用户名: 密码: 验证码:
金沙江干热河谷滇榄仁与锥连栎幼苗建成机制及生态适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江干热河谷地区属于典型的生态环境脆弱区。该区域自然条件恶劣,植被退化现象尤为严重。滇榄仁群落和锥连栎群落是金沙江干热河谷(元谋段)2种极为重要的天然植被类型。在人为干扰持续存在甚至不断加强的背景下,研究群落内幼苗建成及其对环境因子的响应机制,对天然植被的抚育管理以及该地区的生态恢复均具有重要的意义。本研究采用野外样地调查、跟踪观测以及室内控制实验,系统研究了滇榄仁群落特征、植株开花生物学特征、种子生物学及其萌发特性、土壤种子库与幼苗更新动态以及主要环境因子对幼苗早期生长的影响等。同时,对锥连栎群落学特征、种子生物学与萌发特征以及幼苗早期生长对主要环境因子的响应特征等进行了探讨,明确界定了滇榄仁和锥连栎种子萌发和幼苗早期生长适宜的环境条件,并在此基础上分析了滇榄仁和锥连栎幼苗在群落中的建成机制及其对环境条件的生态适应性。研究得到如下结果。
     (1)金沙江干热河谷(元谋段)残存的滇榄仁群落和锥连栎群落中植物种类组成均较为简单。前者共发现32种植物,隶属于16科28属;后者共发现68种植物,隶属于35科60属。2种群落的物种多样性程度均较为低下,以禾本科、蝶形花科、唇形科等植物居多。
     (2)滇榄仁花朵开放时,柱头先伸长和膨大,而后,雄蕊开始外展。单个花朵开放期,即从柱头伸出花蕾到花药开始枯黄,约为10-15 d。在花序水平上,基部花比顶部花先开放。滇榄仁可能同时存在着风媒传粉和虫媒传粉两种形式,繁育系统以异交为主,部分自交亲和,需要传粉者,且同花序、异花序花朵均能相互授粉,但异花序授粉的果实饱满率显著高于同花序授粉果实。
     (3)滇榄仁和锥连栎种子萌发均对水分条件极为敏感,其萌发进程在一定程度上受到了水分条件限制。同时,滇榄仁种子在室温(25℃)和20℃-30℃变温时萌发效果最好,15℃时受到强烈抑制;锥连栎种子在20℃-30℃变温时萌发效果最好,35℃时受到一定程度的抑制。2种植物种子均不具有休眠特性,种子落地后遇到适宜条件即能萌发。但储藏(小于1年)有利于滇榄仁种子萌发,而不利于锥连栎种子萌发。曝晒可以致使锥连栎萌发率出现显著下降。
     (4)滇榄仁种子库有植冠种子库和土壤种子库两种形式。其中,种子在冠层上存在的时间可以超过1年,其脱落过程与风力可能存在着正相关关系,与降雨量和空气相对湿度存在着负相关关系。滇榄仁种子以风力传播为主,其种子散布距离较远(>11.5m)
     (5)滇榄仁幼苗更新均发生在雨季,旱季不更新。能否顺利度过幼苗刚萌发后的这段时间是林下幼苗成功更新的关键。群落内,天然更新幼苗具有明显的聚集分布特征,更新幼苗多集中在车桑子灌丛下或滇榄仁成年植株基部等环境较好的地方。
     (6)水分条件对滇榄仁和锥连栎幼苗早期生长过程中植株形态、叶片特征以及生物量分配等均具有显著的影响。2种植物幼苗对水分胁迫均具有一定的适应能力,但滇榄仁对水分条件的适应幅度相对较窄,而锥连栎对水分的适应幅度较宽,它能同时在极干旱和较湿润环境下存活、生长,生态适应性极强。
     (7)扭黄茅的竞争对滇榄仁幼苗早期生长过程具有显著影响。群落中滇榄仁幼苗的萌发时间以及周围扭黄茅的数量在幼苗种群幸存(成活)与生长状况中扮演了一个极为重要的角色,提前定居以及周围扭黄茅数量较少时,滇榄仁幼苗具有极大的生存优势。生境异质性是影响锥连栎幼苗成功定居的重要因子之一,落叶堆积洼地和落叶堆积平地是锥连栎林下幼苗定居较为理想的微生境。
     元谋干热河谷区滇榄仁群落和锥连栎群落中均能产生相对较多的幼苗,但幼树均极为罕见。能否顺利度过幼苗刚萌发后的这段生长时间是林下幼苗成功更新的关键,因此,加强群落内植物多样性的保育,使之形成良好的林下环境有利于幼苗早期生长。同时,在人工抚育管理和植被恢复中,为幼苗早期生长营造一个能够集水、保水的环境条件极为重要,如覆盖枯落物和薄膜以及深挖塘等。
Dry-hot valleys of Jinsha River are typical ecological fragile areas in southwest of China. There are poor natural conditions and seriously vegetation degradation in these areas. Communities of Teminalia franchetii and Quercus franchetii are two very important natural vegetation types in Yuanmou county segment of Jinshajiang dry-hot valley. In the context of sustained or even strengthened human disturbance, there is great significance for cultivation and management of natural vegetation and ecological restoration in the region, which study seedling establishment of the community and its response mechanism to environmental factors. In this study, field sample investigation, follow-up observation and indoor control experiments were employed, community characteristics, flowering biological characteristics, seed biology and germination characteristics, soil seed band and seedling dynamics and the main impact factors of seedling early growth about T. franchetii were systematically studied. At the same time, we researched community characteristics, seed biology and germination characteristics, and characteristics of seedling early growth response of the main environmental factors about Q. franchetii. The suitable environmental conditions for seed germination and seedling early growth of T. franchetii and Q. franchetii were clearly determined, and seedling establishment mechanism and its ecological adaptation to environments of them were analyzed. Research results are as follows.
     Ⅰ. There are extremely simple species composition in both T. franchetii and Q. franchetii remaining communities of Yuanmou dry-hot valley.32 kinds of plants were found in the former, which belong to 16 families and 28 genera, and 68 kinds of plants were found in the latter, which belong to 35 families and 60 genera. Species diversity of two kinds of communities was relatively low, and the main species of them belong to Poaceae, Papilionaceae and Labiatae families.
     Ⅱ. When T. franchetii flowers open, their stigmas spread and enlarge first, then stamens begin expand. Single flowers of T. franchetii approximately have 10-15 days flowering period, which shows the period from the stigma spreading out of buds to anthers fading. There may be wind pollination and insect pollionation of two forms in T. franchetii, and its breeding system was dominated by outcrossing, part of them was self-compatible, requiring pollinators, and flowers in the same inflorescence or different inflorescence can pollinate each other. However, different inflorescence pollinated seed yield was significantly higher than the same inflorescence pollination.
     Ⅲ. Both T. franchetii and Q. franchetii seeds germination are extremely sensitive to water conditions, and their germination process to some extent was limited by the moisture conditions. At the same time, there is the best germination for T. franchetii seeds at room temperature (25℃) and 20-30℃day-and-night changed temperature, and its germination was strongly inhabited at 15℃temperature. There is the best germination for Q. franchetii seeds at 20-30℃day-and-night changed temperature, and its germination to some extent was limited at 35℃.2 kinds of plant seeds have no dormancy; they may germinate in the suitable conditions when they fall to the ground. Storage (less than 1 year) is conducive to T. franchetii seeds germination, is not conducive to Q. franchetii seeds germination. Exposure in the sun can cause Q. franchetii seeds germination rate decreased significantly.
     Ⅳ. T. franchetii seed banks include canopy seed bank and soil seed bank of two kinds of forms. Retention time of seeds in the canopy was more than 1 year, and there may be a positive correlation between seed shedding and wind power, and there may be a negative correlation between seed shedding and rainfall and relative humidity of the air. T. franchetii seeds spread mainly by wind power, and the distance of seed dispersal were very far (more than 11.5 m).
     Ⅴ. T. franchetii seedling regeneration occurred in the rainy season, there is no seedling regeneration in the dry season. Seedlings can survive the period just after germination is the key to forest seedlings successfully regeneration. In communities, distribution of the natural regeneration seedlings has obviously aggregation characteristics. The seedlings are more concentrated under Dodonaea viscosa shrubs or near the basal of T. franchetii adult plants and other good environments.
     Ⅵ. Water conditions have a significant impact on plant morphologic characteristics, leaf characteristics and biomass allocation during early growth of both T. franchetii and Q. franchetii seedlings. Two kinds of seedlings showed some ability to adapt water stress, but T. franchetii seedlings showed a relatively narrow range of water condition than Q. franchetii seedlings. And Q. franchetii seedlings can survive or grow simultaneously in a very dry and more humid environment, and has a strong ecological adaptability.
     Ⅶ. Competition of Heteropogon contortus has a significant impact on the early growth process of T. franchetii seedlings. Seedling germination time and the number of surrounding H. contortus populations play an extremely important role in T. franchetii seedlings survive and growth. When T. franchetii seedling establish before H. contortus or there are small number of H. contortus populations, T. franchetii seedling have great survival advantage. Habitat heterogeneity is one of important factors which affect Q. franchetii seedlings successful establishment in communities, and low land covered by litter (LLCL) and flat ground covered by litter (FGCL) were better micro-habitats for Q. franchetii seedlings growth.
     Relatively more seedlings can be found in both T. franchetii community and Q. franchetii community in Yuanmou dry-hot valley, but saplings are rare. Seedlings can get through the period after seed just germination is the key to forest seedlings successfully regeneration. Therefore, it is useful for early growth of forest seedling to strengthen the conservation of plant diversity within the community, and make it a good environment. At the same time, in the artificial cultivation and management and vegetation restoration, it is very important to create a catchment, water retention environmental conditions for the early growth of seedling, such as litter or film cover habitas and deep dig ponds to breed.
引文
1. 贝玉祥,郭英,范逸平.诃子多酚清除活性氧自由基及体外抗氧化作用研究[J].云南民族大学学报(自然科学版),2009,18(1):51-54.
    2. 班勇,徐化成.兴安落叶松老龄林分幼苗天然更新及微生境特点[J].林业科学研究,1995,8(6):660-664.
    3. 柴宗新,范建容.金沙江干热河谷植被恢复的思考[J].山地学报,2001,19(4):381-384.
    4. 陈圣宾,宋爱琴,李振基.森林幼苗更新对光环境异质性的响应研究进展[J].应用生态学报,2005,16(2):365-370.
    5. 陈勇,李宏庆,马炜梁.雀榕及其传粉昆虫传粉生态研究[J].生态学报,2001,21(10):1569-1574.
    6. 陈玉德,谭保邦.云南干热河谷的植物资源及开发利用研究[J].林业科学研究,1990,3(6):638-641.
    7. 陈玉德,吴陇.云南元谋干热河谷区营造水土保持林的技术措施及初步成效[J].林业科学研究,1995,8(3):340-343.
    8. 陈志刚,樊大勇,张旺锋,谢宗强.林隙与林下环境对锐齿槲栎和米心水青冈种群更新的影响[J].植物生态学报,2005,29(3):354-360.
    9. 程瑾瑞,肖治术,张知彬.包衣、埋藏的栓皮栎和枹栎种子在鼠类捕食下的存留[J].生态学杂志,2007,26(5):668-672
    10.第宝锋,崔鹏,黄胜,于勇.近50年金沙江干热河谷区泥沙变化及影响因素分析—以云南省元谋县为例[J].中国水土保持科学,2006,4(5):20-24.
    11.刁阳光.金沙河干热河谷人工林生态经济功能研究[J].林业科技通讯,1994,8:26-27.
    12.丁斌,顾显跃,缪启龙.长江流域近50年来的气温变化特征[J].长江流域资源与环境,2006,15(4):531-536.
    13.董鸣,阿拉腾宝.根茎禾草沙鞭的克隆基株及分株种群特征[J].植物生态学报,1999,23(4):302-310.
    14.杜天理.西南地区干热河谷开发利用方向[J].自然资源,1994,1:41-45.
    15.樊毅,周芸,邹玥,李靖.西南干热河谷降水蒸发变化趋势分析[J].人民长江2010,41(1):17-20.
    16.费世民,何亚平,王鹏,蒋俊明,陈秀明,何飞,雷彻洪,涂代伦.二滩库区锥连栎林土壤种子库和幼苗格局初步研究[J].四川林业科技,2004,25(2):15-20.
    17.费世民,王鹏,陈秀明,魏渠河,陈宾,雷彻洪,涂代伦.论干热河谷植被恢复过程中的适度造林技术[J].四川林业科技,2003,24(3):10-16.
    18.冯世鑫,马小军,闫志刚.诃子化学成分及药理作用的研究进展[J].安徽农业科学,2008,36(25):10938-10939,10941
    19.高江云,杨自辉,李庆军.毛姜花原变种花寿命对两性适合度的影响[J].植物生态学报,2009, 33(1):89-96
    20.高江云,任盘宇,李庆军.姜科、闭鞘姜科植物繁育系统与传粉生物学的研究进展[J].植物分类学报,2005,43(6):574-585
    21.高洁,曹坤芳,王焕.干热河谷9种造林树种在旱季的水分关系和气孔导度[J].植物生态学报,2004,28(2):186-190.
    22.韩广,张桂芳,杨文斌.影响沙地樟子松天然更新的主要生态气候因子的定量分析[J].林业科学,1999,35(5):22-27
    23.韩有志,王政权.天然次生林中水曲柳种子库的空间格局与过程[J].植物生态学报,2002,26(2):170-176
    24.贺金生,刘峰,陈伟烈.神农架地区米心青冈林和锐齿檞栎林群落[J].植物学报,1999,41(8):587-892.
    25.何亚平,刘建全.植物繁育系统研究的最新进展和评述[J].植物生态学报,2003,27(2):151-163
    26.何永彬,卢培泽.横断山—云南高原干热河谷形成原因研究[J].资源学报,2000,22(5):69-72
    27.何毓蓉,黄成敏.云南省元谋干热河谷的土壤系统分类[J].山地研究,1995,13(2):73-78.
    28.何毓蓉,黄成敏.云南省元谋干热河谷的土壤退化及旱地农业研究[J].土壤侵蚀与水土保持学报,1997,3(1):56-60.
    29.黄成敏,何毓蓉.云南省元谋干热河谷的土壤抗旱力评价[J].山地研究,1995,13(2):79-84.
    30.黄振英.油蒿与中国和以色列沙漠中的两种蒿属植物种子萌发策略的比较[J].植物学报:英文版,2000,42(1):71-80.
    31.黄振英.白沙蒿种子萌发特性的研究Ⅱ.环境因素的影响[J].植物生态学报,2001,25(2):240-246.
    32.黄双全,郭友好.传粉生物学的研究进展[J].科学通报,2000,45(3):225-237
    33.江业根,康丽华,马海宾,陈应龙.金沙江干热河谷适生树种的引种和早期适应性研究[J].林业科学研究,2007,20(3):423-427.
    34.金振洲,欧晓昆.元江,怒江,金沙江,澜沧江干热河谷植被[M].昆明:云南科学技术出版社,2000.
    35.金振洲,欧晓昆.滇川干热河谷植被布朗布朗喀群落分类单位的植物群落学分类[J].云南植物研究,1998,20(3):279-294.
    36.金振洲,杨永平,陶国达.华西南干热河谷种子植物区系的特征、性质和起源[J].云南植物研究,1995,17(2):129-143
    37.李进宇,张志翔,尹五元.连翘花的结构与繁育系统研究[J].西北植物学报,2006,26(8):1548-1553
    38.李昆,崔永忠,张春华.金沙江干热河谷退耕还林区造林树种的育苗技术[J].南京林业大学学报:自然科学版,2003,27(6):89-92.
    39.李昆,曾觉民.金沙江干热河谷主要造林树种蒸腾作用研究[J].林业科学研究,1999a,12(3): 244-250.
    40.李昆,曾觉民.金沙江干热河谷造林树种游离脯氨酸含量与抗旱性关系[J].林业科学研究,1999b,12(1):103-107.
    41.李昆,张春华,崔永忠,赵一鹤,施永泽.金沙江干热河谷区退耕还林适宜造林树种筛选研究[J].林业科学研究,2004,17(5):555-563.
    42.李昆,尹伟伦,罗长维.小桐子繁育系统与传粉生态学研究[J].林业科学研究,2007,20(6):775-781.
    43.李文娆,张岁岐,山仑.水分胁迫下紫花苜蓿和高粱种子萌发特性及幼苗耐旱性[J].生态学报,2009,29(6):3066-3074.
    44.李晓亮,王洪,郑征.西双版纳热带森林树种幼苗的组成、空间分布和旱季存活[J].植物生态学报,2009,33(4):658-671.
    45.李轩然,刘琪璟,蔡哲,马泽清.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报,2007,31(1):93-101
    46.李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J].生态学报,2005,25(2):304-311.
    47.李振基,陈小麟,郑海雷.生态学[M].北京:科学出版社,2000.
    48.蔺菲,郝占庆,叶吉.苔藓植物对植物天然更新的影响[J].生态学杂志,2006,25(4):456-460.
    49.刘耕武,李代芸,黄翡,傅启龙.云南元谋盆地上新世甘棠组植物和孢粉组合及其古气候意义[J].古生物学报,2002,41(1):1-9.
    50.刘林德,张洪军.刺五加花粉活力和柱头可授性的研究[J].植物研究,2001,21(3):375-379.
    51.刘济明,茂兰喀斯特森林中华蚊母树群落土壤种子库动态初探[J].植物生态学报,2000,24(3):366-374.
    52.刘玉梅,宋宝安,杨松.诃子化学成分与生物活性的研究进展[J].贵州大学学报(自然科学版),2007,24(2):208-212
    53.刘志民,高红瑛.植物生活史繁殖对策与干扰关系的研究[J].应用生态学报,2003,14(3),418-422.
    54.刘中天,任金成.新平县干热河谷生态林业“综示”为热区合理开发开创了新途径[J].云南林业调查规划,1993,1:29-30.
    55.刘足根,朱教君,袁小兰,谭辉.辽东山区长白落叶松天然更新调查[J].林业科学,2007,43(1):42-49.
    56.赖家业,潘春柳,覃文更,韦国富.单性木兰花部综合特征及其传粉适应性[J].云南植物研究,2007,29(3):303-308.
    57.罗辉,王克勤.金沙江干热河谷山地植被恢复区土壤种子库和地上植被研究[J].生态学报,2006,26(8):2432-2442
    58.马姜明,刘世荣,史作民,张远东,缪宁.川西亚高山暗针叶林恢复过程中岷江冷杉天然更新 状况及其影响因子[J].植物生态学报,2009,33(4):646-657.
    59.马君玲,刘志民.植冠种子库及其生态意义研究[J].生态学杂志,2005,24(11):1329-1333.
    60.马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J].生物多样性,1994,2(4):231-239.
    61.马文红,方精云.内蒙古温带草原的根冠比及其影响因素[J].北京大学学报:自然科学版,2006,42(6):774-778.
    62.毛志宏,朱教君,谭辉.干扰对辽东山区次生林植物多样性的影响[J].应用生态学报,2006,17(8):1357-1364
    63.聂小军,张建辉,刘刚才,南岭,苏正安.金沙江干热河谷侵蚀陡坡植被恢复对土壤质量的影响[J].生态环境,2008,17(4):1636-1640.
    64.欧晓昆,金振洲.元谋干热河谷植被的类型研究Ⅰ.群丛以上单位[J].云南植物研究,1987,9(3):1-3.
    65.欧晓昆.元谋干热河谷植物区系研究[J].云南植物研究,1988,10(1):11-18.
    66.欧晓昆.金沙江干热河谷的资源植物及其生态特征[J].植物资源与环境,1994,3(1):42-46.
    67.彭闪江,黄忠良,彭少麟,欧阳学军,徐国良.植物天然更新过程中种子和幼苗死亡的影响因素[J].广西植物,2004,24(2):113-121.
    68.任明迅.雄蕊合生植物半边莲的花部综合征与繁育系统[J].植物生态学报,2009,33(2):361-368.
    69.尚占环,任国华,龙瑞军.土壤种子库研究综述—规模,格局及影响因素[J].草业学报,2009,18(1):144-154.
    70.沈海龙,李殷英,山地樟子松人工林天然更新特点及其影响因子分析.东北林业大学学报,1992,20(4),30-37.
    71.石雷,梁英扬,邓疆.印度黄檀适生区的气候因子研究[J].林业科学研究,2010,23(2):191-194
    72.宋新章,肖文发.林隙微生境及更新研究进展[J].林业科学,2006,42(5):114-119.
    73.孙书存,陈灵芝.东灵山地区辽东栎种子库统计[J].植物生态学报,2000,24(2):215-221
    74.谭卫锋,陈文音,陈章和.光照强度对水鬼蕉(Hymenocallis littoralis)生长及生理生态特性的影响[J].生态学报,2009,29(3):1320-1329.
    75.王定康,孙桂芳,翟书华,郭丽红,萧凤回.青阳参花部特征及其传粉适应性[J].云南植物研究,2009,31(1):8-14.
    76.王刚,梁学功.沙披头人工固沙区的种子库动态[J].植物学报,1995,37(3),231-237.
    77.王瑾芳,高贤明,党伟光.不同生境条件下紫茎泽兰实生幼苗的生存特性比较[J].生物多样性,2008,16(4):346-352.
    78.王淼,李秋荣,郝占庆.土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J].应用生态学报,2004,15(10):1765-1770.
    79.王英鑫,李志军,焦培培.温度和光照对骆驼蓬种子萌发特性的影响[J].塔里木大学学报, 2009,21(2):15-19
    80.王微,陶建平,胡凯,李宗峰,宋利霞.华西箭竹对岷江冷杉林主要乔木树种幼苗结构及分布格局的影响[J].林业科学,2007,43(1):1-7.
    81.王中磊,高贤明.锐齿槲栎林的天然更新—坚果,幼苗库和径级结构[J].生态学报,2005,25(5):986-993.
    82.魏汉功,叶厚源.金沙江干热河谷旱季土壤含水率评价立地质量的研究[J].云南林业科技,1991,2:48-51.
    83.吴承祯,姜志林.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):405-410.
    84.吴大荣.福建省罗卜岩自然区闽楠种群种子雨研究[J].南京林业大学学报:自然科学版,1997,21(1):56-60.
    85.吴锦容,赵厚本,潘浣钰,彭少麟.土壤水分变化对外来入侵植物飞机草生长的影响[J].生态环境,2007,16(3):935-938.
    86.吴佩珠,钱方.用氨基酸测年法对“元谋人”年代的初步研究[J].人类学学报,1991,10(3):194-199.
    87.吴绍洪,尹云鹤,郑度,杨勤业.近30年中国陆地表层干湿状况研究[J].中国科学D辑:地球科学,2005,35(3):276-283.
    88.吴乌兰,李艳波,张力.诃子中盐酸小檗碱的提取方法研究[J].内蒙古民族大学学报(自然科学版),2007,22(5):512-513
    89.吴雪莲,谭敦炎.异果芥的花部综合征及其繁育系统[J].植物分类学报,2007,45(4):538-550
    90.吴征镒主编.中国植被[M].北京:科学出版社,1980.
    91.伍聚奎,周蛟.云南中部高原干热河谷薪炭林树种选择营技术及经营模式研究综述[J].西南林学院学报,1996,16(4):191-204.
    92.武高林,杜国祯.植物种子大小与幼苗生长策略研究进展[J].应用生态学报,2008,19(1):191-197.
    93.肖春旺,周广胜,马风云.施水量变化对毛乌素沙地优势植物形态与生长的影响[J].植物生态学报,2002,26(1):69-76.
    94.肖治术,王玉山,张知彬.都江堰地区三种壳斗科植物的种子库及其影响因素研究[J].生物多样性,2001,9(4):373-381.
    95.徐本美,龙雅宜.种子最适萌发温度的探讨[J].植物生理学通讯,1987,2:34-37.
    96.许中旗,黄选瑞,徐成立,许晴,纪晓林.光照条件对蒙古栎幼苗生长及形态特征的影响[J].生态学报,2009,29(3):1121-1128.
    97.闫兴富,曹敏.不同光照对望天树种子萌发和幼苗早期生长的影响[J].应用生态学报,2007,18(1):23-29
    98.闫兴富,曹敏.濒危树种望天树大量结实后幼苗的生长和存活[J].植物生态学报,2008,32(1):55-64
    99.杨忠,张建辉,徐建忠.元谋干热河谷不同岩土组成坡地桉树人工林生长特征初步研究[J].水土保持学报,2000,14(5):1-5
    100.杨成源,王长福.元谋干热河谷薪炭林造林及效益研究[J].西南林学院学报,1996,16(4):236-248.
    101.杨期和,宋松泉,叶万辉,殷寿华.种子感光的机理及影响种子感光性的因素.植物学通报,2003,20(2),238-247.
    102.杨万勤,王开运,宋光煜,宫阿都,何毓蓉.金沙江干热河谷典型区生态安全问题探析[J].中国生态农业学报,2002,10(3):116-118.
    103.杨允菲,白云鹏,李建东,李丽.科尔沁沙地刺榆林种子散布的空间格局[J].应用生态学报,2010,21(8):1967-1973.
    104.杨允菲,祝玲.松嫩平原碱化草甸野大麦的种子散布格局[J].植物学报:英文版,1994,36(8):636-644.
    105.余剑如,史立人.长江上游的地面侵蚀与河流泥沙[J].水土保持通报,1991,11(1):9-17
    106.于顺利,蒋高明.地中海沿岸沙丘微生境对幼苗出现时空格局的影响[J].生态学报,2004,24(7),1346-1352.
    107.于顺利,郎南军,彭明俊,赵琳,郭永清.种子雨研究进展[J].生态学杂志,2007,26(10):1646-1652
    108.虞孝感.长江流域可持续发展研究[M].北京:科学出版社,2003.
    109.喻赞仁.元江河谷热带坝区自然优势及其开发[J].自然资源学报,1992,7(3):235-239.
    110.云南省气象局.云南农业气候资料集[M].昆明:云南人民出版社,1984.
    111.张斌,史凯,刘春琼,艾南山,刘刚才,覃发超.元谋干热河谷近50年分季节降水变化的DFA分析[J].地理科学,2009,29(4):561-566.
    112.张勃,孙杉,张志强,李庆军.杠杆状雄蕊及其进化生态学意义.植物生态学报,2010,34(1):89-99
    113.张笃见,叶晓娅,由文辉,浙江天童常绿阔叶林地被层的研究.植物生态学报,1999,23(6),544-556.
    114.张风娟,李继泉,徐兴友,郭艾英,胡京蕊,杜淑欣,万方浩.环境因子对黄顶菊种子萌发的影响[J].生态学报,2009,29(4):1947-1953.
    115.张建平,王道杰,王玉宽,文安邦.元谋干热河谷区生态环境变迁探讨[J].地理科学,2000,20(2):148-152.
    116.张景光,王新平,李新荣,张志山,王刚.荒漠植物生活史对策研究进展与展望.中国沙漠,2005,25(3):306-314
    117.张林静,岳明,张远东.新疆阜康绿洲荒漠过渡带植物群落物种多样性特征[J].地理科学,2003,23(3):329-334
    118.张强.近40年来长江流域水沙变化趋势及可能影响因素探讨[J].长江流域资源与环境,2008, 17(2):257-257
    119.张荣祖主编.横断山区干旱河谷[M].北京:科学出版社,1992.
    120.张信宝,杨忠,张建平.元谋干热河谷坡地岩土类型与植被恢复分区[J].林业科学,2003,39(4):16-22.
    121.张玉波,李景文,张昊,邹大林,武逢平,程春龙,李俊清,李帅英.胡杨种子散布的时空分布格局[J].生态学报,2005,25(8):1994-2000.
    122.张志胜.脱落酸引发对夜香紫罗兰种子萌发的效应[J].热带亚热带植物学报,2005,13(3):224-228.
    123.张志强,李庆军.花寿命的进化生态学意义.植物生态学报,2009,33(3):598-606.
    124.赵俊,木万福,李善燕.元谋冬春蔬菜产业发展现状分析[J].北方园艺,2010,1:216-218
    125.赵志刚,杜国祯.毛茛科植物交配系统的特征与花期资源分配对策[J].兰州大学学报(自然科学版),2003,39(5):70-74
    126.中国科学院《中国自然地理》编委会.中国自然地理:气候[M].北京:科学出版社,1984.
    127.中国科学院植物研究所主编.中国高等植物图鉴:补编第一册[M].北京:科学出版社,1982.
    128.中国科学院植物研究所主编.中国高等植物图鉴:第二册[M].北京:科学出版社,1972.
    129.中国科学院中国植物志编委会.中国植物志:第五十三卷一分册[M].北京:科学出版社,1984.
    130.中国科学院中国植物志编委会.中国植物志:第二十二卷[M].北京:科学出版社,1998.
    131.中国植被编委会.中国植被[M].北京:科学出版社,1980.
    132.钟祥浩.干热河谷区生态系统退化及恢复与重建途径:以云南金沙江典型区为例[J].长江流域资源与环境,2000,9(3):376-383.
    133.周国兴,张兴永.元谋人:云南元谋古人类与古文化图文集[M].昆明:云南人民出版社,1984.
    134.周蛟,马焕成.元谋干热河谷引种造林试验及树种选择研究[J].西南林学院学报,2000,20(2):78-84.
    135.周麟.云南省元谋干热河谷的第四纪植被演化[J].山地研究,1996,14(4):239-243.
    136.周麟.云南元谋干热河谷植被恢复初探[J].西北植物学报,1998,18(3):450-456.
    137.周跃,金振洲.元谋干热河谷植被的类型研究Ⅱ.群丛以下单位[J].云南植物研究,1987,9(3):1-3.
    138.朱彪,陈安平,刘增力.广西猫儿山植物群落物种组成、群落结构及树种多样性的垂直分布格局[J].生物多样性,2004,12(1):44-52
    139.朱教君,刘足根,王贺新.辽东山区长白落叶松人工林天然更新障碍分析[J].应用生态学报,2008,19(4):695-703.
    140.朱俊杰,曹坤芳.元江干热河谷毛枝青冈和三叶漆抗氧化系统季节变化[J].植物生态学报,2008,32(5):985-993.
    141. Anjaneyulu A S R, Raghava R A V, Mallavarapu G R, Chandrasekhara R S.3-Acetylmaslinic acid from the root bark of Terminalia alata [J]. Phytochemistry,1986,25(11):2670-2671.
    142. Aranda I, Gil L, Pardos J. Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. In a mixed stand at their southern limit of distribution in Europe [J]. Trees,2000,14(6):344-352
    143. Ashman T L, Schoen D J. How long should flowers live? [J]. Nature,1994,371,788-791.
    144. Baraza E, Gomez J M, Hodar J A, Zamora R. Herbivory has a greater impact in shade than in sun: response of Quercus pyrenaica seedlings to multifactorial environmental variation [J]. Canadian Journal of Botany,2004,82(3):357-364
    145. Barrett S C H, Harder L D. Ecology and evolution of plant mating [J]. Trends in Evolution and Ecology,1996,11:73-78
    146. Barrett S C H. The evolution of plant sexual diversity [J]. Nature Review Genetics,2002,3, 274-284
    147. Barrett S C H, Jesson L K, Baker A M. The evolution and function of stylar polymorphisms in flowering plants [J]. Annals of Botanty,2000,85(Suppl.A),253-265
    148. Belsky A J. Tree/grass ratios in East African savannas:a comparison of existing models [J]. Journal of Biogeography,1990,17(4/5):483-489.
    149. Bischoff A, Vonlanthen B, Steinger T. Seed provenance matters-Effects on germination of four plant species used for ecological restoration [J]. Basic and Applied Ecology,2006,7(4):347-359.
    150. Burslem D F R P, Grubb P J. Responses to simulated drought and elevated nutrient supply smong shade-tolerant tree seedlings of lowland tropical forest in Singapore [J]. Biotropica,1996,28(4b): 636-648.
    151. Burton P J, Bazzaz F A. Tree seedling emergence on interactive temperatureandmoisture gradientsandin patches of old-field vegetation [J]. American Journal of Botany,1991,78(1): 131-149.
    152. Charlesworth D. Evolution of plant breeding systems [J]. Current Biology,2006,16(17): 726-735.
    153. Coomes D A, Grubb P J. Colonization, tolerance, competition and seed-size variation within functional groups [J]. Trends in ecology and evolution,2003,18 (6):283-291.
    154. Crawley M J, Long C R. Alternate bearing, predator satiationandseedling recruitment in Quercus robur L [J]. Journal of Ecology,1995,83(4):683-696.
    155. Cruden, R W. Pollen-ovule ratios:a conservative indicator of breeding systems in flowering plants [J]. Evolution,1977,31:32-46.
    156. Cruden R W, McClain A M. Pollination biology and breeding system of Alliaria petiolata (Brassicaceae) [J]. Bulletin of the Torrey Botanical Club,1996,123:173-280.
    157. Dafni A. Pollination ecology:A practical approach [M]. New York:Oxford University Press, 1992.
    158. David L G, Fernand C, Cesar A. The role of seed dispersal in the natural regeneration of rain forest after strip-cutting in the Peruvian Amazon [J]. Plant ecology,1993,107(1):339-349.
    159. De Steven D. Experiments on mechanisms of tree establishment in old-field succession:seedling survivalandgrowth[J]. Ecology,1991,72(3):1076-1088.
    160. Eldeen I M S, Elgorashi E E, Mulholland D A, Van Staden J. A bioactive compound from the roots of Terminalia sericea [J]. Journal of ethnopharmacology,2006,103(1):135-138
    161. Elena R A, Miguel M. Seed bank versus seed rain in the regeneration of a tropical pioneer tree [J]. Oecologia,84(3):1990,314-325
    162. Fenner M. Seed Ecology [M]. New York:Chapman and Hall,1985.
    163. Fetene M. Intra-and interspecific competition between seedlings of Acacia etbaicaanda perennial grass(Hyparrenia hirta) [J]. Journal of Arid Environments,2003,55,441-451.
    164. Florentine S K, Fox J E D. Competition between Eucalyptus victrix seedlingsandgrass species [J]. Ecological Research,2003,18(1),25-39.
    165. Ford R H, Sharik T L, Feret P P. Seed dispersal of the endangered Virginia round-leaf birch (Betula uber) [J]. Forest Ecology and Management,1983,6(2):115-128.
    166. Foster, S., Janson, C.H., The relationship between seed size and establishment conditions in tropical woody plants[J]. Ecology,1985,66(3):773-780.
    167. Fox J F. Adaptation of gray squirrel behavior to autumn germination by white oak acorns [J]. Evolution,1982,36(4):800-809.
    168. Frey B R, Ashton M S, McKenna J J. Topographicandtemporal patterns in tree seedling establishment, growth, andsurvival among masting species of southern New England mixed-deciduous forests [J]. Forest Ecology and Management,2007,245(1-3):54-63.
    169. Gardiner E S, Hodges J D. Growth and biomass distribution of cherrybark oak (Quercus pagoda Raf.) seedlings as influenced by light availability [J]. Forest Ecology and Management,1998, 108(1-2):127-134
    170. Gamier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M L. Consistency of species ranking based on functional leaf traits [J]. New Phytologist,2001, 152(1):69-83.
    171. Giblin D E. Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation [J]. American Journal of Botany, 2005,92(10):1714-1722
    172. Gomez, J M. Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape [J]. Ecography,2003,26:573-584.
    173. Gomez J M. Bigger is not always better-conflicting selective pressure on seed size in Quercus ilex [J]. Evolution,2004,58 (1):71-80.
    174. Gray A N, Spies T A. Microsite controls on tree seedling establishment in conifer forest canopy gaps [J]. Ecology,2008,78(8):2458-2473.
    175. Griscom B W, Ashton P M S. Bamboo control of forest succession:Guadua sarcocarpa in Southeastern Peru [J]. Forest Ecology and Management,2003,175(1-3):445-454.
    176. Gross K L. Effects of seed size and growth form on seedling establishment of six monocarpic plants [J]. Journal of ecology,1984,72(2):369-387
    177. Guariguata, M.R. Early response of selected tree species to liberation thinning in a young secondary forest in Northeastern Costa Rica [J]. Forest Ecology and Management,1999,124(2-3), 255-261.
    178. Guerin G. Floral biology of Hemigenia and Microcorys (Lamiaceae). Australian Journal of Botany,2005,53,147-162.
    179. Gupta M, Mazumder U K, Manikandan L, Bhattacharya S, Senthilkumar G P, Suresh R. Anti-ulcer activity of ethanol extracts of Terminalia pallida Brandis in Swiss albino rats [J]. Journal of ethnopharmacology,2005,97(2):405-408
    180. Gutterman, Y. Strategies of seed dispersal and germination in plants inhabiting deserts [J]. The botanical review,1994,60(4):373-425.
    181. Harmer R, Robertson M. Seedling root growth of six broadleaved tree species grown in competition with grass under irrigated nursery conditions [J]. Annual Forestry Science,2003,60(7): 601-608
    182.Herrera, J. Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.) [J]. Forest Ecology and Management,1995,76(1-3):197-201.
    183. Hsiao T C, Acevedo E. Plant responses to water deficits, water-use efficiency, and drought resistance [J]. Agricultural Meteorology,1974,14(1-2):59-84.
    184. Huston, M., Smith, T. Plant succession:Iife history and competition [J]. American Naturalist, 1987,130(2),168-198.
    185. Igic B, Lande R, Kohn J. Loss of self-incompatibility and its evolutionary consequences [J]. International Journal of Plant Sciences,2008,169(1):93-104.
    186. Ishii H S, Sakai S. Optimal timing of corolla abscission:experimental study on Erythronium japonicum (Liliaceae) [J]. Functional Ecology,2000,14,122-128.
    187. Jeltsch F, Weber G E, Grimm V. Ecological buffering mechanisms in savannas:a unifying theory of long-term tree-grass coexistence [J]. Plant ecology,2000,150(1/2):161-171.
    188. Jones, E W. Quercus L. Biological Flora of the British Isles [J]. Journal of Ecology,1959,47: 169-222.
    189. Kameyama Y, Nehira NNAK, Nehira K. Safe site for seedlings of Rhododendron metternichii var. hondoense [J]. Plant Species Biology,1999,14(3):237-242.
    190. Kelly D L. The regeneration of Quercus petraea (sessile oak) in southwest Ireland:a 25-year experimental study [J]. Forest Ecology and Management,2002,166(1-3):207-226
    191. Khadari B, Gibernau M, Anstett M C, Anstett F, Kjellberg F, Hossaert-McKey M. When figs wait for pollinators:the length of fig receptivity [J]. American Journal of Botany,1995,82,992-999
    192. Kikuchi T. Vegetation and lanndforms [M]. Tokyo:University of Tokyo Press,2001.
    193. King, D A. Allocation of above-ground growth is related to light in temperate deciduous saplings [J]. Functional Ecology,2003,17(4),482-488.
    194. Kobayashi, M, Kamitani, T. Effects of surface disturbance and light level on seedling emergence in a Japanese secondary deciduous forest [J]. Journal of Vegetation Science,2000,11(1):93-100.
    195. Koudou J, Roblot G, Wylde R. Tannin constituents of Terminalia glaucescens[J]. Planta medica, 1995,61(5):490-491
    196. Kozowski J. Why are species'body size distributions usually skewed to the right? [J] Functional Ecology,2002,16(4),419-432.
    197. Lambers H, Poorter H. Inherent variation in growth rate between higher plants:a search for physiological causes and ecological consequences [J]. Advances in Ecological Research,1992,23: 187-261.
    198. Lavorel S, Debussche M, Lebreton J D, Lepart J. Seasonal patterns in the seed bank of Mediterranean old-fields [J]. Oikos,1993,67(1):114-128.
    199. Li Q, Ma K. Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland [J]. Forest Ecology and management,2003,176(1-3), 133-146.
    200. Loret F, Casanovas C, Penuelas J. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use [J]. Functional ecology,1999, 13(2):210-216.
    201. Lopez R G and Runkle E S. The effect of temperature on leaf and flower development and flower longevity of Zygopetalum Redvale'Fire Kiss'orchid [J]. Hortscience,2004,39 (7):1630-1634.
    202. Louda S M. Predation in the dynamics of seed regeneration. In:Leck M A, Parker V T & Simpson R L eds. Ecology of soil seed banks [M]. New York:Academic press,1989.
    203. McLaren K P, McDonald M A. The effects of moistureandshade on seed germinationandseedling survival in a tropical dry forest in Jamaica [J]. Forest ecology and management,2003,183(1-3): 61-75.
    204. Moshi M J, Mbwambo Z H. Some pharmacological properties of extracts of Terminalia sericea roots [J]. Journal of Ethnopharmacology,2005,97(1):43-47.
    205. Ollerton J. Reconciling ecological processes with phylogenetic patterns:The apparent paradox of plant-pollinator systems [J]. Journal of Ecology,1996,84:767-769
    206. Pammenter N W, Farrant J M, Berjak P. Recalcitrant seeds:short-term storage effects in Avicennia marina (Forsk.) Vierh. may be germination-associated [J]. Annals of Botany,1984, 54(6):843-846.
    207. Ponce R G. Competition between barleyandLolium rigidum for nitrate [J]. Weed Research,1998, 38(6):453-460.
    208. Poorter L. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits [J]. Functional Ecology,1999,13(3): 396-410.
    209. Primack R B. Longevity of individual flowers [J]. Annual Review of Ecology and Systematics, 1985,16,15-37
    210. Raffaele E, Veblen T T. Facilitation by nurse shrubs of resprouting behavior in a post-fire shrubland in northern Patagonia, Argentina [J]. Journal of Vegetation Science,1998,9(5):693-698.
    211. Rathcke B J. Floral longevity and reproductive assurance:seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae) [J]. American Journal of Botany,2003,90:1328-1332.
    212. Russell S K, Schupp E W. Effects of microhabitat patchiness on patterns of seed dispersal and seed predation of Cercocarpus ledifolius (Rosaceae) [J]. Oikos,1998,81(3):434-443.
    213. Sarala B S, Lokesha R, Vasudeva R. Anther dimorphism, differential anther dehiscence, pollen viability and pollination success in Caesalpinia pulcherrima L. (Fabaceae) [J]. Current Science, 1999,76:1490-1494
    214. Schulze E, Kelliher F M, Korner C, Lloyd J, Leuning R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise [J]. Annual Review of Ecology and Systematics,1994,25: 629-662.
    215. Schupp E W. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment [J]. American Journal of Botany,1995,82(3):399-409.
    216. Schoen D J, Ashman T L. The evolution of floral longevity:resource allocation to maintenance versus construction of repeated parts in modular organisms [J]. Evolution,1995,49:131-139.
    217. Shaw M W. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales:Ⅱ. Acorn losses and germination under field conditions [J]. The Journal of Ecology,1968, 56(3):647-660.
    218. Shipley B. Trade-offs between net assimilation rateandspecific leaf area in determining relative growth rate:relationship with daily irradiance [J]. Functional Ecology,2002,16(5):682-689.
    219. Small, J.G.C., Gutterman, Y. A comparison of thermo-and skotodormancy in seeds of Lactuca serriola in terms of induction, alleviation, respiration, ethylene and protein synthesis [J]. Plant Growth Regulation,1992,11(3),301-310.
    220. Smit G N. The importance of Salvadora australis in relation to tree thinning in preserving herbaceous plants in a semi-arid Colophospermum mopane savanna [J]. Journal of Arid environments,2003,55(3):483-501.
    221. Stratton D A. Longevity of individual flowers in a Costa Rican cloud forest:ecological correlates and phylogenetic constraints [J]. Biotropica,1989,21:308-318
    222. Swaine M D, Whitmore T C. On the definition of ecological species groups in tropical rain forests [J]. Plant Ecology,1988,75(1-2):81-86.
    223. Takahashi K, Azuma H, Yasue K. Effects of climate on the radial growth of tree species in the upperandlower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan [J]. Ecological Research,2003,18(5):549-558.
    224. Tanase K, Ushio A, Ichimura K. Effects of light intensity on flower life of potted Delphinium plants [J]. J. Japan. Soc. Hort. Sci.,2005,74 (5):395-397
    225. Tanouchi H, Sato T, Takeshita K. Comparative studies on acorn and seedling dynamics of four Quercus species in an evergreen broad-leaved forest [J]. Journal of plant research,1994,107(2): 153-159
    226. Taylor A H, Jinyan H, ShiQiang Z. Canopy tree developmentandundergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China:a 12-year study [J]. Forest Ecology and Management,2004,200(1-3):347-360.
    227. Thomson J D, Thomson B A. Pollen presentation andviability schedules in animal pollinated plants:consequences for reproductive success [M]. In:Ecology and Evolution of Plant Reproduction (ed.Wyatt R), pp.1-24. New York:Chapman & Hall,1992.
    228. Watt A S. On the causes of failure of natural regeneration in British oakwoods [J]. Journal of Ecology,1919,7:173-203
    229. Welander N T, Ottosson B. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L [J]. Forest Ecology and Management,1998,107(1-3): 117-126.
    230. Westoby M. A leaf-height-seed (LHS) plant ecology scheme [J]. Plant and soil,1998,199(2): 213-227
    231. Wright I J, Westoby M. Cross-species relationships between seedling relative growth rate, nitrogen productivityandroot vs leaf function in 28 Australian woody species [J]. Functional Ecology,2000,14(1):97-107.
    232. Wu G L, Du G Z, Chen M. Response of seedling root of six herbaceous species to light and nutrient in alpine meadow of Qinhai-Tibetan Plateau [J]. International journal of botany,2006,2 (4):395-401
    233. Wyatt R. Pollinator-plant interactions and the evolution of breeding systems [M]. New York: Academic press,1983.
    234. Zhang J, Zhong Y, Wang D, Zhang X. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China [J]. Journal of Arid Environment,2002,51(1):153-162.
    235. Zoller H, Lenzin H, Erhardt A. Pollination and breeding system of Eritrichium nanum (B oraginaceae) [J]. Plant Systematics and Evolution,2002,233(1-2):1-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700