 2000, 92: 1228-1236.
    [303] Cheng L L. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves [J]. Journnal of Experimental Botany, 2003, 54: 385-393.
    [304] Ohsumi A, Hamasaki A, Nakagawa H, et al. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance [J]. Ann. Bot-London 2007, 99: 265-273.
    [305]黄瑞冬,王进军,许文娟.玉米和高粱叶片叶绿素含量及动态的比较[J].杂粮作物,2005,25(1):30-311.
    [306] Teal R K, Tubana B, Girma K, et al. In-season prediction of corn grain yield potential using normalized difference vegetation index [J]. Agronomy Journal, 2006, 98: 1488-1494.
    [307] Bronson K F, Booker J D, Keeling J W, et al. Cotton canopy reflectance at landscape scale as affected by nitrogen fertilization [J]. Agronomy Journal, 2005, 97: 654-660.
    [308] Zubillaga M and Urricariet S. Assessment of nitrogen status in wheat using aerial photography [J]. Communications in Soil Science and Plant Analysis, 2005, 36: 1787-1798.
    [309] Eghball B, Schepers J S, Negahban M, et al. Spatial and temporal variability of soil nitrate and corn yield: Multifractal analysis [J]. Agronomy Journal, 2003, 95:339-346.
    [310] Corwin D L, and Lesch S M. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines [J]. Agronomy Journal, 2003, 95:455-471.
    [311] Johnson C K, Doran J W, Duke H R, et al. Field-scale electrical conductivity mapping for delineatingsoil condition [J]. Soil Science Society America Journal, 2001, 65: 1829-1837.
    [312] Kitchen N R, Sudduth K A, and Drummond S T. Soil electrical conductivity as a crop productivity measure for clay pan soils[J]. Journal Production Agriculture, 1999, 12:607-617.
    [313] Mueller T G, Hartsock N J, Stombaugh T S, et al. Soil electrical conductivity map variability in limestone soils overlain by loess [J]. Agronomy Journal, 2003, 95:496-507.
    [314] Kravchenko A N, and Bullock D G. Spatial variability of soybean quality data as a function of field topography: I. Spatial data analysis [J]. Crop Science, 2002, 42:804-815.
    [315] Kravchenko A N, and Bullock D G. Spatial variability of soybean quality data as a function of field topography: II: A proposed technique for calculating the size of the area for differential soybean harvest [J]. Crop Science, 2002, 42:816-821.
    [316] Kravchenko A N, Bullock D G, and Boast C W. Joint multifractal analysis of crop yield and terrain slope [J]. Agronomy Journal, 2000, 92:1279-1290.
    [317] Halvorson G A, and Doll E C. Topographic effects on spring wheat yields and water use [J]. Soil Science Society America Journal, 1991, 55:1680-1685.
    [318] Fiez T E, Miller B C, and Pan W L. Winter wheat yield and grain protein across varied landscape positions [J]. Agronomy Journal, 1994, 86:1026-1032.
    [319] Flowers M., Weisz R, and Heiniger R. Remote sensing of winter wheat tiller density for early nitrogen application decisions [J]. Agronomy Journal, 2001, 93: 783-789.
    [320] Pennock D J, Zebarth B J, Dejong E. Landform classification and soil distribution in hummocky terrain, saskatchewan, Canada [J]. Geoderma, 1987, 40: 297-315.
    [321] Martínez D E and Guiamet J J. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status [J]. Agronomie, 2004, 24: 41-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700