用户名: 密码: 验证码:
黄土高原吕二沟流域环境演变的生态水文响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境变化的生态水文响应,以气候变化和由于人类活动引起的土地利用变化对生态水文过程影响集中表现出来。本研究通过对黄土高原吕二沟数据分析,预测未来40年内的气候和土地利用变化,在此基础上应用改进后的生态水文模型TOPOG对将来时刻的水文过程进行模拟,并分析其发生的成因,旨在为水土保持治理和土地利用改造建设提供技术支持。得出主要结论有:
     (1)吕二沟流域多年平均降水量为533.65mm,年际间变化波动大,在整个研究阶段不发生突变,一直处于明显的减少的趋势,6-9月份降水占全年降水的85.62%。降水量在空间上表现出越靠近流域上游、海拔越高其降水量愈大,空间异质性越大;研究流域60年来最高、平均和最低气温突变出现在1997-1999年之间,以平均0.024℃/a、0.0279℃/a和0.0289℃/a的速度升高;吕二沟流域实际蒸散发没有明显的发生突变,一直处于减少的趋势,主要受到降水影响,潜在蒸散发逐年升高,是由降水和气温变化共同决定;在分析气候变化趋势基础上,对未来40年气候变化进行预测。
     (2)在研究期间,黄土高原吕二沟流域土地利用方式发生了很大的改变,主要表现在草地和坡耕地面积减少,梯田和林地面积增大;在1986-1995年为土地利用整体规划期,类型和数量上的变化较大;1995-2001年为自我调整期,变化数量较小2001-2008年为稳定期,各种土地利用变化微弱;应用CA-Markov模型,借助IDRISI软件,在去除土地利用变化加速度的基础上,以土地利用变化速度为依据,对研究流域不同土地利用类型在数量上和空间上将来的变化进行模拟预测。
     (3)吕二沟流域土壤水文特征与土壤物理特性关系紧密。不同土地利用类型土壤,其颗粒组成不同,孔隙度存在差异,土壤含水量垂直方向上变化幅度不大;不同土地利用类型对土壤饱和渗透率影响较大,饱和渗透率表现出刺槐林>草地>耕地和果园的规律,同时发现土壤饱和渗透率与含水量无关,与土壤容重和非毛管孔隙相关性较大;研究区内土壤抗蚀指数在较小的变化区间内,草地土壤抗蚀指数最大,坡耕地抗蚀指数最小,土地利用类型土壤抗蚀指数k均表现出侵蚀沟上游<中游<下游的变化;不同的土地利用方式土壤抗冲系数C值大小排序为:刺槐林>草地>梯田>果园>坡耕地,土壤的抗冲特性与土壤中根系密度关系较大,土壤抗冲性随着坡度增加而减小
     (4)研究流域径流量和输沙量在年际间的变化表现出形同的趋势,泥沙对于径流的响应较为强烈;吕二沟流域径流和输沙量在基准期,非显著变化期和显著变化期变化程度不同,径流泥沙在非显著变化期和显著变化期中,土地利用贡献率降低,气候变化贡献率逐渐增高,治理措施在本流域减小径流损失和减弱泥沙流失具有重要作用。
     (5)研究区湿度指数随着净降水量和透水率的增加而增加,在不同季节中,附加辐射权重的湿度表现出夏季>春、秋分>冬季的趋势;在地表覆盖越好,流域侵蚀危险等级越低,地表裸露率越大,流域侵蚀危险等级越高;在同种地表盖度情况下,坡度较缓的地带侵蚀灾害指数较大。吕二沟流域土壤侵蚀主要发生在坡面上,而沟道侵蚀较弱;域流域较大范围的崩塌是由于10-50mm/d降雨形成的,崩塌危险指数空间分布表现坡上值小于坡下值,总体上游小于下游,在沟道之中最大,在同等降水情况下,上游和坡上发生崩塌概率最大,沟道之中发生崩塌概率最小;改进后的模型使得径流过程的纳什效率系数从0.68提升为0.81,输沙过程纳什系数从0.72提升到0.85,模拟值更加符合实际观测值。
     (6)在气候和土地利用预测的基础上,应用改进后的TOPOG模型,对环境演变下的对未来40年生态水文过程进行模拟分析,发现:未来40年内,吕二沟流域降水资源、径流输沙均逐渐减少,且表现出季节变化,蒸散发损耗水量在未来40年内占水资源比例逐渐增强,径流所占比例逐渐减弱;由于人类活动引起的土地利用变化对径流泥沙贡献率逐渐降低,而由于气候波动对径流泥沙影响越来越显著;气候变化对径流贡献率比对泥沙贡献率大,而土地利用变化对泥沙贡献率则大于对径流贡献率;一年之中,随着雨季来临,气候变化和土地利用变化与水文过程相关性增强,随着雨季结束而减弱,在不同的生态水文过程中,水文过程与气候相关系数均大于其与土地利用变化系数,在雨季表现更为明显。
The ecohydrology processes response to environmental change, is performance that the change of ecohydrology processes with the climate and land use changes. The Lvergou watershed has been taken as study area, through analyzing the climate, land use and soil datas, forecasting climate and land use change the next 40 years. The improved eco-hydrological model TOPOG was adopted to simulate the ecohydrology processes, and analyze the causes of its. The research provided the technical support for the department of soil and water conservation and land use. The main conclusions were as follows:
     (1) The rainfall has large fluctuations between years, with average rainfall of 533.65mm. The sudden change did not occur throughout the study period, but has been in obvious decline. The rainfall in June-September accounted for 85.62% in years. For many years, the average annual precipitation on upper> middle> lower reaches of the property, besides increasing with altitude and the more the precipitation, the more spatial heterogeneity. In the past 50 years, the high, average and minimum temperatures increased at the speed of 0.024℃/a,0.0279℃/a and 0.0289℃/a, and the sudden change occurred at 1997-1999. The actual evapotranspiration has no significant of sudden change, and been in decline mainly affected by precipitation. The potential evapotranspiration increased, and decision of precipitation and temperature change. Climate in next 40 years has been predicted, based on analyzing of climate change.
     (2) The land use/cover has great changes at Lvergou watershed in the Loess Plateau during the study period. The mainly changes is the area of grassland and sloping land were reduce, terraces and woodland area were increase. In 1986-1995 for the overall planning of land use, the type and area of land use violently changes; in 1995-2001 for the self-adjustment period, the number of small-range changes; in 2001-2008 was stable, a variety of land use change slightly. Appling CA-Markov model, using IDRISI software, removing the acceleration of land use change, based on the rate of land use change, the quantity and spatial of land use has been simulated in forecast at study watershed.
     (3) The relationship between hydrologic and physical of soil in Lvergou watershed is closely. There are different particle composition and capillary, in different types of land use soil. But soil moisture changed slightly the vertical direction. The soil permeability coefficients of locust forest is biggest, the cultivated land and orchard is smallest. The soil permeability coefficient is well related to bulk density and non-capillary pore. The anti-erodibility (k) changes in a small bound. The largest, the least k appeared in grassland and slope farmland. The k precipitated on upstream grass> terrace> orchard> slope farmland. The C and plant roots are significantly relevant, and keep decreasing with the increase of slope.
     (4) The precipitation and sediment changed in a same way between the annual, during 1982-2010 in Lvergou watershed. Sediment is response for runoff strongly. Runoff and sediment have changes in based period, non-significant change period and significant change period. During the non-significant change period and significant change period, the contribution rate of land use reduced, and the contribution rate of climate increased, control Measures is important to decline runoff and sediment.
     (5) Wetness index(WI) varies as a consequence of these different data inputs. WI increased by uniform drainage flux value(q) increase; A comparison was made between a set of uniform transmissivity (T) and uniform rainfall (R) values, and found that TOPOG predicted the expected trend that soil moisture within the watershed increased with increasing uniform T and uniform R values. In different seasons, the value of radiation-weighted WI is summer>equinox> winter. Erosion hazard index of watershed (HW) is lower with the best land cover, and greater with high rate of surface exposed. In the same ground cover, soil erosion occurs mainly on the slope, and channel erosion is weak in the study area. The rainfall at the range of 10-50mm/d caused a wind range of area to landslide in Lvergou watershed. The landslide hazard index (Rcr) in upslope and upstream were lower. The probability of occurrence of landslide at groove was the smallest in the same case of rainfall. The improved model enhanced the Nash efficiency coefficient from 0.68 to 0.81 in runoff processes, and from 0.72 to 0.85 in sediment transport processes, the simulated values were more in line with the observed values.
     (6) The improved TOPOG model was adopted to simulate and analysis the ecohydrology processes based on the climate and land use forecasted in next 40 years. The precipitation, runoff and sediment will gradually reduced, showed seasonal variation. The evapotranspiration gradually increased the proportion, the proportion of runoff gradually decreased of total water resources in the future. The contribution rate of land use change on runoff and sediment will gradually decrease, and the contribution rate of climate change will be more and more significant. The contribution rate of climate change on runoff will be larger than contribution of sediment, while the contribution rate of land use change on sediment will be larger than contribution of runoff. The correlation between climate change, land use changes and ecohydrology processes is going to enhance in the rainy seasons. The coefficient of hydrological processes and climate is greater than land use change, more, obviously in the rainy seasons.
引文
1.安如,赵萍,王慧麟,等.遥感影像中居民地信息的自动提取与制图[J].地理科学,2005,2(1):74-80.
    2.摆万奇,赵士洞.土地利用变化驱动力系统分析[J]资源科学,2001,23(:3)39-41
    3.摆万奇.深圳市土地利用动态趋势分析[J].自然资源学报,2000,15(2):112-116.
    4.布仁仓,常禹,胡远满,等.基于Kappa系数的景观变化测度[J].生态学报,2005,25(4):778-784.
    5.蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRIS预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    6.曹建廷,秦大河,罗勇,等.长江源区1956-2000年径流量变化分析[J].水科学进展,2007,18(1):29-33
    7.陈宝冲.长江镇扬河段六圩弯道凹岸建港的河流地貌条件分析[J].南京大学学报,1991,4(27):765-774
    8.陈东立.黄土高原流域森林植被与土壤侵蚀景观格局耦合关系研究[D].北京林业大学博士论文,2005
    9.陈华,郭生练,郭海晋,等.汉江流域1951-2003年降水气温时空变化趋势分析[J].长江流域资源与环境,2006,15(3):340-345
    10.陈江龙,曲福田,王启仿.经济发达地区土地利用结构变化预测——以江苏省江阴市为例[J].长江流域资源与环境,2003,12(4):317-321
    11.陈述彭.遥感信息机理研究[M].北京:科学出版社,1998.
    12.陈亚宁,徐宗学.全球气候变化对新疆塔里木河流域水资源的可能性影响[J]中国科学(D辑)2004,34(11):1047.
    13.陈佑启,Peter H Verburg中国土地利用/土地覆盖的多尺度空间分布特征分析[J].地理科学,2000,20(3):197-202.
    14.陈月红.黄士高原典型流域土地利用/森林植被演变的水文生态响应与尺度转换研究[D].北京林业大学博十论文,2008
    15.陈月红,余新晓,谢崇宝.黄土高原吕二沟流域土地利用及降雨强度对径流泥沙影响初探[J]中国水土保持科学,2009,7(1):8-12
    16.陈泽方,许全喜.岷江流域水沙变化特性分析[J].人民长江,2006,37(12):65-67.
    17.丁文峰,张平仓,任洪玉.近50年来嘉陵江流域径流泥沙演变规律及驱动因素定量分析[J].长江科学院院报,2008,25(3):23-27
    18.董晓红.祁连山排露沟小流域森林植被水文影响的模拟研究[D].中国林业科学研究院硕士论文.2007
    19.董晓红等.分布式生态水文模型-TOPOG在温带山地小流域的应国以祁连山排露沟小流域为例[J].林业科学研究.2007,20(4):477-484
    20.董哲仁,孙东亚,彭静.河流生态修复理论技术及其应用[J].水利水电技术,2009,40(1):4-10
    21.樊玉山,刘纪远.西藏自治区土地利用[M].北京:科学出版社,1994.
    22.傅伯杰,陈利顶,邱扬,等.黄土丘陵沟壑区土地利用结构与生态过程[M].北京:商务印书馆,2002:1-16.
    23.傅伯杰,陈利顶.景观多样性的类型及其生态意义[J].地理学报,1996,,51(5):454-462
    24.傅伯杰.景观多样性分析及其制图研究[J].生态学报,1995,15(4):345~350
    25.郭方,刘新仁,任立良.以地形为基础的流域水文模型——-TOPMODEL及其拓展应用[J].水科学进展,2000,11(3):296-301
    26.郭方TOPMODEL在淮河流域的移植应用及其与新安江模型比较研究[D].河南大学,2001:4-9
    27.郭生练,熊立华,杨井等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5
    28.郭生练,熊立华.分布式流域物理模型的应用和检验[J].武汉大学学报(工学版),2001,34(1):1-5
    29.韩富伟,张柏,宋开山等.长春市土壤侵蚀潜在危险度分级及侵蚀背景的空间分析[J].干旱区资源与环境.2007,21(12):99-104
    30.韩玲玲,何政伟,唐菊兴,等.基于CA的城市增长与土地增值动态模拟方法探讨[J].地理与地理信息科学,2003,19(2):32-35.
    31.何瑞珍,闫东峰,张敬东,等.基于马尔可夫模型的郑州市土地利用动态变化预测[J].中国农学通报.2006,22(9):435-437
    32.侯西勇,常斌,于信芳.基于CA-MARKOV的河西走廊土地利用变化研究[J].农业工程学报,2004,20(5):286-291
    33.胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J]土壤学报,2004,41(6):854-863(in Chinese)
    34.黄国吕.稀相垂直气力输送[J].上海海运学院学报.1984,4:35-45
    35.黄平,赵吉国.森林坡地二维分布型水文数字模型的研究[J].水文,2000,20(4):1-4
    36.黄鑫,蔡国强,陈浩,等.土壤侵蚀危险度评价方法研究[J].水土保持研究.2008,2(15):143-147
    37.黄义端,田积莹,雍绍萍.土壤内在性质对侵蚀影响的研究[J].水土保持学报,1989,3:9-14
    38.黄志宏,周国逸,周光益等:雷州桉树人工林小集水区地形分析与静态水文学模拟[J].生态环境2005,14(5):700-705
    39.季冬,关文彬,谢春华.贡嘎山暗针叶林枯落物截留特征研究[J].中国水土保持科学.2007,5(2):86-90
    40.贾仰文,高辉,牛存稳,等.气候变化对黄河源区径流过程的影响[J].水利学报.2008,39(1):52-58
    41.姜逢清,胡汝骥,李珍.新疆主要城市的采暖与制冷度日数(Ⅱ)——近45年来的变化趋势[J].干旱区地理,2007,30(5)629-636
    42.姜红梅,任立良,安如等.基于土地利用与地表覆盖遥感信息的洪水过程模拟[J].河海大学学报,2004,32(2):131-135
    43.金小刚.基于Matlab的元胞自动机的仿真设计[J].计算机仿真,2002,19(4):27-30.
    44.靳长兴.论坡面侵蚀的临界坡度[J].地理学报,1995(3):234-238.
    45.孔凡哲,芮孝芳TOPMODEL中地形指数计算方法的探讨[J].水科学进展,2003,14(1):41-45
    46.蓝云龙.湟水民和站丰、平、枯水年划分初探[J].水利科技与经济,2007,(13)12:899-901
    47.李才伟,元胞自动机及复杂系统的时空动态模拟[D],武汉:华中理工大学,1997
    48.李德一,王大鹏,张安定,等.遥感影像居民地信息自动提取方法研究进展[J],云南地理环境研究,2006,9(5):48-51.
    49.李海光,余新晓,张满良,等.黄土高原丘陵沟壑第三副区小流域土壤渗透特性研究[J].水土保持研究,2010,17(2):75-79
    50.李兰.流域水文分布动态参数反问题模型[c].中国水利学会优秀论文集.北京:中国三峡出版社,2000a:48-54
    51.李兰.流域水文数学物理耦合模型[C].中国水利学会优秀论文集.北京:中国三峡出版社,2000b:322-329
    52.李胜强IDRISI计划于IDRISI地理信息系统[J].遥感技术与应用,1994,9(1):62-67
    53.李秀彬.全球环境变化研究的核心领域-土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,5 1(6):553-558.
    54.李秀彬.土地利用变化的解释[J].地理科学进展,2005,21(3):195-203.
    55.李勇,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991,36:935-938
    56.李勇.黄土高原根系和土壤抗蚀[M].北京,科学出版社,1995
    57.李子君,李秀彬.水利水保措施对潮河流域年径流量的影响—基于经验统计模型的评估[J].地理学报,2008,63(9):958-968
    58.李子君,李秀斌,余新晓.基于水文分析法评估水保措施对潮河上游年径流量的影响[J].北京林业大学学报,2008,30(S2):7-11.
    59.李子君,李秀斌.水利水保措施对潮河流域年径流量的影响——基于经验统计模型的评估[J].地理学报,2008,63(9):958-968
    60.刘昌明,何希吾,任鸿遵.中国水问题研究[M].北京:气象出版社.1996:191
    61.刘昌明,魏忠义等.华北平原农业水文及水资源[M].北京:科学出版社,1989.96~97
    62.刘昌明.流域水循环分布式模型[M].郑州:黄河水利出版社.2006:4-7
    63.刘琼,欧名豪,彭晓英.基于马尔可夫过程的区域土地利用结构预测研究一以江苏省昆山市为例[J].南京农业大学学报,2005,28(3):107-12
    64.刘淑燕.黄土区典型流域土地利用和气候变化的水文生态响应研究[D].北京林业大学.2010:94-96
    65.刘仙.基于BASINS/HSPF模型的岩溶槽谷区地下水模拟研究[D].西南大学.2009.33-35
    66.刘永强,丁一汇ENSO事件对我国季节降水利温度的影响[J].大气科学,1995,19(2):200-
    208.
    67.刘志雨,谢正辉TOPKAPI模型的改进及其在淮河流域洪水模拟中的应用研究[J],水文,2003(6):1-7
    68.刘志雨.基于GIS的分布式托普卡匹水文模型在流域洪水预报中的应用[J].水利学报,2004,(5):70-75
    69.卢金发,刘爱霞.黄河中游降雨特性对泥沙粒径的影响[J].地理科学进展,2002,22(5):552-556.
    70.鲁克新.陡坡薄层水流侵蚀动力过程试验研究[D].西安理工大学.2001
    71.马骏,刘晓伟.王庆斋.霍世青.刘筠.降水径流模拟[M].北京:中国水利水电出版社.2006:1-6
    72.马克明,傅伯杰,周华峰.景观多样性测度:格局多样性的亲利度分析[J].生态学报1998,18(1):76-80
    73.秦富仓.黄土地区流域森林植被格局对侵蚀产沙过程的调控研究[D].北京,北京林业大学,2007:33-120.
    74.任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展,1999,10(2):129-134
    75.任立良.流域数字水文模型研究[J].河海大学学报,2000,28(4):1-6
    76.芮孝芳.水文学的研究方法与理论创新.水利水电科技进展[J].2003,23(2)46-50
    77.芮孝芳.水文学原理.北京:中国水利水电出版社[D].2004
    78.邵景安,李阳兵,魏朝富,谢德体.区域土地利用变化驱动力研究前景展望[J].地球科学进 展,2007,22(8):798-809
    79.邵明安,王全九,R. Horton推求土壤水分运动参数的简单入渗法[J].土壤学报,2000,37(1):1-8.
    80.沈慧,姜凤岐,杜晓军.水土保持林土壤改良效益评价研究[J]应用生态学报,2000,11(3):345-348
    81.沈晓东,王腊梅.基于栅格数据的流域降水径流模型.地理学报,1995,50(3):264-271
    82.史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    83.侍倩.土力学[M].武汉:武汉大学出版社.2004
    84.苏凤阁,郝振纯.一种陆面过程模式对径流的模拟研究[J].气候与环境研究,2002,7(4):423-432
    85.隋春花,张耀辉,蓝盛芳.环境—经济系统能值(Emergy)评价——介绍Odum的能值理论[J].重庆环境科学,1999,21(6):18-20
    86.孙艳玲,谢德体,刘洪斌等.基_于DEM的流域降水径流模拟研究——以三峡库区晏家河小流域为例[J].水土保持学报,2004,18(1):82-92
    87.汤国安,杨昕ArcGis地理信息系统空间分析实验教程[M].北京:科学出版社,2006:202-212
    88.汤国安.黄土丘陵沟壑区地面坡度分级研究[J].水土保持通报,1987(1):17-19.
    89.唐克丽.史立人.史德明等.中国水土保持[M].北京:科学出版社.2004
    90.唐丽霞,张志强,王新杰,等.晋西黄土高原丘陵沟壑区清水河流域径流对土地利用与气候变化的响应[J].植物生态学报2010,34(7):800-810
    91.唐丽霞,张志强,王新杰,等.黄土高原清水河流域土地利用/覆盖和降雨变化对侵蚀产沙的影响[J].自然资源学报2010,25(8):1340-1349
    92.唐丽霞.黄土高原清水河流域十地利用/气候变化对径流泥沙的影响[D].北京:北京林业大学,2009.
    93.王根绪,李娜,胡宏吕.气候变化对长江黄河源区生态系统的影响及其水文效应[J].气候变化研究进展,2009,5(4):202-209.
    94.王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323
    95.王红闪,黄明斌,董翠云.用Philip模型参数推求湿润锋平均基质吸力Sf准确性[J].水土保持通报2004,24(2):41-45
    96.王腊梅,熊江波,用遥感资料建立分块水文数字模型的研究.地理科学,1997(2):76-80
    97.王良健,包浩生,彭补拙.基于遥感与GIS的区域土地利用变化的动态监测与预测研究[J].经济地理,2000,20(2):47-51.
    98.王盛萍,典型小流域土地利用与气候变异的生态水文响应研究[D].北京:北京林业大学,2007:37-38.
    99.王守荣,黄荣辉,丁一汇等.分布式水文-土壤-植被模式的改进及气候水文off-line模拟试验[J].气象学报,2002,60(3):290-300
    100.王文焰,汪志荣,王全九,等.黄土中Green-Ampt入渗模型的改进与验证[J].水利学报,2003,
    (5):30-34
    101.王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
    102.魏风英.现代气候统计诊断预测技术[M].北京:气象出版社,1999.82-88.
    103.吴险峰,刘吕明,郝芳华.黄河小花间暴雨径流过程分布式模拟[J].水科学进展,2004,15(4):511-516
    104.吴险峰,王中根.基于DEM的数字降水径流模型在黄河小花间的应用[J].地理学 报,2002,57(6):671-678
    105.吴秀芹,张洪岩,李瑞改,张正祥,董贵华.ArcGIS9地理信息系统应用与实践(下)(M)清华大学出版社.北京291-292
    106.吴旭东.青海云杉林对祁连山排露沟小流域径流的影响[D]内蒙古农业大学硕士论文.2008:12-14
    107.武强,董东林.试论生态水文学主要问题及研究方法[J].地球科学进展,2001,(2):59-72
    108.席家治.黄河水资源[M].郑州:黄河水利出版社,1996.31-32.
    109.夏军,左其亭.现代水文学[M],郑州:黄河水利出版社,2001:23-28
    110.肖笃宁,胡远满,李秀珍.环渤海三角洲湿地的景观生态学研究[M].北京:科学出版社,2001:368-389
    111.谢高地,成升魁等.人口胁迫下的全球土地利用变化研究[J].自然资源学报,1999,14(3):193-198.
    112.信忠保,许炯心,马元旭.近50年黄土高原侵蚀性降水的时空变化特征[J].地理科学,2009,29(1):98-104.
    113.熊利亚,常斌,周相广.基于地理元胞自动机的土地利用变化研究[J].资源科学,2005,27(4):38-43.
    114.许继军,杨大文,雷志栋,等.长江流域降水量和径流量长期变化趋势检验[J].人民长江,2006,37(9)63-67
    115.许继军,杨大文,刘志雨,等.长江上游大尺度分布式水文模型的构建及应用[J].水利学报.2007,38(2):182-190
    116.严登华,何岩,邓伟,等.水资源地域耦合空间结构初探[J].东北师大学报.(自然科学版),2000,32(4):82-87.
    117.严登华,何岩,邓伟,等.生态水文学研究进展[J].地理科学.2001,21(5):467-471
    118.杨桂莲,郝芳华,刘吕明,等.基于SWAT模型的基流估算及评价——以洛河流域为例[J].地理科学进展,2003,22(5):463-471
    119.姚玉璧,王毅荣,李耀辉,等.中国黄土高原气候暖干化及其对生态环境的影响[J].资源科学,2005,27(5):146-152.
    120.殷水清,谢云.黄土高原降雨侵蚀力时空分布[J].水土保持通报,2005,25(4):29-33
    121.尹国康,陈宝冲.从河相关系探讨长江冲积河床的自动调整[J].泥沙研究.1983,3:32-41
    122.游广永.用Markov模型揭示岱海地区气候变化的周期性[D]。河北师范大学硕士学位论文.2007年
    123.余钟波,潘峰,梁川等.水文模型系统在峨嵋河流域洪水模拟中的应用[J].水科学进展,2006,17(5):645-652
    124.余钟波.流域分布式水文学原理及应用[M].北京:科学出版社.2008:1-3
    125.袁飞,任立良.栅格型水文模型及其应用[J].河海大学学报,2004,32(5):483-487
    126.岳文泽,徐建华,徐丽华.基于RS利GIS的中国干旱区土地利用格局研究-以甘肃省武威市为例[J].华东师范大学学报(自然科学版),2004,12(4):64-71.
    127.岳新发,高小平,郭保文.天水站水土流失观测研究工作的主要问题与对策[J].中国水土保持.1996,(11):25-27
    128.曾新民,赵鸣,苏炳凯等.一个水文模型与区域气候耦合的数值模拟研究[J].大气科学进展(英文版),2003,20(2):227-236
    129.张琳玲,张海强,张满良.天水站“原型观测”历程及科技贡献[J].水土保持科技情报2003,(5):47-48
    130.张琳玲,王盛萍,王建军,张天佑.黄土丘陵沟壑区吕二沟流域水士流失特征分析[J].人民黄河,2006,28(12):49-51
    131.张淼.用航空物探法评价岩体崩塌危险度[J].国外铀金地质.2002,2(19):30
    132.张强,韩永翔,宋连春.全球气候变化及其影响因素研究进展综述[J].地球科学进展,2005,20(9):990-998.
    133.张素琴,任振球,李松勤.全球温度变化对我国降水的影响[J].应用气象学报,1994,5(3):333-338.
    134.张祥志,王经顺.太湖入湖河流流量简易测量法——中泓一点法[J].环境监测管理与技术,2004,16,(4):28-29
    135.张晓明.黄土高原典型流域土地利用/森林植被演变的水文生态响应与尺度转换研究[D].北京林业大学博士论文,2007.
    136.张学儒.基于CLUE-S模型的唐山海岸带土地利用变化情景模拟[D].河北师范大学,2008
    137.张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社,1986.30-36
    138.张志强.森林水文:过程与机制[M],北京:中国环境科学出版社,2002:11-22
    139.赵人俊.流域水文模型[M].北京:水利水电出版社,1984:33-35
    140.赵文智,程国栋.生态水文学——揭示生态格局利生态过程水文学机制的科学[J].冰川冻土,2001,23(4):450-457
    141.郑粉莉,王古礼,杨勤科.我国土壤侵蚀科学回顾利展望[J].自然杂志,2008,30(1):12-16.
    142.关燕凤.基于GIS和CA-MARKOV模型的十地利用变化研究[D].山东农业大学硕十论文,2009
    143.中华人民共和国国标-水文基本术语利符号标准.GB/T 50095-98.[S].1998
    144.中华人民共和国水利部-水文情报预报规范(SL 250-200)[S].2000
    145.中华人民共和国水利部-土壤侵蚀分类分级标准(SL190-96)[S].1997
    146.中华人民共和国行业标准-土工试验规程(SL237-1999)[S].1999
    147.周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,2001.1-77.
    148.周晓红,赵景波.黄土高原气候变化与植被恢复[J].干旱区研究,2005,23(1):116-119.
    149.朱新军,王中根,李建新等SWAT模型在漳卫河流域应用研究[J].地理科学进展,2006,25(6):105-111
    150.左其亭,王中根.现代水文学[M].第二版.郑州:黄河水利出版社,2006
    151. Abu-Zreigm, Rudra R P, Lalondemn,et al. Experimental investigation of runoff reduction and sediment removal by vegetated filterstrips[J].Hydrological Processes,2004,18 (11):2029-2037.
    152. Allen R G, Pereiral L S, Raes D S, et al. Crop evapotranspiration guidelines for computing crop water requirements[M]. FAO Irrigation and Drainage,1998:41-56.
    153. Arnold J G, Allen P M.. Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of Hydrology,1996(176):57-77
    154. Arnold J G, Williams J R, Griggs R H et al. SWRRB-A Basin Scale Simulation Model for Soil and Water Resources Management [M].London:Texas A&M University Press,1990
    155. Aryal S K, O'loughlin E M, Vertessy R A. Design of effluent disposal systems using absorption trenches on a hillslope[J]. Hydraulics in Civil Engineering,1994,(36):15-17
    156. Aryal S K, O'loughlin E M, Vertessy R A. Hydrological and environmental impacts of effluent disposal using absorption trenches on a hillslope[J]. Sound Water Resources,1993, (1):49-56
    157. Ball J.T., Woodrow I.E., Berry J.A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research [J].1987(ed. 1.Biggens):221-224.
    158. Band L E, Vertessy R A, Lammers R. The effect of different terrain representations and resolution on simulated watershed processes[J]. Zeitschrift fur Geomorphologie, Suppl.-Bd.1995,(101): 187-199
    159. Beven K J, Kirkby M J.A physically based variable contributing model of basin hydrology[J]. Hydrological Sciences Bulletin,1979,24(l):43-69
    160. Beven KJ, Wood EF.Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology.1983,65:139-158.
    161. Beverly C R.:Background notes on the CSIRO Topog model.1. Details of the numerical solution of the Richards equation in Topog_YieldV[J]. CSIRO Division of Water Resources,1992,2(12):51
    162. Biawas S P, Boruah S. Fisheries ecology of the northeastern Himalayas with special reference to the Brahmaputra River [J]. Ecol Eng.,2000,16:39-50.
    163. Bicknell B R, Imhoff J C, Kittle J L et al. Hydrological simulation program-FORTRAN[M]. User, s Manual for Release 11,EPA-600/R-97-080,USEPA,Athens,GA,1997
    164. Blake G. J., Chapman T. G., Dunin F.X. The interception process. Prediction in Cachment Hydrology. Netley:Australia Academy of Sciences.1975:59-81
    165. Bonissone, Piero P., Keith S. Decker. Selecting uncertainty calculi and granularity:an experiment in trading-off precision and complexity. In L.N.Kanal and J.F. Lemmer eds., Uncertainty in Artificial Intelligence[D]. North-Holland:Elsevier Science Publishers1986.
    166. Bornette G, Amoros C, Lamouroux N, Aquatic plant diversity in riverine wetland:the role of connectivity [J]. Freshwater Biol.,1998,39:267-283.
    167. Bragg OM,Brown JMB, IngramHAP. Modellingthe ecohydrological consequences of peat extraction from a Scottish raised mire [A].In:Nachtnebel H P,Kovar K. Hydrological basis of ecologicallysound management of soil and groundwater.[C]. IAHS AISH Publication.,1991.13-20.
    168. BrinkmanWLF, Magnuszewski A, ZoberS. The structure and function of the vistula River floodplain near Plock, Poland[J]. Ecol Eng.,2000,16:159-166.
    169. Buckley, J.J..The multiple judge, multiple criteria ranking problem:a fuzzy set approach[J]. Fuzzy Set and Systems.1984,13:25-37.
    170. Burn D H, Burn M A, Hag E. Detection of hydrologic trends and variability[J]. Journal of Hydrology,2002,255 (1-4):107.
    171.CALDER I R. Hydrologic effects of land-use change[C]//Maidment D R.Handbook ofhydrology. NewYork:McGraw-Hill,1993:50
    172. Cardon. G.E., Letey. J. Soil-based irrigation and salinity management model:Ⅰ.Plant water uptake calculations[J].Soil Science Society of America Journal.1992,56:1881-1887
    173. Carstensen, L.W., A Measure of Similarity for Cellular Maps[J], The American Cartographer, 1987.14(4),345-358.
    174. Caspary HJ. An ecohydrological framework forwater yield changes of forested catchments due to forest decline and soil acidification [J].Water Resources Research,1990,26(6):1121-1131.
    175. Choudhury, B. J. R, Monteith, J. L. A four-layer model for the heat budget of homogeneous land surfaces[J].Q.J.R.Metaorol. Soc.1988,114:373-398
    176. Clark, K.C, Gaydos, L.J. Loose-Coupling a Cellular AutomationModel and GIS:Long-term Urban Growth Prediction for San Francisco and Washington/Baltimore, Int.[J].Geographical Information Sciences,1998,12(7):699-714
    177. Cohen Philip. Water in the Humboldt River Valley near Winnemucca. Nevada:U.S. Geological Survey Water-Supply[J] 1966,1816-1855
    178. Costantini T, Dawes W, O'loughlin E, Vertessy R. Hoop pine plantation management in Queensland:1. Gully erosion hazard prediction and watercourse classification[J]. Aust. J. Soil and Water Cons,1993,6(1):35-39
    179. Cummins K W, Minshall W G, Sedell J R, et al. Stream ecosystem theory [J].Verh Int Ver Limnol,1984,22:1818-1827.
    180. Dakova Sn Y, Uzonov D, Mandadjiev. Low flow-the river ecosystem's limiting factor[J]. Ecol Eng.,2000,16:167-174.
    181. Dawes W R and Short D L. The significance of topology for modeling the surface hydrology of fluvial landscapes[J]. Water Resources Research,1994,30(4):1045-1055
    182. Dawes W R, Zhang L, Hatton T J, Reece P H, Beale G, Packer I. Application of a distributed parameter ecohydrological model (Topog_IRM) to a small cropping rotation catchment[J]. J. Hydrology,2007,(22):670-688
    183. Dawes W R, Zhang Lu, Hatton T J, et al. Evaluation of adistributed parameter ecohydrological model (TOPOG_IRM) on asmall cropping rotation catchment[J]. Journal of Hydrology, 1997,191 (14):64-86.
    184. Dawes W, Hatton T J. TOPOG_IRM. I. Model Description[J]. CSIRO Division of Water Resources,1993,93(5)33
    185. Deng Genyun, Liu Zhongli. Amodel of potential maize yield in relation to accumulatedt emperature and its application in assessing the impact of climaticchange[J].Acta Meteorologica Sinica.1994,8(2):247-253
    186. Dietrich W E, Wilson C J, Montgomery D R, Mckena J. Analysis of erosion thresholds, channel networks and landscape morphology using a digital terrain model[J]. J. Geology,1993,101(2): 259-278
    187. Dingman, S.L.Physical Hydrology. Prentice-Hall, Inc., Englewood Cliffs, NJ.1994
    188. Dooge JCI, Bruen M, Parmentier B. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation[J]. Advances in Water Resources,1999,23:153-163.
    189. Douglas E.M., Vogel R.M.,& Kroll C. N. Trends in floods and lowflowsin the United States impact of spatial correction, Journal of Hydrology.2000, (240):90-105.
    190. Droesen Wim J, GeelenLucHWT. Application of fuzzy sets in ecohydrological expert modeling [A]. In:Kovar K. Nachtnebel H P.Application of geographic information systems in hydrology and waterresources management[C]. IAHS AISHPublication.1993.3-17.
    191. Droesen Wim J. Formalization of ecohydrological expert knowledge applying fuzzy techniques [J]. Ecological Modelling,1996,85(1):75-81.
    192. Dubnyak S, Timchenko V. The ecological role of hydrodynamic process in the Dnieper Reservoirs[J]. Ecol Eng.,2000,16:181-188.
    193. Engelund F., Hansen A., A monograph on sediment transport in alluvial streams[J]. Tech. Univ. of Denmark.1967
    194. Fashchevsky B. Amethodical approach to estimation of ecological and free flow[J]. Ecol Eng., 2000,16:181-188.
    195. Forman, R. T. T. and L. E. Alexander. Roads and their major ecological effects[J]. Annual Review of Ecology and Systematics1998 29:207-231
    196. Fortin J, Turcotte R, Massicotte S et al. Distributed watershed model compatible with remote sensing and GIS data:Description of model[J]. Journal of Hydrology Engineering ASCE,2001,6(2):91-99
    197. Francos A. Sensitivity analysis of distributed environmental simulation models:understanding the model behaviour in hydrological studies at the catchment scale[J]. Reliability Engineering and System Safty,2003,79 (2):205-218.
    198. Franklin J. F., R. T. T. Forman; Creation Landscape pattern by forest cutting:ecological consequence and principles [J]. Landscape Ecology 1987,1(1):11-18
    199. Freeze R A, Harlan R L. Blueprint for a physically-based digitally-simulated hydrologic response model[J]. Journal of Hydrology,1969(9):237-258
    200. Frei C, Schar C. Detection probability of trend in rare events:Theory and application to heavy precipitation in the Alpine region[J]. Journal of Climate,2001,14:1568.
    201. Fu Bojie. Soil erosion and its control in the loess plateau of China[J]. Soil Use and Management, 1989,5:76-82.
    202. Georg A. Janauer. Ecohydrology:fusing concepts and scales [J].Ecological Engineering,2000,16: 9-16.
    203. Ghadiri H, Rose C W, Hogarthw L.The influence of grass and porous barrier strips on runoff hydrology and sediment transport[J].Transactions of the ASAE,2001,44(2):259-268
    204. Grayson R B, Moore I D, McMahon T A. Physically based hydrologic modeling I.A terrain-based model for investigative purposes[J]. Water Resources Research,1992,28(10):2639-2658
    205. Green W H, Ampt G A. Studies on soil physics I Flow of air and water through soils [J]. Journal of Agricultural Science,1911,4(1):1-24
    206. G. sun, S.G. McNulty, J. L U, et al Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States[J]. Journal of hydrology. 2005,308:258-268
    207. Hargreaves, G.H., Z.A. Samani. Estimating potential evapotranspiration[J].Tech Note, J. Irrig. And Drain. Engr.1982:108(3)225-230
    208. Hargreaves, G.H., Z.A. Samani. Reference crop evapotranspiration from temperature [J].Applied Engineering in Agriculture.1985,1:96-99
    209. Hargreaves, G.H.Moisture availability and crop production [J]. Trans. ASAE,1975,18:980-984
    210. Hargreaves, G.L., Hargreaves, G.H, J.P. Riley. Agricultural benefits for Senegal River Basin[J]. Irrig. And Drain. Engr.1985:111(2)113-124
    211. Hatton T J, Dawes W R, Vertessy R A. The importance of landscape position in scaling SWAT models to catchment scale hydroecological prediction[M]. Cambridge:Cambridge University Press, 1995, (17):43-53
    212. Hatton T J, Dawes W R, Walker J,1992. Simulations of hydroecological responses to elevated CO2 at the catchment scale[J]. Australian Journal of Botany,40:679-696.
    213. Hatton T J, Dawes W R,. The impact of tree planting in the Murray-Darling Basin:The use of the TOPOG-IRM hydroecological model in targeting tree planting sites in catchments[M]. Canberra, Australia:CSIRO, Division of Water Resources Technical Memoran-dum,1991 14:91.
    214. Hatton T J, Walker J, Dawes W, Dunin F X. Simulations of hydroecological responses to elevated CO2 at the catchment scale[J]. Aust. J. Bot,1992,(40) 679-696
    215. Helsel D R, Hirsch R M. Statistical Methods in Water Resources[M].U S Geological Survey, 2002:323.
    216. Hensel Bruce R,Panno Samuel V, Cartwright Keros, et al. Nuzzo Victoria Ecohydrology of a pristine fen[A]. In:Geological Society of America[C]. Geological Society of America,1991.324-325.
    217. Hewlett J D, Troendle C A. Non-point and diffused water sources:A variable source area problem. Proceedings of a Symposium on Watershed Management[M],Am. Soc.Civ.Eng.,New York,1975:65-83
    218. Hobma TW. Hydrochemistry and ecohydrology of the transition area of the Netherlands Delta and the Brabantse Wal[A]. In:Gibert Janine, Mathieu Jacques, and Fournier Fred. Groundwater/surfacewa-ter ecotones; biological and hydrological interactions and management options[C]. Cambridge:Cambridge University Press,1997.194-203.
    219. Holling C S. Cross-scale morphology, geometry and dynamics of ecosystems[J]. Ecological Monographs,1992,62(4):447-502.
    220. Holzbecher E, Nutzmann G. Influence of subsurfacewatershed on eutrophication—lake stechlin case study [J]. Ecol Eng.,2000,16:175-180.
    221. Hope R A, Jewitt G P W, Gowing J W. Linking the hydrological cycle and rural livelihoods:A case study in the Luvuvhu catchmen[J]t, South Africa. Physics and Chemistry of the Earth,2004,29: 1209-1217.
    222. Hubacek K, Sun LX. Land Use Change at the National and Regional Level in China:A Scenario Analysis Based on Input-Output Modeling[R]. Interim Report,2000.
    223. Hui Shi, Mingan Shao. Soil and water loss from the LoessPlateau in China[J]. Journal of Arid Environments,2000,45:9-20.
    224. I Rodriguez-Iturbe. Ecohydrology:a hydrologic perspective of climate-soil-vegetation dynamics [J]. Water Resource Research,2000,36(1):3-10
    225. IngramHA P. Ecohydrology of Scottish peatlands[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences.1987,78(4):287-296.
    226. IPCC Report. Climate change 2001:the scientific basis [R] Cambridge:Cambridge University Press,2001.140~165.
    227. Jacky Croke, Mathew Nethery. Modelling runoff and soil erosion in logged forests:Scope and application of some existing models[J]. Catena 2006 (67):35-49
    228. Jammalamadaka, S.R. and Goria, M.N., A test of goodness-of-fit based on Gini's index of spacings[J],Statistics & Probability Letters,2004,68:177-187
    229. Jansen Andre J M, Maas Cees. Ecohydrological processes in almostflat wetlands [A]. In:Kuo Chin Y. Engineering hydrology. [C].NewYork:American Society of Civil Engineers,1993.150-155.
    230. Jarvis, R. G., McNaughton, K. D. Stomatal control of reanspirarion:scaling up from leaf to region[J].Advances in Ecological Reseach,1986,15:1-49
    231. Jensen, M.E., R.D. Burman, R.G. Allen. Evapotranspiration and irrigation water requirements[R]. ASCE Manuals and Reports on Engineering Practice No.70, ASCE, N.Y.1990:332
    232. Jones R N, Chiew FHS, Boughton WC. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models[J]. Advances in Water Resources,2006,29:1419-1429
    233. Julien P Y, Sahafian B.CASC2D user manual-A two dimensional watershed precipitation-runoff model[D].Civil Engineering Rep.,CER90-91PYJ-BS-12,Colorado State University, Fort Collins,1991
    234. Kasperson Jeanne, R E Kasperson, B L Turner. Regions at risk comparisons of threatened environments[D]. Tokyo, New York, Paris:United NationsUniversity Press,1995.
    235. Keith J. Beven. Precipitation-Runoff Modelling[M].London:John Willy&Sons 2003:1-7
    236. Kemp J L, Harper D M, Crosa G A. the habitat scale ecohydraulics of river [J]. Ecol Eng., 2000,16:17-29.
    237. Kendall M G. Rank Correlation Met hods [M]]. London:Charles Griffin,1975.109-117
    238. Lee, N.S., Y.L. Grize and K. Dehnad. Quantitative models for reasoning under uncertainty in knowledge-based expert systems[J]. International Journal of Intelligent Systems.1987, Ⅱ,15-38.
    239. LEITE Mariangela Garcia Praca, FUJACO Maria Augusta Goncalves.A long-term annual water balance analysis of the Aracuai River Basin, Brazil[J]. Journal of Geographical Sciences, 2010,20(6):938-946
    240. Leung, Yee. Fuzzy sets approach to spatial analysis and planning--a nontechnical evaluation[J]. Geografiska Annaler 1983.65B(2),65-75.
    241. Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant, Cell and Environment 1995,18:339-355.
    242. Leuning. R., Kriedeman. P. E., McMurtrie. R. E. Simulation of evapotranspiration by trees[J]. Agricultural water Management.1991,29:205-221
    243. Li LJ,Zhang L,Wang H,Wang J,Yang JW,Jiang DJ,Li JY,Qin DYAssessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China[J].Hydrological Processes,2007,25:3485-3491.
    244. Ligdi E, Morgan R. P C. Contour grass strips:a laboratory simulation of their role in soil erosion control[J],SoilTechnol,1995,8(1):109-117
    245. Lu Zhang; Dawes Warrick R; Hatton Tom J. Modelling hydrologic processes using a biophysically based model; application of Waves to Fife and HapexMobilhy[J]. Journal ofHydrology. 1996,185(14):147-169.
    246. MannH B. Non-parametric test against trend [J].Econometrika,1945,13:245-259.
    247. Margalef R. Idea for asynthetic approachtothe ecology of running water [J]. Int Rev. Gesamten Hydrobiol.1960,45:133-153
    248. Maunder C J.:An automated method for constructing contour-based digital elevation models[J]. Water Resources Research,1999,135 (12):3931-3940
    249. Mc Garigal K. and Marks B.J. FRAGSTATS:Spatial analysis program for quantifying landscape structure. Reference Manual[M]. Forest Science Department, Oregon state University, Corvallis Oregon, March 1994.62pp.+Append
    250. McGarigal K., McComb W.C., Relationship between landscape structure and breeding birds in the Oregon Coast Range [J]. Ecol. Monogr,1994.
    251. McMurtrie. R. E., Leuning. R., Thompson. W. A. et al. A model of canopy photosynthesis and water use incorporating a mechanistic formulation of leaf CO2 exchange[J].Forest Ecology and Manament.1992,52:261-278
    252. Mein R G, O'loughlin E M. A new approach to flood forecasting. Hydrology and Water Resources, 1991,91(22):219-224
    253. Milly PCD,Dunne KA.Macroscale water fluxes.2.Water and energy supply control of their interannual variability[J].Water Resources Research,2002,38:1206.
    254. Minshall GW, CumminsKW, Petersen R C, et al. Development in the stream ecosystem theory [J]. Can J Fish Aquat. Sci.1985,42:1045-1055.
    255. Monteith, J. L. A reinterpretation of stomatal responses to humudity[J].Plant, Cell and Environment.1995,18:375-364
    256. Montgomery D R, Dietrich W E. A physically-based model for topographic control on shallow landsliding[J]. Water Resources Research,1994,30(4):1153-1171
    257. MOORE I D,O'LOUGH LIN E M and BURCH G J,1988 A contour-based topographic model for hydrological and ecological application. Earth Surface Processing and Landforms,13(3):305-320.
    258. MOORE K D,BURCH G J and MACKENZIE D H,1988. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the American Society of Agricultural Engineers,31(4):1098-1107.
    259. Nandakumar N, Lane P N J, Vertessy R A, O'loughlin E M. Prediction of soil moisture variability using wetness indices[J]. Hydrology and Water Resources,1994, (3):49-54
    260. Nash J.E. Sutcliffe J.V. River flow forecasting through concetptual models, A discussion of Principles[J].Journal of Hydrology.1970,10:282-290
    261.Nimah. M. N., Hanks. R. J. Model for estimating soil and water and atmospheric interrelationships[J].Soil Science Society of America Proceeding.1973,37:522-532
    262. Nuttle W K. Eco-hydrology's past and future in focus[M]. Eros,,2002.83:205
    263. Odum HT. Tropics structure and productivity of Silver Springs [J].Florida Ecol Monogr,1957,27:55-112
    264. O'loughlin E M, Short D L, Dawes W R. Modeling the hydrological response of catchments to landuse change[J]. Hydrology and Water Resources Symposium,1989,89 (19):335-340
    265. O'loughlin E M. Modelling soil water status in complex terrain[J]. Agricultural and Forest Meteorology,1990,50:23-38.
    266. P. G. Slavich, T. J. Hatton, W. R. Dawes. The canopy growth and transpiration model of WAVES: Technical description and evaluatuion[R].1998,CSIRO Land and Water(3/98):25-32
    267. Partal Turgay, Ercan Kahya. Trend Analysis in Turkish Precipitation Data [J]. Hydrological Processes,2006,20:2011-2026.
    268. Pedro A. B. Gerardo A. R., Erik D. Z., Hernan R. S.Simulation of erosion-deposition processes at basin scale by a physically-based mathematical model[J].International Journal of Sediment Research.2010,25:91-109
    269. Pedroli G B M. Ecohydrological parameters indicating different types of shallow groundwater [J]. Journal of Hydrology,1990,120(14):381-404.
    270. Petts G, Amoros C(ed). Fluvial Hydrosystem[M]. London:Chapman and Hall,1996.1-30.
    271. Philip JR.. Plant water relations:Some physical aspects. Ann Rev Plant Physiol[J], 1966,17:245-268
    272. Prosser I P, Abernethy B. Increased erosion hazard resulting from log-row construction during conversion to plantation forest[J]. Forest Ecology and Management,1999,(123):145-155
    273. Prosser I P, Abernethy B.:Predicting the topographic limits to a gully network using a digital terrain model and process thresholds[J]. Water Resources Research,1996,(32):2289-2298
    274. Prosser I P, Dietrich W E. Field experiments on erosion by overland flow and their implication for a digital terrain model of channel initiation[J]. Water Resources Research,1995,(31):2867-2876
    275. Prosser I P, Soufi M. Controls on gully erosion following forest clearing in a humid temperate environment[J]. Water Resources Research,1998,(34):3661-3671
    276. R.P. Silberstein, R.A. Vertessy, J. Morris, P.M. Feikema. Modelling the effects of soil moisture and solute conditions on long-term tree growth and water use:a case study from the Shepparton irrigation area, Australia[J]. Agricultural Water Management,1999 (39):283-315
    277. Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Department of Agriculture, Washington D.C. Handbook 1997:703
    278. Robbins C.S., Dawson D.K., and Dowell B.A., habitat area requirements of breeding forest birds of the middle Atlantic states [J]. Wildl.Monogr,1989:103,34
    279. Rodriguez I. Ecohydrology. A hydrological perspective of climate--soil--vegetation dynamics[J]. Water Resources Research,2000,36:39
    280. Rose C W. Developments in soil erosion and deposition models. Advance in Soil Science,19852: 1-63.
    281. Rosenfield, G.H., and K. Fitzpatrick-Lins, A Coefficient of Agreement as a Measure of Thematic Classification Accuracy, Photogrammetric Engineering and Remote Sensing[J],1986.52(2),223-227
    282. Running, S. W. and Coughlan, J. C. A generral model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchang and primary prodution processes[J]. Ecol. Model.1988,42:125-154
    283. Running. S. W., Gower. S. T. FOREST-BGC, A general model of forest ecosystem processes for regional applications. Ⅱ. Dynamic carbon allocation and nitrogen budgets[J].Tree Physiology.1991,9:147-160
    284. S. Kim and S. Jung,2003. Digital terrain analysis of the dynamic wetness pattern on the Sulmachun watershed. Diffuse Pollution Conference, Dublin10,1-6.
    285. Saaty, R.W. The analytic hierarchy process--what it is and how it is used[J]. Mathematical Modeling 1987,9(3),161-176.
    286. Schuller D, Brunken-winklerH, Busch P et al. sustainable land use in an agriculturally misused landscape in northwest Germany through ecotecknological restoration by a"patch network concept"[J]. Ecol Eng.,2000,16,99-117.
    287. Schuller R E. Modeling hydrological responses to land use and climate change:a southern African perspective [J].AMBIO,2000,29(1):12--22.
    288. Serrano A,Materos V L, Garcia J A. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921-1995[J]. Phys Chem Earth (B),1999,24 (1-2):85-90.
    289. Short D L, O'loughlin E M, Dawes W R. Simulating the design and operation of absorption trenches for effluent disposal[J]. Hydraulics in Civil Engineering,1990,90(4):79-83
    290. Spence R, Hickley P.. The use of PHABSIM in the management of water resource and fisheries in England and Walse [J]. Ecol Eng.,2000,16:153-158.
    291. Statzner B, Higler B. Question and comments on the river continuum concept [J]. Can J Fish Aquat Sci,1985,42:1038-1044.
    292. Tatrai K, Korponai M J, Paulovits G. The role of the Kis-Balaton water protection system in the control of water quality of lake Balato[J]. Ecol Eng.,2000,16:73-78.
    293.Thiele Michael. On N. Park's analytical solution for steady state density and mixing regime dependent solute transport in a vertical soil column [J]. Water Resources Research, 1998,34(4):903-908.
    294. Thorp J H, DelongMD. The riverine productivitymodel, an heuristic view of carbon source and organic processing in large river ecosystems [J]. Oikos 1994,70:305-308.
    295. Timchenko V, OksiyukmO, Gore J. Amodel for ecosystem state and water quality management in the Dnieper Rivermouth zone [J]. Eco Eng.,2000,16:119-125.
    296. Van EKR, Witte JPM, RunhaarHet al. Ecological effectsof water management in the Netherlands the model DEMNAT[J]. Ecol Eng.,2000,16:127-141.
    297. Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept [J]. Can J Fish Aquat Sci,1980,37:130-137
    298. Verburg, P. H. Chen,Y. Q.Mnlti-scal characterization of land-use patterns in China. Ecosystems, 2000
    299. Vertassy R A, Wilson C J, Silburn D M, Connolly R D, Ciesiolka C A. Predicting erosion hazard areas using digital terrain analysis[M]. IAHS AISH Publication,1990.(192),:298-308
    300. Vertessy R A, Dawes W R, Zhang L, Hatton T J, Walker J. Catchment scale hydrologic modelling to assess the water and salt balance behaviour of eucalypt plantations[J]. CSIRO Division of Water Resources,1996,96(1):23
    301. Vertessy R A, Hatton T J, O'shaughnessy P J, Jayasuriya M D A. Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model[J]. J. Hydrology, 1993(150)665-700
    302. Vieux B E, Gauer N. Finite element modeling of storm water runoff using GRASS GIS[J]. Microcomputer in Civil Engineering,1994,9(4):263-270
    303. Viville D, Littlewood I G. Ecohydrological Processes in small basins[C]. ProceedingsofSixth Conference ofthe EuropeanNetwork of Experimental and Representative Basins(ERB) Strasbourg (France),24-26 September 1996, IHP-VTechnical Documents in Hydrology,No 14, Paris:UNESCO, 1997.1-50.
    304. Von Storch H.Misuses of statistical analysis in climate research. In:Analysis of Climate Variability:Applications of Statistical Techniques (edit byH. Von Storch &A. Navarra),1995 Springer-Verlag, Berlin, Germany.1995:279-286
    305. Wagner I, Zalewski M. Effects of hydrological patterns of tributarieson biotic processes in a lowland reservoir consequence for restoration [J]. Ecol Eng.,2000,16:70-90.
    306. Ward J V, Stanford JA. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation [J]. Regul Rivers.1995,11:105-119.
    307. Ward JV, Standford JA. The serial discontinuity concept of lotic ecosystem [A]. In:Fontaine T, Bartell S M(Ed). Dynamics of LoticEcosystems. Ann Arbor Publishers[C]. Ann Arbor.,1983.56-179
    308. Warrick R. Dawes, Lu Zhang, Tom J. Hattona. Evaluation of a distributed parameter ecohydrological model[TOPOG_IRM]on a small cropping rotation catchment[J]. Journal of Hydrology.1997(191):64-86
    309. Wei Wei, Liding Chen, Bojie Fu, etal The effect of land uses and rainfall regimeson runoffand soilerosion in the loesshilly area, China[J]. Journal of Hydrology,2007,335:247-258.
    310. Western AW, Graysen R, Bloschl G, Willgoose G and McMahon TA,1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research. 35:797-810.
    311. Wischmeier W H, Smith D D. PredictingRainfallErosion Losses:A Guide toConservation Planning [M]. USDA-ARS,1978:282.
    312. Witte J PM, Vander Meijden R.Mapping ecosystem types by means of ecological species groups[J]. Ecol Eng.,2000,16:143-152.
    313. Xi C, Chen Y Q, Xu C Y. A distributed monthly hydrological model for integrating spatial variations of basin topography and precipitation[J]. Hydrological processes,2007,21(2):242-252
    314. Xie Z H, Su F G, Liang X. Application of a surface runoff model with Horton and Dunne runoff for VIC[J]. Advances in Atmospheric Sciences,2003,20(2):165-172
    315. Yager, Ronald R. On Ordered Weighted Averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics.1988,8(1),183-190.
    316. Yang. D. W, Li, C., Hu H., et al. Analysis of water resources variabilityin the Yellow River of China during the last half century using historical data, Water resources research.2004, (40).11-23
    317. Yu B, RosewellC J. A robustestimatiorof theR-factor for the universal soil loss equation [J].Transactions of the ASAE,1996,39(2):559-561.
    318. Yu Z, Lakhtakia M N, Barron E J. Modeling the river basin response to single storm events simulated by mesoscale meteorological at various resolutions[J]. Journal of Geophysical Research,1999(104):19675-19690
    319. Yue S., Pilon P., et al. Canadian streamflow trend detection:impacts ofserial and cross-correlation, Hydrological Sciences.2003,48 (1):51-63.
    320. Yue S., Pilon P., et al. Power of the Mann-Kendall and Spearman'srho tests for detecting monotonic trends in hydrological series, Journal of Hydrology.2002, (259):254-271.
    321. Zadeh, L.A. Fuzzy sets[J]. Information and Control.1965.8:338-353.
    322. Zalewski M, Janauer G A, Jolankaj G. Ecohydrology. A new paradigm for the sustainable use of aquatic resource[A]. In:Conceptua IBackground, Working Hypothesis. Rational and Scientific Guidelines for the Implementation of IHP-V Project 2.3 2.4, Technical Document in Hydrology. No.7 [C]. Paris:UNESCO,1997.55-80.
    323. Zalewski M. The scientific background to use ecosystem properties as management tools toward sustainability of water resources[J]. Ecological Engendering,2000,16:18
    324. Zhang J Y, Dong W J, Fu C B et al. Stream flow simulation for the Yellow River basin using RIEMS and LRM[J]. Advances in Atmospheric Sciences,2003(3):22-25
    325. Zhang L, Dawes W R, Hatton T J. Modelling hydrologic processes using a biophysically based model-Application of Waves to FIFE and HAPEX-MOBILHY[J]. J. Hydrology,2007, (22):657-669
    326. Zhang L, DawesW R,Walker G R. Response of mean annual evapotranspiration to vegetation changes at catehment scale[J].Water Resourees Research,2001,37(3):701-708
    327. Zhang X P, Zhang L, McVicar TR,et al.Modeling the impact of afforestation on average annual streamflow in the Loess Plateau,China[J].Hydrological Processes,2008(a),22:1996-2004.
    328. Zimmermann, H. J and P. Zysno. Latent connectives in human decision making[J]. Fuzzy Set and Systems.1980,Vol.4,37-41
    329. Zollweg J A, Gburek W J, Steenhuis T S. SmoRMod a GIS-integrated precipitation runoff model[J]. Trans.ASAE,1996(39):1299-1307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700