用户名: 密码: 验证码:
从热红外遥感获取断裂相关信息的分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断裂与地表热环境密切相关,断裂对地热循环至地表有重要作用。研究断层两侧地表温度场信息,对地热资源远景勘测区域具有很大意义,也对了解断层构造活动和地质活动对地表热环境影响有很大的科学价值。热红外影像中,反应深部的热信息只是很少的一部分,需要去除干扰因素增强目标信号,当前研究未能较好解决消除干扰信号的问题,对断裂与地表热信息之间的空间位置也没有较完善的讨论。本文对断裂位置和地表热异常信息条带的空间位置以及其偏移问题进行深入分析,并提出从热红外遥感获取断裂相关信息的分析方法。首先,对多景不同区域的Landsat热红外影像选取适合区域的算法获得地表温度场。其次,提出去除温度场中因异常高温低温背景干扰区域的方法。第三,用尺度分析插值法增强去除干扰后的影像,结合地质图及物探剖面对断裂和地表热异常信息空间位置进行讨论,并提出建立定量的统计学模型验证相关性。第四,分析断裂相关热异常信息影响宽度与尺度之间关系,改进尺度分析窗口,用不同尺度的热异常信息增强不同范围不同深度的断裂信息。对研究区地表热异常信息和地下断裂对应空间位置进行了较为深入的探讨。
     主要取得了以下方面的进展和结论:
     (1)比较了不同的比辐射率估算方法和各种地表温度反演算法,分别对无大气数据支持和有大气数据支持的区域影像使用不同的地表温度反演算法。并提出了消除干扰因素形成的地表异常高温低温区域的方法。
     (2)改进尺度分析插值法应用于断裂相关热信息增强。通过均值采样插值取代原方法中的随机采样,获得更稳定的地表热信息影像。
     (3)结合物探剖面准确定位地表热信息剖面与断裂确切空间位置之间对应关系,首次提出断裂附近中间高两边低的热异常信息峰值位于断裂倾向方向的结论。
     (4)应用统计方法定量分析评价断裂和热异常信息。通过定量分析断裂相关热异常信息的影响范围,建立了该范围内断裂两侧距离与地表温度的统计模型。也证明了断裂相关热异常信息并非随机,而是具有统计学意义。
     (5)对尺度分析插值法的增强信息尺度窗口进行探讨,改进尺度分析窗口为断裂影响范围的1/2,提出不同尺度窗口增强不同影响宽度的断裂相关热信息,探讨了不同尺度的分析插值结果与断裂深度之间的关联。
Faults provide the path for geothermal natural convection and partially influence the ground surface thermal environment. Recently, the distance relationship between geothermal areas and faults has been considered of great importance. Remote-sensed thermal infrared (TIR) images have been used to detect and characterise the presence and potential of geothermal anomaly areas for many years. However, geothermal anomalies are difficult to detect in TIR images because they are only slightly warmer than the ambient background temperature. Furthermore, the success of efforts has always been limited by the difficulty of differentiating between several heating effects within different surface land covers. The primary purpose of this work was to determine the applicability of a combined technique of satellite image analysis and statistics in establishing the relationship between thermal anomalies and faults. In addition, spatial pattern analysis should be improved by land cover simplification and supported by geophysical prospecting tectonic models. In this study, we devote several of the below sections to bring out an analyzing method of thermal information associated with faults based on thermal infrared remote sensing. First, we derived LSTs from the Landsat TM/ETM+ thermal bands of varying periods. Second, we attempted to employ land use/land cover classification of the LST images to eliminate noise in the form of the abnormal high temperatures caused by human-driven land cover in built-up and bare land and the abnormal low temperatures caused by water and hill shade. Then the enhanced and noise-reduced images that manifested as fragments were implemented by kriging interpolation. Third, we compared the spatial pattern of the enhanced images with geophysical prospecting tectonic profiles and with regional geological tectonic maps, and analysed the spatial correspondence between the thermal anomalies and the faults. Finally, we used the approximate width of the ranges calculated as the scales to enhance and extract the thermal anomaly associated with faults.
     The main progresses and results list as follows:
     (1) LSTs were retrieved from Landsat thermal infrared images and computed from the algorithm which defined by meteorological information, as using single-channel algorithm where contained the meteorological information or using Artis'algorithm when there was no meteorological information. Analysed the thermal infrared anomalies caused by non-structure factor, and put forward a method to eliminate them.
     (2) Enhance the images using improved-scale-analysing-interpolation method. Improve the sample method as mean sample to get steady surface thermal enhanced map.
     (3) Compared the spatial pattern of the enhanced images with geophysical prospecting tectonic profiles and with regional geological tectonic maps. Summarized the distributing rule that the thermal anomalies occurring as wave crests appeared near the faults and were located in the dip planes of the faults.
     (4) Analysed the spatial statistical correspondence between the thermal anomalies and the faults. Estimated the temperature anomaly-affected ranges of both sides of the faults and calculated the approximate width of the ranges, and tested by regression models to display the relationships of the temperatures and locating distances in these affected ranges.
     (5) Using different scale of fault thermal anomalies described as the approximate width of the fault ranges to enhance and extract the different scale fault thermal anomalies.
引文
陈顺云,马瑾,刘培洵等.突出地表热辐射场中现今构造活动信息的均值梯度法[J].地震地质,2005,27(4):661-668.
    陈顺云,刘培洵,刘力强等.地表热红外辐射的小波分析及其在现今构造活动研究中的意义[J].地球物理学报,2006,49(3):824-830.
    戴文晗,戴磊.西安地区隐伏构造遥感信息特征及热红外场三维显示应用[C].第十四届全国遥感技术学术交流会论文摘要集,2003.
    郭卫英,马瑾,单新建.活动断裂带的地形地貌差异与红外亮温年变特征的研究[J].地球物理学进展,2008,23(5):1437-1443.
    胡圣标,邱楠生,熊亮萍,汪集旸,阮万才,钟朝阳,金国灿,刘梦才,蒋根和.东南大陆岩石圈结构与地质演化[M].冶金工业出版社1993.
    刘培洵,刘力强,陈顺云等.从红外遥感图像提取地下热信息的透热指数法[J].地震地质,2004,26(3):519-527.
    卢善龙,沈晓华,邹乐君等.基于尺度分析的断层热信息遥感图像增强方法--以江山绍兴断裂金衢段为例[J].地球物理学报,2008a,51(5)
    卢善龙.基于地质要素的金衢盆地环境数值模型的建立[D].杭州:浙江大学,2008b,42-44.
    卢善龙,沈晓华,邹乐君等.用于地表温度场与断裂构造关系分析的分段均值法-以江山-绍兴断裂金衢段为例[J].地质学报,2009,83(2):239-246.
    马瑾,陈顺云,扈小燕,刘培洵,刘力强.大陆地表温度场的时空变化与现今构造活动[J].地学前缘,201 0,17(4)
    彭望琭.遥感概论[M].北京:高等教育出版社2002.
    覃志豪,李文娟,Zhang等.单窗算法的大气参数估计方法[J]. 国土资源遥感,2003,56:37-43.
    祖辅平,李成,王彬.金衢盆地的沉积相.[J].沉积学报,2004,22(3):417-424.
    竺国强,张福祥,杨树锋,陈汉林,姜继双,陈梓军,程晓敢.江山一绍兴碰撞带构造演化与变形特征[J].浙江大学学报(自然科学版),1997,31(6):745-752.
    Allis, R. G., Nash, G. D., and Johnson, S. D. Conversion of thermal infrared surveys to heat flow:Comparisons from Dixie Valley, Nevada, and Wairakei, New Zealand [J]. Geothermal Resources Council Transactions,1999,23:499-504.
    Artis, D. A., and Carnahan, W. H. Survey of emissivity variability in thermography of urban areas [J]. Remote Sensing of Environment,1982,12:313-329.
    Berberoglu, A., Lloyd, C.D., Atkinson, P.M., and Curran, P. J. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean[J]. Computer and Geoscience,2000,26:385-396.
    Bhosle, B., Parkash, B., Awasthi, A. K. and Pati, P. Use of digital elevation models and drainage patterns for locating active faults in the Upper Gangetic Plain, India[J]. International Journal of Remote Sensing,2009,30 (3):673-691.
    Blewitt, G., M. Coolbaugh, W. Holt, C. Kreemer, J. Davis, and R. Bennett. Targeting of potential geothermal resources in the Great Basin from regional-to basin-scale relationships between geodetic strain and geological structures [J]. Transactions Geothermal Resources Council,2003,27:3-7.
    Bolstad, P. V., Lillesand, T. M. Rapid maximum likelihood classification [J]. Photogrammetric Engineering and Remote Sensing,1991,57:67-74.
    Cohen, Y., and Shoshany, M. A national knowledge-based crop recognition in Mediterranean environment[J]. International Journal of Applied Earth Observation and Geoinformation,2002,4:75-87.
    Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment,1991,37:35-46.
    Coolbaugh, M. F., C. Kratt, A. Fallacaro, W. M. Calvin, and J. V. Taranik Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Brady's Hot Springs, Nevada, USA [J]. Remote Sensing of Environment,2007,106:350-359.
    Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution [J]. Remote Sensing of Environment,1981,11:221-229.
    Dymond, C. C., Mladenoff, D.J., Radeloff, V. C. Phenological differences in Tasseled Cap indices improve deciduous forest classification [J]. Remote Sensing of Environment,2002,80:460-472.
    Elnazir, R., Feng, X.Z., and Cheng, Z.. Satellite remote sensing for urban growth assessment in Shaoxing City, Zhejiang Province [J]. Journal of Zhejiang University SCIENCE,2004,5 (9):1095-1101.
    Franklin, S.E., Peddle, D.R., and Moulton, J. E.. Spectral geomorphometric discrimination and mapping of terrain:A study in Gros Morne National Park[J]. Canadian Journal of Remote Sensing,1989,15 (1):28-42.
    Ganas, A., Papadopoulos, G. and Pavlides, S. B. The 7 September 1999 Athens 5.9 Ms earthquake:remote sensing and digital elevation model inputs towards identifying the seismic fault[J]. International Journal of Remote Sensing, 2001,22 (1):191-196.
    Genzano, N., Aliano, C., Filizzola, C., et al. A robust satellite technique for monitoring seismically active areas:the case of Bhuj-Gujarat earthquake[J]. Tectonophysics,2007,431:197-210.
    Hanano, M. Two different roles of fractures in geothermal development [J]. Proceedings of World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28-June 10,2000:2597-2602.
    Holben, B. N., and Justice, C.O. The topographic effects on spectral response from nadir-point sensors[J]. Photogrammetric Engineering & Remote Sensing,1980,46 (9):1191-1200.
    Humes, K. S., Kustas, W. P., Moran, M. S., Nichols, W. D. and Weltz, M. A. Variability of emissivity and surface temperature over a sparsely vegetated surface[J]. Water Resources Research,1994,30:1299-1310.
    Hutchinson, C. F. Techniques for combining Landsat and ancillary data for digital classification improvement[J]. Photogrammetric Engineering and Remote Sensing, 1982,48 (1):123-130.
    Itten, K., I., and Meyer, P. Geometric and Radiometric Correction of TM Data of Mountainous Forested Areas[J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31 (4):764-770.
    Jim e nez-Mu oz, J.C., Sobrino, J. A. A generalized single channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research,2003,108 (D22):4688.
    Labed, J. a.S., M. P. Spatial varibility of land surface emissivty in the thermal infrared band:spectral signature and effective surface temperature[J]. Remote Sensing of Environment,1991,38:1-17.
    Lagios, E., Vassilopoulou, S., Sakkas, V., Dietrich, V., Damiata, B.N., Ganas, A. Testing satellite and ground thermal imaging of low-temperature fumarolic fields:The dormant Nisyros Volcano (Greece) [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62 (6):447-460.
    Landsat Project Science Office. Landsat 7 Science Data User's Handbook [Z/OL]. Goddard Space Flight Center, NASA, Washington, DC,2002. http://www.gsfc.nasa.gov/IAS/handbook/handbook-toc.html.
    Lee, K. Analysis of thermal infrared imagery of the Black Rock Desert geothermal area [J]. Colorado School of Mines Quarterly,1978,4 (2):31□44.
    Markham, B.L., and Barker, J. K. Spectral characteristics of the LANDSAT Thematic Mapper sensors[J]. International Journal of Remote Sensing,,1985,6:697-716.
    McFeeters, S. K. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17 (7):1425-1432.
    Noorollahi, Y., Itoi, R., Fujii, H., Tanaka, T. GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan[J]. Computers & Geosciences,2007,33:1008-1021.
    Noorollahi, Y., Itoi, R., Fujii, H., Tanaka, T. GIS integration model for geothermal exploration and well siting [J]. Geothermics,2008,37 (2):107-131.
    Onorati, G., Poscolieri, M., Ventura, R., Chiarini, V., and Crucilla, U. The digital elevation model of Italy for geomorphology and structural geology [J]. Catena, 1992,19:147-178.
    Ouzounov, D., Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data [J]. Advances in Space Research,2004,33:268-273.
    Prol-Ledesma, R. M. Evaluation of the reconnaissance results in geothermal exploration using GIS [J]. Geothermics,2000,29 (1):83-103.
    Qin, Z. H. and Karnieli, A.. Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J]. International Journal of Remote Sensing,1999,20(12):2367 2393.
    Qu, C.Y., Shen, X. J., Ma, J. Formation cause of thermal infrared high temperature belt along Honghe fault and its relation to earthquakes[J]. Acta Seismologica Sinica,2006,19 (1):93-99.
    Riano, D., Chuvieco, E., Salas, J., and Aguado, I. Assessment of Different Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types[J]. IEEE Transactions On Geoscience and Remote Sensing,2003,41 (5):1056-1061.
    Roberts, N., Cunningham, D. Automated alluvial fan discrimination, Quaternary fault identification, and the distribution of tectonically reactivated crust in the Gobi Altai region, southern Mongolia[J]. International Journal of Remote Sensing,2008,29 (23):6957-6969.
    Shrestha, D. P., and Zinck, J.A. Land use classification in mountainous areas: Integration of image processing, digital elevation data and field knowledge[J]. International Journal of Applied Earth Observation and Geoinformation,2001,3 (1):78-85.
    Smith, J. A., Tzeu, L. L., and Ranson, K. J. The Lambertian assumption and Landsat data [J]. Photogrammetric Engineering & Remote Sensing,1980,46 (9):1183-1189.
    Smith, M.J., and Clark, D. C. Methods for the visualization of digital elevation models for landform mapping[J]. Earth Surface Processes and Landforms, 2005,30:885-900.
    Smith, M. J., Clark, C.D., and Wise, S. M.,. Mapping glacial lineaments from satellite imagery:an assessment of the problems and development of best procedure[J]. Slovak Geological Magazine,2001,7:263 274.
    Sobrino, J. A., Raissouni, N. and Li, Z. L. A comparative study of land surface emissivity retrieval from NOAA data [J]. Remote Sensing of Environment, 2001,75:256-266.
    Teillet, P., M., Guindon, B. and Goodenough, D., G. On the slope-aspect correction of multispectral scanner data[J]. Cannadian Journal of Remote Sensing,1982,8 (2):84-106.
    Toutin, T. Three-Dimensional topographic mapping with ASTER Stereo data in rugged topography[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40 (10):2241-2247.
    Tramutoli, V., Bello, D., Pergola, G. N., et al. Robust satellite technique for remote sensing of seismically active areas[J]. Annali Di Geofisica,2001,44:295-312.
    Tronin, A.A. Satellite thermal survey—a new tool for the study of seismoactive regions[J]. International Journal of Remote Sensing,1996,17 (8):1439-1455.
    Tronin, A. A. Thermal IR satellite sensor data application for earthquake research in China[J]. International Journal of Remote Sensing,2000,21 (16):3169-3177.
    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8:127-150.
    Valor, E., Caselles,V.. Mapping land surface emissivity from NDVI:Application to European, African, and South American areas[J]. Remote Sensing of Environment, 1996,57 (3):167-184.
    Van de Griend, A. A., and Owe, M. On the relationship between thermal emissivity and the normalized different vegetation index for natural surfaces[J]. International Journal of Remote Sensing,1993,14 (6):1119 1131.
    Wang, Y.Q., and Civco, D.L. Evidential reasoning-based classification of multi-source spatial data for improved land cover mapping[J]. Canadian Journal of Remote Sensing,1994,20 (4):381-393.
    Welch, R., Jordan, T., Lang, H., and Murakami, H. ASTER as a source for topographic data in the late 1990s[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36 (4):1282-1289.
    Weng, Q.H., Lu, D.S., and Schubring, J. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment,2004,89:467-483.
    Xu, H. Q.. A Study on Information Extraction of Water Body with the Modified Normal ized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing,2005,9 (5):589-895.
    Yousefi, H., Ehara, S., and Noorollahi, Y,. Geothermal potential site selection using GIS in Iran. [J]. Proceedings,32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 22-24,2007,9p,,2007,
    Zha, Y., Gao, J., Ni, S. Use of normalized difference build-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24 (3):583-594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700