用户名: 密码: 验证码:
吕梁山及邻区新生代构造—沉积演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山体隆升剥蚀及热历史恢复是国内外新生代地质学和构造地质学的重要研究领域。新生代隆起定型的吕梁山分割了原鄂尔多斯盆地为现今鄂尔多斯盆地和沁水盆地,对比研究吕梁山及其东西两侧的两个沉积盆地新生代构造演化可为研究盆地后期经受的改造作用提供新的信息。同时吕梁山也是越过青藏高原东北部边界的的第一大山系,其隆升过程研究可从时间角度约束青藏高原横向扩展所能影响到的东北部边界。吕梁山山前新生代沉积物组成、空间分布、沉积环境及时代确定是研究吕梁山新生代晚期隆升剥蚀以及黄河形成与演化的关键。
     本论文分别从山前盆地和山体出发,采用多手段研究吕梁山新生代隆升剥蚀过程。从山体入手,根据定性研究结果将吕梁山分为北中南三段,分别采用裂变径迹定年方法,确立吕梁山隆升的期次、幅度及时间,探讨其新生代隆升的时间阶段性和空间区域性。从山前盆地入手,采用岩相学分析与古地磁定年相结合,约束吕梁山晚期隆升剥蚀过程。结合盆地和山体两方面研究结果恢复吕梁山及邻区新生代构造沉积演化过程。
     山体不同部位裂变径迹研究表明吕梁山新生代至少经历了58Ma、49-53Ma、38-43Ma和26Ma四次间歇性隆升,隆升幅度北中南有异。吕梁山中段于58Ma发生首次抬升,此次抬升可能未波及到南北两段;49-53Ma吕梁山北中段一起隆升,但中段隆升幅度大于北段,南段未记录此次事件。38-43Ma,吕梁山整体隆升。约26Ma,吕梁山再次发生全面抬升,奠定了吕梁山的主体格局。吕梁山山前砾石层的空间分布特征、砾石成份与毗邻基岩区的耦合关系以及典型剖面沉积学研究表明砾石层是吕梁山新生代隆升剥蚀的产物,10-6.5Ma(古地磁年龄)是吕梁山晚期隆升剥蚀的时间。
     柳林新近纪地层剖面揭示了剖面尺度上红粘土与水成堆积物的关系,结合前人研究结果认为区域上吕梁山山前的水成堆积物呈楔状“侵入”于红粘土的中下部。新发现了再搬运的红粘土及钙质结核,为红粘土成因解释提供了新的资料,磁性地层学研究表明其形成于8Ma,暗示了吕梁山地区曾经堆积了早于8Ma的红粘土。
     在柳林剖面新近纪地层精细研究的基础上,结合区域资料认为吕梁山山前新近纪(原)保德组下部砂砾石是水成堆积,上部棕红色粘土与棕黄色钙质结核层为风成堆积,中部则为二者的过渡地段,即原保德组包含了下部水成堆积和上部风成堆积。这有悖于《中国地层指南及中国地层指南说明书》对组的定义,应予解体。解体后保德组下部的水成堆积物称为芦子沟组,相当于初始定义的“芦子沟系”或“芦子沟砾岩”;保德组上部风尘堆积仍称之为保德组。
     新生代以来,吕梁山及西部鄂尔多斯盆地一直处于抬升剥蚀状态,缺失新近纪以前沉积。10-6.5Ma,吕梁山快速隆升,在山前堆积了芦子沟组。约8Ma起,吕梁山西部的黄土高原地区开始广泛接受风尘堆积。1.6Ma黄河贯通南北新生代地堑,此后不断振荡下切,切入基岩。
Reconstruction of Cenozoic thermal history and the uplift processes of mountains is the important research field of the Cenozoic geology.L(u|¨)liang Mountain which uplifted in Cenozoic divided the Pre-Ordos Basin into Ordos Basin and Qinshui Basin.Comparative study the evolution of L(u|¨)liang Mountain and Ordos Basin and Qinshui Basin in Cenozoic can provide new information for the study of basin reformation.In addition,L(u|¨)liang Mountain is the first mountain ranges across the northeastern border of Qinghai-Tibet Plateau.Research on the Cenozoic uplift of L(u|¨)liang Mountains could constrain the eastern border of Qinghai-Tibet Plateau lateral spread from time viewpoint.Composition,spatial distribution and sedimentary environment of Cenozoic sedmnetary in front of L(u|¨)liang Mountain are the keys to study uplift of L(u|¨)liang Mountains and the formation and evolution of Yellow River.
     In this thesis we subject different methods for the uplift of L(u|¨)liang Mountain from the view of foreland basin and Mountain Body.Based on qualitative study,the L(u|¨)liang Mountain can be divided into three parts(north,middle and south).In Mountain,fission track dating analysis are used in diffirent parts of L(u|¨)liang Mountain to get the information of times and amplitude of the uplift,which can provide information to study the time stage and regional characteristic of uplift.For the foreland basin,Lithofacies analysis and Paleomagnetic dating are the main methods to constraint the process of uplift and denudation of L(u|¨)liang Mountain. Together with the study of foreland basin and Mountain Body,We reconstruct the Cenozoic history of tectonic-sedimentation in L(u|¨)liang Mountain and its adjcient area.
     Fission track study on Different parts of L(u|¨)liang Mountain shows that there are at least four times intermittent uplift(58Ma、49-53Ma、38-43Ma and 26Ma) in Cenozoic and the amplitude is different in the north、middle and the south part.The middle part of L(u|¨)liang Mountain uplifted in 58Ma firstly which has not sweep other parts.In 49-53Ma,both north and the middle part of L(u|¨)liang Mountain uplift.The upift amplitude of middle part was larger the north.38-43Ma and 26Ma,the whole L(u|¨)liang Mountain experienced two rapid uplifts and the latter established the main pattern of L(u|¨)liang Mountain.Gravel's spatial distribution characteristics in a wider range,gravel composition and adjacent bedrock's composition and research of typical profile sedimentology tell us that the gravel bed in front of the L(u|¨)liang mountains is the product of L(u|¨)liang Mountains's uplift in Cenozoic. Paleomagnetic age(10-6.5Ma) of gravel bed is the uplift date of L(u|¨)liang Mountains.
     Further research on Liulin Section reveals the relation between red clay and fluvial accumulation.Togeteh with other researcher's results,the conclusion can be drawn:fluvial deposits wedge red clay base like an asymmetric wedge.The discovery of red clay and calcium nodule transported can provide new information for the cause of red clay. Magnetostratigraphic result reveals that red clay and calcium nodule transported is aged about 8Ma,which indicates that the red clay older than it must exist before 8Ma.
     Based on study on Neogene Stratigraphy in Liulin profile,together with other researcher's results,it is concluded that the sandy gravel layer in the lower pre-Baodean is fluvial deposits,but the upper sequence of brownish red clay and brownish yellow calcite nodule interbedded with each other are aeolian clay layers;The middle part is thought to be the transition zone of the lower aqueous deposit and upper interbedding of red clay and calcite nodule.In other words,pre-Baode Formation includes fluvial deposits and aeolian clay layers, which is not accord with the definition of Formtion by the《The Stratigraphic Guide of China and Its Explaination》and should be disassembled.We named fluvial deposits of Pre-Baode Formation as Luzigou Formation and aeolian clay layers as Baode Formation.Luzigou Formation is Equivalent to the original difintion of"luzigou Gravel".
     L(u|¨)liang Mountain and the Ordos Basin have kept in uplift-denudation condition Since the Cenozoic and missed Paleogene strata.At 10-6.5Ma,L(u|¨)liang Mountain uplifted rapidly and formed the luzigou Formation.At 8Ma,Loess Plateau Region(in the west part of L(u|¨)liang Mountains began to accumulate Aeolian clay layers extensively.The Yellow River transfixion the north and south Cenozoic graben in 1.6Ma,then it intermittent cut and cut into the bedrock.
引文
[1] Z S An, Kutzbach J. E, Warren L. Dfghdfgh. Evolution of asian monsoons and phased uplift of the himalaya-tibetan plateau since late[J]. Nature, 2001, 411(3): 62-66
    [2] Burchfiel B. C, Z. Peizhen, W. Yipeng, et al. Geology of the haiyuan fault zone, ningxia-hui autonomous region, china, and its relation to the evolution of the northeastern margin of the tibetan plateau[J]. Tectonics, 1991, 10(6): 1091-1110
    [3] D. Boztug, R. Jonckheere, G. A. Wagner, et al. Slow senonian and fast palaeocene-early eocene uplift of the granitoids in the central eastern pontides, turkey: apatite fission-track results[J]. Tectonophysics, 2004, 382(3-4): 213-228
    [4] Dewen Zheng, Pei-Zhen Zhang, Wana Jinlin, et al. Rapid exhumation at ~ 8 ma on the liupan shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern tibetan plateau margin [J]. Earth and Planetary Science Letters, 2006, 248(1-2): 198-208
    [5] Dong huai Sun. Monsoon and westerly circulation changes recorded in the late cenozoic aeolian sequences of northern china[J]. Global and Planetary Change, 2004, 41(1): 63-80
    
    [6] Dong huai Sun, Zhi sheng An, J. Shaw, et al. Magnetostratigraphy and palaeoclimatic significance of late tertiary aeolian sequences in the Chinese loess plateau[J]. Geophysical Journal International, 1998, 134(1): 207-212
    [7] Duowen Mo, Edward Derbyshire. The depositional environment of the late pliocene "red clay", jing-le basin, shanxi province, china[J]. Sedimentary Geology, 1991, 70(1): 33-40
    [8] Kirby E., ReinersPW, KrolM A, et al. late cenozoic evolution of the easternmargin of thetibetan plateau: inference from40ar/39ar and (u-th) /he thermochronolog[J]. Tectonics, 2002, 21(1): 1-19
    [9] Erchie Wang, Jinglin Wan, Jiaqi Liu. Late cenozoic geological evolution of the foreland basin bordering the west kunlun range in pulu area: constraints on timing of uplift of northern margin of the tibetan plateau[J]. Journal of Geophysical Research Solid Earth, 2003, 108
    [10] Eva Enkelmann, Lothar Ratschbacher, Raymond Jonckheere, et al. Cenozoic exhumation and deformation of northeastern tibet and the qinling: is tibetan lower crustal flow diverging around the sichuan basin? [J]. Geological Society of America, 2006, 118(5-6): 651-671
    
    [11] Laslett G. M., Galbraith R. F.. Statistical modelling of thermal annealing of fission tracks in apatite [J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 5117-5131
    
    [12] Z T Guo, Ruddiman W, Hao Q. Z. Onset of asian desertifications by 22myr ago inferred from loess deposits in china[J]. Nature, 2002(416): 159-163
    [13] Guoyu Ding, Jie Chen, QinjianTian, et al. Active faults and magnitudes of left-lateral displacement along the northern margin of the tibetan plateau [J]. Tectonophysics, 2004, 380(3-4): 243-260
    [14] Harrison T. M, Copeland P, Kidd W. S, et al. Raising tibet[J], Science, 1992(255): 1663-1670
    [15] Hua yu Lu, Jef Vandenberghe, Zhi sheng An. Aeolian origin and palaeoclimatic implications of the "red clay" (north china) as evidenced by grain-size distribution[J]. JQS. Journal of Quaternary Science, 2001, 16(1): 89-97
    [16] Ji min Sun. Nd and sr isotopic variations in Chinese eolian deposits during the past 8 ma; implications for provenance change[J]. Earth and Planetary Science Letters, 2005, 240(2): 454-466
    [17] Jocelyn Barbarand, Andrew Carter, Ian Wood, et al. Compositional and structural control of fission-track annealing in apatite[J]. Chemical Geology, 2003, 198(1-2): 107-137
    [18] Jun Chen, Yang Chen, Lian wen Liu, et al. Zr-rb ratio in the Chinese loess sequences and its implication for changes in the east asian winter monsoon strength[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1471-1482
    [19] Justine Tinker, Maarten de Wit, Roderick Brown. Mesozoic exhumation of the southern cape, south africa, quantified using apatite fission track thermochronology[J]. Tectonophysics, 2008, 455(1-4):77-93
    [20] Kroon D, Steen T. N. F, Truoelstra S. R. Onset of the uplift of the qinghai-xizang plateau[J]. Quat Sci Rev, 1991(10): 479-483
    [21] Lin Aiming, YANG ZHenyu, SUN Zhiming, et al. How and when did the yellow river develop its square bend[J]. Geology, 2001, 29(10): 951-954
    [22] Evans M. E., Y. Wang, N. Rutter, et al. Preliminary magnetostratigraphy of the red clay underlying the loess sequence at baoji, china[J]. Geophysical Research Letters, 1991, 18(8): 1409-1412
    [23] M. K. Clark, L. M. Schoenbohm, L. H. Royden, et al. Surface uplift, tectonics, and erosion of eastern tibet from large-scale drainage patterns[J]. Tectoincs, 2004, 23(TC1006)
    [24] Clark M. K., House M. A., Royden L. H., et al. Late cenozoic uplift of southeastern tibet[J]. Geology, 2005, 33(6): 525-528
    [25] Nikki M. White, M. Pringle, E. Garzanti, et al. Constraints on the exhumation and erosion of the high himalayan slab, nw india, from foreland basin deposits[J]. Earth and Planetary Science Letters, 2002, 195(1-2): 29-44
    [26] Oscar M. Lovera, Frank M. Richter, T. Mark Harrison. Diffusion domains determined by 39ar released during step heating[J]. Journal of Geophysical Research, 1991, 96(2): 2057-2069
    [27] Peizhen Zhang, Peter Molnar, William R. Downs. Increased sedimentation rates and grain sizes 2-4myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831):891-897
    [28] Clift Peter D., Andrew Carter, Ian H. Campbell, et al. Thermochronology of mineral grains in the red and mekong rivers, Vietnam: provenance and exhumation implications for southeast asia[J].Geosystems, Geochemistry Geophysics , 2006, 7(10): 1-28
    [29] Clift Peter D., Ian H. Campbell, Malcolm S. Pringle, 等. Thermochronology of the modern indus river bedload:new insight into the controls on the marine stratigraphic record[J]. Tectonics, 2004, 23(Tc5013): 1-17
    [30] Peter Molnar. Mio-pliocene growth of the tibetan plateau and evolution of east asian climate[J]. Palaeontologia Electronica, 2005, 8(1): 1-23
    [31] Peter Molnar. Late cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):67-89
    [32] Peter W. Reiners, Mark T. Brandon. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 419-466
    [33] Pye. The nature, origin and accumulation of loess[J]. Quaternary Science Reviews, 1995, 14(7-8): 653-667
    [34] Quade J, Cerling T. E. Expansion of c4 grasses in the late miocene of northern pakistan: veidence from stable istopoes in paleosols[J]. Paleogreogr Paleogclimatol Paleoecol, 1995(115): 91-116
    [35] Galbraith R. F.. On statistical models for fission track counts [J]. Mathematical Geology, 1981, 13(6): 471-474
    [36] Rasmus C. Thiede, Bodo Bookhagen, J. Ram Arrowsmith, et al. Climatic control on rapid exhumation along the southern himalayan front[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 791-806
    [37] Rea D. K. The paleoclimatic record provided eolian deposition in the deep sea: the geologic history of wind[J].Reviews of Geophysics,1994(32):159-195.
    [38]Ricardo Alonso,Bodo Bookhagen,Barbara Carrapa,et al.Tectonics,climate,and landscape evolution of the southern central andes:the argentine puna plateau and adjacent regions between 22 and 30°s[J].The Andes,2006:265-283
    [39]Richard A.Ketcham,Raymond A.Donelick,Margaret B.Donelick.Aftsolve:a program for multi-kinetic modeling of apatite fission-track data[J].Geological Materials Research,2000,2(1):1-32
    [40]S.L.Yang,Z.L.Ding.Comparison of particle size characteristics of the tertiary "red clay" and pleistocene loess in the chinese loess plateau;implications for origin and sources of the "red clay"[J].Sedimentology,2004,51(1):77-93
    [41]Harrison T.Mark,Perer Copeland,W.S.F.Kidd,et al.Raising tibet[J].Science,1992,255(5052):1663-1670
    [42]Xiu Ming Liu,Tim Rolph,Zhi sheng An,et al.Paleoclimatic significance of magnetic properties on the red clay underlying the loess and paleosols in china[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2003,199(1-2):153-166
    [43]Gunnell Y.,Calvet M.,Brichau S.,et al.Low long-term erosion rates in high-energy mountain belts:insights from thermo- and biochronology in the eastern pyrenees[J].Earth and Planetary Science Letters,2009,278(3-4):208-218
    [44]YM Zhu,LP Zhou,DW Mo,et al.A new magnetostratigraphic framework for late neogene hipparion red clay in the eastern loess plateau of china[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,268(1-2):47-57
    [45]Z.L.Ding,S.F.Xiong,J.M.Sun,et al.Pedostratigraphy and paleomagnetism of a~7.0 ma eolian loess-red clay sequence at lingtai,loess plateau,north-central china and the implications for paleomonsoon evolution[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1999,152(1-2):49-66
    [46]Peizhen Z.,B.C.Burchfiel,P.Molnar,et al.Amount and style of late cenozoic deformation in the liupan shan area,ningxia autonomous region,china[J].Tectonics,1991,10(6):1111-1129
    [47]Z.T.Guo,W.F.Ruddiman,Q.Z.Hao,et al.Onset of asian desertification by 22 myr ago inferred from loess deposits in china[J].Nature,2002(416):159-163
    [48]Zhisheng An,John E.Kutzbach,Warren L.Prell,et al.Evolution of asian monsoons and phased uplift of the himalaya tibetan plateau since late miocene times[J].Nature,2001,411:62-66
    [49]安艳芬,韩竹军,万景林.川南马边地区新生代抬升过程的裂变径迹年代学研究[J].中国科学(D 辑:地球科学),2008,38(05):555-563
    [50]安芷生,王苏民,吴锡浩,等.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J].中国科学D辑,1998,48(06):481-490
    [51]安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究,2006,26(05):678-693
    [52]陈杰,K.H.Wyrwoll,卢演俦,等.祁连山北缘玉门砾岩的磁性地层年代与褶皱过程[J].第四纪研究,2006,26(1):20-31
    [53]陈杰,R.V.Heermance,D.W.Burbank,等.中国西南天山西域砾岩的磁性地层年代与地质意义[J].第四纪研究,2007,27(4):576-587
    [54]陈孝红,汪啸风.中国各地质时代地层划分与对比[M].北京:地质出版社,2005
    [55]陈正乐,宫红良,李丽,等.阿尔金山脉新生代隆升-剥露过程[J].地学前缘,2006,13(04):91-102
    [56]程绍平,邓起东,闵伟,等.黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动[J].第四纪研究,1998(03):238-248
    [57]丁仲礼,孙继敏,杨石岭,等.灵合黄土-红粘土序列的磁性地层及粒度记录[J].第四纪研究,1998(01):86-94
    [58]丁仲礼,孙继敏,朱日祥,等.黄土高原红粘土成因及上新世北方干旱化问题[J].第四纪研究,1997:147-157
    [59]丁仲礼,杨石岭,孙继敏,等.2.6ma前后大气环流重构的黄土-红粘土沉积证据[J].第四纪研究,1999:277-281
    [60]杜治利,王清晨.中新生代天山地区隆升历史的裂变径迹证据[J].地质学报,2007,81(08):1081-1101
    [61]方小敏,吕连清,杨胜利,等.昆仑山黄土与中国西部沙漠发育和高原隆升[J].中国科学D辑,2001,31(03):177-184
    [62]方小敏,宋春晖,戴霜,等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J].地学前缘,2007,14(1):230-242
    [63]方小敏,赵志军,李吉均,等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J].中国科学D辑,2004,34(02):97-102
    [64]方小敏,赵志军,李吉均,等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J].中国科学D辑,2004,34(02):97-106
    [65]傅开道,方小敏,高军平,等.青藏高原北部砾石粒径变化对气候和构造演化的响应[J].中国科学(D辑:地球科学),2006,36(08):733-742
    [66]傅开道,高军平,方小敏,等.祁连山区中西段沉积物粒径和青藏高原隆升关系模型[J].中国科学D辑,200l,31(S1):169-174
    [67]高峰,王岳军,刘顺生,等.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史[J].大地构造与成矿学,2000,24(01):87-91
    [68]弓虎军,张云翔,岳乐平,等.甘肃灵台新近纪红粘土磁组构特征的沉积学意义[J].沉积学报,2007,25(3):437-444
    [69]郭正堂,彭淑贞,郝青振,等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系[J].第四纪研究,1999(6):556-567
    [70]胡春生,潘保田,高红山,等.最近150ka河西地区河流阶地的成因分析[J].地理科学,2006,26(05):5603-5608
    [71]胡圣标,郝杰,付明希,等.秦岭-大别-苏鲁造山带白垩纪以来的抬升冷却史——低温年代学数据约束[J].岩石学报,2005,21(04):1167-1173
    [72]来庆洲,丁林,王宏伟,等.青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J].中国科学(D辑:地球科学),2006,36(09):783-796
    [73]雷永良,龚道好,王先美,等.应用裂变径迹不同模式约束岩体冷却史的初步探讨—以滇西独龙江岩体为例[J].地球物理学进展,2008,23(02):422-432
    [74]黎敦朋,赵越,胡健民,等.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束[J].岩石学报,2007,23(05):900-910
    [75]黎敦朋,赵越,胡健民,等.青藏高原西北缘中新世晚期a型花岗岩的特征及意义[J].地质通报,2007,26(12):1671-1677
    [76]李长江.晋陕蒙交界地区晚第三纪沉积特征与地貌演化[J].水土保持研究,2003,10(03):120-124,129
    [77]李丰江,吴乃琴,裴云鹏.黄土高原西部秦安新近纪风尘堆积的蜗牛化石证据[J].第四纪研究,2005,25(04):510-515
    [78]李齐,王瑜,万景林,等.秦岭造山带中段中新生代构造抬升的热年代学证据[J].矿物岩石地 球化学通报,2001,20(04):263-265
    [79]李勇,黎兵,周荣军,等.剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J].地质学报,2007,81(03):332-343
    [80]梁美艳,郭正堂,顾兆炎.中新世风尘堆积的地球化学特征及其与上新世和第四纪风尘堆积的比较[J].第四纪研究,2006,26(04):657-664
    [81]刘池洋,赵红格,桂小军,等.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J].地质学报,2006,80(05):617-638
    [82]刘东生.黄土与环境[M].北京:科学出版社,1985:1-481
    [83]刘进峰,郭正堂,郝青振,等.甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究[J].第四纪研究,2005,25(04):503-509
    [84]刘树文,张进江,舒桂明,等.藏南定结铁镁质麻粒岩矿物化学、ptt轨迹和折返过程[J].中国科学D辑,2005,35(09):810-820
    [85]刘顺生,谭凯旋,A.Wagner G,等.阿尔泰哈巴河岩体的裂变径迹年龄及热历史[J].核技术,2002,25(07):525-530
    [86]刘武生,秦明宽,漆富成,等.运用磷灰石裂变径迹分析鄂尔多斯盆地周缘中新生代沉降隆升史[J].铀矿地质,2008,24(04):221-227
    [87]刘秀铭,安芷生,强小科,等.甘肃第三系红粘土磁学性质初步研究及古气候意义[J].中国科学:D辑,2001,31(3):192-205
    [88]刘运明,李有利,吕红华,等.黄河山陕峡谷保德-克虎段高阶地砾石层的初步研究[J].北京大学学报(自然科学版),2007,43(06):808-815
    [89]刘运明,李有利.山西保德黄河最高阶地形成的时代[J].地理与地理信息科学,2007,23(1):101-103
    [90]刘运明,李有利,吕红华,等.从阶地砾石的统计特征看保德至克虎段河流演化[J].地理科学,2007,27(4):567-572
    [91]鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比[J].沉积学报,1999,17(2):226-232
    [92]鹿化煜,安芷生,王晓勇,等.最近14ma青藏高原东北缘阶段性隆升的地貌证据[J].中国科学D辑,2004,34(09):855-864
    [93]马玉贞,吴福莉,方小敏,等.黄土高原陇东盆地朝那红黏土8.1~2.6ma的孢粉记录[J].科学通报,2005,50(15):1627-1635
    [94]裴云鹏,吴乃琴,李丰江.晚第三纪红黏土成因和沉积环境的生物学证据:蜗牛化石记录[J].科学通报,2004,49(13):1294-1298
    [95]彭淑贞,郭正堂.风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义[J].第四纪研究,2007,22(02):277-285
    [96]强小科,安芷生,李华梅,等.佳县红粘土堆积的磁学性质及其古气候意义[J].中国科学:D辑,2004,34(7):658-667
    [97]庆建春,季建清,王金铎,等.五台山新生代隆升剥露的磷灰石裂变径迹研究[J].地球物理学报,2008,51(02):384-392
    [98]任战利.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J].地球物理学报,1995,38(3):339-349
    [99]任战利,肖晖,刘丽,等.沁水盆地构造-热演化史的裂变径迹证据[J].科学通报,2005,50(S1):87-92
    [100]山西省地质局.静乐幅1:20万区域地质调查[R],1972
    [101]山西省地质局.石楼幅、大宁幅1:20万区域地质调查报告(黄河以东部分)[R],1978
    [102]山西省地质局.五寨幅1:20万区域地质调查报告[R],1980
    [103]沈传波,梅廉夫,徐振平,等.大巴山中—新生代隆升的裂变径迹证据[J].岩石学报,2007,23(11):2901-2910
    [104]宋春晖,方小敏,李吉均,等.青藏高原北缘酒西盆地13ma以来沉积演化与构造隆升[J].中国科学D辑,2001,31(S1):155-162
    [105]宋春晖,高东林,方小敏,等.青藏高原昆仑山垭口盆地晚新生代高精度磁性地层及其意义[J].科学通报,2005,50(19):2145-2154
    [106]宋春晖,孙淑荣,方小敏,等.酒西盆地晚新生代沉积物重矿物分析与高原北部隆升[J].沉积学报,2002,20(04):552-559
    [107]宋友桂,方小敏,李吉均,等.晚新生代六盘山隆升过程初探[J].中国科学D辑,2001,31(S1):142-148
    [108]宋友桂,李吉均,方小敏.黄土高原最老红粘土的发现及其地质意义[J].山地学报,2001,19(2):104-108
    [109]孙继敏,朱日祥.天山北麓晚新生代沉积及其新构造与古环境指示意义[J].第四纪研究,2006,26(01):14-19
    [110]孙少华,李小明,龚革联,等.鄂尔多斯盆地构造热事件研究[J].科学通报,1997,42(3):306-309
    [111]孙有斌.新近纪以来中国黄土高原的风尘记录[J].地层学杂志,2001,25(02):94-101
    [112]万景林,李齐,王瑜.华山岩体中、新生代抬升的裂变径迹证据[J].地震地质,2000,22(01):53-58
    [113]万景林,王瑜,李齐,等.太白山中新生代抬升的裂变径迹年代学研究[J].核技术,2005,28(09):712-716
    [114]王二七,C.Burchfiel B,季建清.东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据[J].中国科学D辑,2001,31(01):1-9
    [115]王二七,孟庆任.对龙门山中生代和新生代构造演化的讨论[J].中国科学(D辑:地球科学),2008,38(10):1221-1233
    [116]王非,胡玉台,李红春,等.晚第四纪中秦岭下切速率与构造抬升[J].科学通报,2002,47(13):1032-1036
    [117]王国灿,向树元,I.Garver John,等.东昆仑东段哈拉郭勒—哈图一带中生代的岩石隆升剥露——锆石和磷灰石裂变径迹年代学证据[J].地球科学-中国地质大学学报,2003,28(06):645-652
    [118]王建力,方小敏,李吉均.青藏高原东北部15ma以来的风沙沉积[J].科学通报,1999,44(12):1326-1331
    [119]王卫华,彭淑贞,赵庆海.黄土高原晚第三纪红土的形态学和地球化学特征及其环境指示意义[J].山东科技大学学报(自然科学版),2000:43-47
    [120]王修喜,李吉均,宋春晖,等.青藏高原东北缘西秦岭新生代抬升——天水盆地碎屑颗粒磷灰石裂变径迹记录[J].沉积学报,2006,24(06):783-789
    [121]王瑜.构造热年代学——发展与思考[J].地学前缘,2004,11(04):435-443
    [122]王宗秀,李涛,张进,等.博格达山链新生代抬升过程及意义[J].中国科学(D辑:地球科学),2008,38(03):312-326
    [123]汶玲娟,鹿化煜,强小科.新近纪黄土高原红黏土粒度和沉积速率的空间变化及其揭示的古大气粉尘传输动力[J].中国科学D辑,2004,34(8):739-747
    [124]吴珍汉,胡道功,刘琦胜,等.念青唐古拉花岗岩热演化历史和山脉隆升过程的热年代学分析[J].地球学报,2005,26(06):505-512
    [125]吴珍汉,江万,周继荣,等.青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析[J].地质学报,2001,75(04):468-476
    [126]吴中海,吴珍汉.燕山及邻区晚白垩世以来山脉隆升历史的低温热年代学证据[J].地质学报,2003,77(03):399-406
    [127]吴中海,吴珍汉.大青山晚白垩世以来的隆升历史[J].地球学报,2003,24(03):205-210
    [128]吴中海,吴珍汉,万景林,等.华山新生代隆升—剥蚀历史的裂变径迹热年代学分析[J].地质科技情报,2003,22(03):27-32
    [129]胥勤勉,杨达源,葛兆帅,等.金沙江三堆子-乌东德河段阶地研究[J].地理科学,2006,26(05):5609-5615
    [130]薛祥煦.黄土高原一个连续的晚新生代剖面及其划分与对比[J].地层学杂志,2001,25(02):81-88,101
    [131]薛祥煦,李虎侯,李永项,等.秦岭中更新世以来抬升的新资料及认识[J].第四纪研究,2004,24(01):82-87
    [132]薛祥煦,李文厚,刘林玉.渭河北迁与秦岭抬升[J].西北大学学报(自然科学版),2002,32(05):451-454
    [133]杨达源,吴胜光,王云飞.黄河上游的阶地与水系变迁[J].地理科学,1996,16(02):137-143
    [134]杨石岭,丁仲礼.7.0ma以来中国北方风尘沉积的游离铁/全铁值变化及其古季风指示意义[J].科学通报,2000,45(22):2453-2456
    [135]杨石岭,丁仲礼.晚中新世以来中国北方风成沉积的磁性地层学和沉积学研究及其古气候意义[J].中国科学院研究生院学报,2002,19(2):202-208
    [136]杨石岭,侯圣山,王旭,等.泾川晚第三纪红粘土的磁性地层及其与灵台剖面的对比[J].第四纪研究,2000,20(05):423-434
    [137]尹功明,卢演俦,赵华,等.华山新生代构造抬升[J].科学通报,2001,46(13):1121-1123
    [138]尹秋珍,肖国桥,郭正堂,等.风尘堆积常见的同沉积和沉积后改造特征及其环境意义[J].第四纪研究,2007,27(02):295-302
    [139]袁宝印,王振海.青藏高原隆起与黄河地文期[J].第四纪研究,1995(4):353-359
    [140]袁道阳,张培震,方小敏,等.青藏高原东北缘临夏盆地晚新生代构造变形及过程[J].地学前缘,2007,14(1):243-250
    [141]袁万明,董金泉,王世成,等.东昆仑南部带磷灰石裂变径迹分析的地质意义[J].核技术,2005,28(09):707-711
    [142]袁万明,杜杨松,杨立强,等.西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析[J].岩石学报,2007,23(11):2911-2917
    [143]岳乐平,邓涛,张睿,等.西藏吉隆—沃马盆地龙骨沟剖面古地磁年代学及喜马拉雅山抬升记录[J].地球物理学报,2004,47(06):1009-1016
    [144]岳乐平,邓涛,张云翔,等.保德阶层型剖面磁性地层学研究[J].地层学杂志,2004,28(1):48-51
    [145]岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代[J].地质论评,1997,43(02):186-192
    [146]岳乐平,李建星,郑国璋,等.鄂尔多斯高原演化及环境效应[J].中国科学:D辑,2007(S1):16-22
    [147]张克信,王国灿,曹凯,等.青藏高原新生代主要隆升事件:沉积响应与热年代学记录[J].中国科学(D辑:地球科学),2008,38(12):1575-1588
    [148]张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学(D辑:地球科学),2008,38(09):1041-1056
    [149]张培震,郑德文,尹功明,等.有关青藏高原东北缘晚新生代扩展与隆升的讨论[J].第四纪研究,2006,26(01):5-13
    [150]张世民,任俊杰,罗明辉,等.忻定盆地周缘山地的层状地貌与第四纪阶段性隆升[J].地震地质,2008,30(01):187-201
    [151]张世民,任俊杰,聂高众.五台山北麓第四纪麓原面与河流阶地的共生关系[J].科学通报,2007,52(02):215-222
    [152]张云翔,弓虎军.甘肃灵台上新世哺乳动物化石埋藏学[J].古生物学报,2003,42(03):460-465
    [153]张云翔,薛祥煦.甘肃武都龙家沟三趾马动物群化石的埋藏特点及该地区“三趾马红层”的成因[J].科学通报,1995,40(19):1782-1784
    [154]张云翔,薛祥煦,岳乐平.陕西府谷老高川新第三纪”红层”的划分与时代[J].地层学杂志,1995,19(3):241-249
    [155]张云翔,岳乐平,曹红霞.黄河中游新近纪三趾马动物群生态序列[J].科学通报,2001,46(14):1196-1199
    [156]张云翔,岳乐平,陈丹玲,等.中国北部新第三纪红层划分的岩石学标志及其意义[J].地层学杂志,1997,21(1):63-67
    [157]赵红格,刘池洋,姚亚明,等.鄂尔多斯盆地西缘差异抬升的裂变径迹证据[J].西北大学学报(自然科学版),2007,37(03):470-474
    [158]赵孟为.磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用——以鄂尔多斯盆地为例[J].地球物理学报,1996,39(S1):238-248
    [159]赵志丹,莫宣学,郭铁鹰,等.西藏南部岩体裂变径迹年龄与高原隆升[J].自然科学进展,2003,13(08):877-880
    [160]赵志军,方小敏,李吉均,等.酒泉砾石层的古地磁年代与青藏高原隆升[J].科学通报,2001,46(14):1208-1212
    [161]郑德文,张培震,万景林,等.六盘山盆地热历史的裂变径迹证据[J].地球物理学报,2005,48(01):157-164
    [162]郑德文,张培震,万景林,等.西秦岭北缘中生代构造活动的~(40)ar/~(39)ar、ft热年代学证据[J].岩石学报,2004,20(03):697-706
    [163]郑德文,张培震,万景林,等.青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录[J].中国科学D辑,2003,33(S1):190-198
    [164]郑德文,张培震,万景林,等.碎屑颗粒热年代学——一种揭示盆山耦合过程的年代学方法[J].地震地质,2000,22(S1):25-36
    [165]郑德文,张培震,万景林,等.构造、气候与砾岩——以积石山和临夏盆地为例[J].第四纪研究,2006,26(01):63-69
    [166]郑洪波,KatherineButcher,ChrisPowell.新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升——i地层学与岩石学证据[J].沉积学报,2002,20(02):274-281
    [167]郑洪波,黄湘通,刘锐,等.晚中新世以来亚洲季风阶段性演化的海陆记录[J].矿物岩石地球化学通报,2005,24(02):103-109
    [168]中国地层典编委会.《中国地层典》第三系[M].北京:地质出版社,2000
    [169]朱文斌,万景林,舒良树,等.裂变径迹定年技术在构造演化研究中的应用[J].高校地质学报,2005,11(04):593-600
    [170]朱照宇.黄河中游河流阶地的形成与水系演化[J].地理学报,1989,44(4):429-439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700