用户名: 密码: 验证码:
微细通道流动沸腾换热机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高热流密度换热设备的高效冷却问题,推动了微细通道流动沸腾研究的发展,目前已有部分成果得以应用。微细通道内的流动传热异于常规尺寸管道,其流动特性更加复杂,传热机理至今尚未定论,针对微细通道流动沸腾问题展开研究仍是目前研究的热点之一。
     本文建立了矩形微细通道流动沸腾实验台,加工了微细通道实验元件,完成了宽度为0.5-2.0mm,压力介于0.12-0.15MPa范围内的流动沸腾实验,研究了通道宽度s、运行压力P、工质流量G、入口过冷度△t及加热功率P对微细通道流动沸腾的影响,并进行了流动沸腾的可视化研究,对观察到的流型进行了定义和探讨,分析了流型与系统压降及沸腾换热系数之间的关系,根据实验数据绘制了竖直矩形微细通道内流动沸腾的流型图。
     本文对Van Stralen的核态沸腾模型进行修正,提出了计算流动沸腾总热流密度的新方法,将流动沸腾换热区域分成气泡覆盖区和流体覆盖区两部分,并将生成气泡的数量及气泡所占据的壁面面积作为加权,对总热流密度公式进行修正,得到了沸腾换热系数与通道尺寸之间的关系式,分析了微细通道流动沸腾机理,结果表明微细通道流动沸腾换热特性与气泡脱离指数n有关,只有当该指数n<1时,随着通道尺寸的减小,沸腾传热系数才会呈增加趋势。
     本文对实验数据进行了整理与统计,分析了影响过冷沸腾起始点的因素,绘制了工质入口温度tin,体积流量G,通道宽度S及系统运行压力P对过冷沸腾起始热流密度qoNe的影响关系图,对比了各影响因素所占的比重,拟合出微细通道内过冷沸腾起始热流密度的计算式。本文对饱和沸腾进行了探讨,发现该换热区域是以气泡的相变潜热为主要的传热方式,其传热过程与气泡生成频率fg、气泡脱离直径Dd以及通道宽度s等有较大关系,拟合了饱和沸腾换热经验关系式。通过上述分析,本文提出了在微细通道单侧面加热工况下,从加热面指向绝热面分为气泡形成区、气泡生长区和气泡湮灭区三个区域,各区域边界受热流密度和工质流速的共同影响而变化,这种变化也直接导致气泡的不同运动形态。
     本文利用分相流模型对微细通道流动沸腾过程的压降问题进行处理,建立了基于气相与液相的流速不相等及气液两相之间处于热力学平衡状态两个基本假设的两相流总压降梯度表达式,深入分析了入口过冷度△t,体积流量G,通道宽度s及系统运行压力P对流动压降△P的影响,拟合出流动沸腾总压降关系式并与实验结果进行了对比,表明该拟合关系式可以描述竖直微细通道内流动沸腾过程中的压力降。
     本文建立了多尺寸、不同流道形状的竖直矩形微细通道流动沸腾模型,采用有限容积积分法对控制方程及计算区域进行离散化,选择SIMPLER方法求解压力场和速度场,计算过程中对工质进行变物性处理,选用标准k-ε模型进行湍流充分发展区域的数值模拟,近壁面区域采用壁面函数法,并利用CFD软件的UDF功能进行了C语言自编程以实现均质沸腾和非均质沸腾的数值计算,获得了微细通道内气泡的形成、生长和脱离等运动规律,得到了气液两相压力场、速度场和温度场的分布,分析了换热系数随气泡运动的关系,并将数值计算结果与实验数据进行了对比且吻合良好,表明所建立的模型可以用来模拟竖直矩形微细通道中的流动沸腾。由于微细通道流动沸腾对实验条件要求相对苛刻,许多极限条件下的实验难于进行,该模型的建立可弥补宽广参数范围内的研究数据,在一定程度上促进微细通道流动沸腾研究的进展。
     两相流的流型对压降和传热均有很大影响,本文依据实验数据和数值模拟结果,引入人工神经网络的方法实现气液两相流流型的识别。将压力、温度、截面含气率、工质流速等参数作为神经网络的输入特征向量,经过归一化和无量纲化处理之后输入到BP神经网络和Elman神经网络中,对微细通道流动沸腾气液两相流流型进行识别,发现两种神经网络在流型识别方面具有较高的可靠性和准确度,为改善和发展流型在线智能识别系统提供了支持。
The emergence of heat transfer devices with high heat flux stimulates the development of research on the flow boiling in micro/mini-channel. However, it is well known that there are some difference between the heat transfer in micro/mini-channel and that in conventional scale channel. The flow characteristics in micro/mini-channel are more complex, and the heat transfer mechanism is still not clear. Therefore, to carry out a study focusing on the flow boiling in micro/mini-channel and to clarify the flow and heat transfer mechanism are essential to guide the research and design of the compact high heat flux heat transfer components.
     A rectangular mini-channel flow boiling experiment rig with self-designed and processed test section is established in this study. Influence caused by different channel widths, pressure, mass flow rates, inlet subcooling and heating power on the flow boiling in mini-channel are experimentally investigated for channel width from 0.5mm to 2.0mm under the pressure ranging from 0.12MPa to 0.15MPa. A visualization study is also conducted to define and explore the observed flow patterns, and to analyze the relationship between flow patterns and system pressure drop and heat transfer coefficient. A flow pattern map is obtained based on the experimental data.
     The nucleate boiling theory of Van Stralen is amended in the present study, and a method of computing the total heat flux of flow boiling is proposed from theoretical analysis. The flow boiling heat transfer area is divided into bubble covered area and liquid covered area, and the weighted parameters of the bubble number and the bubble occupied wall area are employed to amend the formula of total heat flux. The analysis of flow boiling mechanism in mini-channel reveals the relationship between the boiling heat transfer coefficient and channel size. The results show that there is no absolute heat transfer enhancement when using mini-channel, but depending on the exponent related with the bubble departure diameter. Only when the exponent n<1, the flow boiling heat transfer coefficient will increase along with the decrease of mini-channel size.
     Subcooled boiling and saturated boiling are two important components of the flow boiling phenomenon, and also the study focus of boiling heat transfer mechanism. By summarizing the experimental data, factors affect the onset of subcooled boiling are analyzed, diagrams showing the influence exerted by inlet subcooling, mass flow, width of the mini-channel, system pressure. The proportion taken by each influential factor is compared, and then the formula to calculate the onset heat flux of subcooled boiling is fitted. The saturated boiling is also discussed in this thesis, and the transfer of latent heat dominates at such area. The heat transfer process is closely related with the bubble formation frequency, departure diameter and the mini-channel width, etc, and an empirical formula is proposed. According to the experimental results, from heating surface to the adiabatic surface, three regions are defined as bubble formation area, bubble growth region and bubble annihilation area. The boundary area of these regions can be affected by heat flux, resulting in different movement patterns of bubble.
     The problem of pressure drop has been the focus of the study about vapor-liquid two phase flow. This thesis work makes a penetrating analysis on the relationship between inlet subcooling, mass flow rate, the width of mini-channel, the system operation pressure and the flow pressure drop. Phase flow model is employed to deal with the problem of pressure drop during the flow boiling process. Two basic assumptions are made as vapor and liquid phases have different flow velocities and these two phases are in a thermodynamic equilibrium state. Based on such assumptions, the expression formula of two-phase total pressure drop gradient is derived, which amends the traditional expressions, fitting better to the flow boiling process in vertical mini-channel.
     On the base of experimental study, this thesis establishes the flow boiling model in vertical rectangular mini-channels with different sizes and cross-section shapes. Finite volume method is used to discrete the control equations and simulation area, and the SIMPLER method is chosen to solve the pressure field and velocity field. The properties of the working fluid are treated as variable during the simulation and the standard k-e model is selected to simulate the fully developed turbulence area, while wall function is employed for region neat the wall. In addition, the UDF function of the CFD software is used to enable the numerical computation of homogeneous and non-homogeneous boiling. The motion characteristics of bubble generation, growth up and departure are obtained together with the vapor-liquid two-phase pressure profile, velocity profile and temperature profile. The relationship between bubble motion and the heat transfer coefficient is analyzed, and a fairly good agreement is achieved from the comparison of experimental results and simulation output, indicating that the established model can be used to simulate the flow boiling in mini-channel. Taking into account the relatively stringent requirement by the experimental study, many experiments under extreme conditions are difficult to carry out, so the numerical simulation in this thesis can contribute to the research data in a wide scope of parameter values, promoting the development of study on the flow boiling phenomenon in mini-channel.
     It is well known that the flow patterns of two-phase flow have significant impact on both system pressure drop and heat transfer coefficient. Based on the experimental results and simulation output, this thesis introduces artificial neural network to identify the two-phase flow patterns. Three groups of parameters, i.e. pressure, temperature, void fraction, are served as the input feature vectors, which will be inputted into the BP neural network and Elman neural network after normalization for the identification of flow patterns. It is found that both of the two neural networks possess relatively high reliability and accuracy, providing support to the improvement and development of the online intelligent identification system.
引文
[I]Mohanmed G. The fluid mechanics of microdevices-The freeman schlolar lecture [J]. Journal of Fluids Engineering,1999,121(1):5-33
    [2]Kandlikar S G. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental Thermal and Fluid Science,2002,26(2):389-407
    [3]云和明.细通道单相流动和传热特性的研究[D].山东大学博士学位论文,2007:1-2
    [4]Chengbin Z, Yongping C, Mingheng S, et al. Flow boiling in constructal tree-shaped minichannel network[J]. International Journal of Heat and Mass Transfer,2011,54(1-3): 202-209
    [5]Ozer A B, Oncel A F, Hollingsworth D K, et al. The effect of sliding bubbles on nucleate boiling of a subcooled liquid flowing in a narrow channel[J]. International Journal of Heat and Mass Transfer,2011,54(9-10):1930-1940
    [6]Kureta M, Akimoto H. Critical heat flux correlation for subcooled boiling flow in narrow channels[J]. International Journal of Heat Mass Transfer,2002,45(20):4107-4115
    [7]Ishibashi E, Nishikawa K, Saturated boiling heat transfer in narrow spaces[J]. International Journal of Heat Mass Transfer,1969,12(8):863-894
    [8]Lazarek G M, Black S H. Evaporative heat transfer pressure drop and critical heat flux in a small diameter vertical tube with R-113[J]. International Journal of Heat Mass Transfer,1982, 25(7):945-960
    [9]Kandlikar S G. Development of a flow boiling map for subcooled and saturated flow boiling of different fluids in circular tube[J]. International Journal of Heat Transfer,1991, 113(1):190-200
    [10]Kamidis D E, Ravigurajan T S. Single and two-phase refrigerant flow in mini-channels[C]. Proceedings of the 33th National Heat Transfer Conference, Albuquerque, NM, August 20-22, 2000:1-8
    [II]Wambsganss M W, France D M, Jendrzejczyk J A, and Tran T N. Boiling heat transfer in a small diameter tube[J]. ASME. Journal of Heat Transfer,1992,115(4):963-972
    [12]Tran T N, Wambsganss M W, and France D M. Small circular and rectangular-channel boiling with two refrigerants[J]. International Journal of Multiphase Flow,1996,22(3): 485-498
    [13]Kew P A, Cornwell K. Correlation for the prediction of boiling heat transfer in small-diameter channelsfJ]. Applied Thermal Engineering,1997,17(8-10):705-715.
    [14]Bonjour I, Lallemand M. Flow patterns during boiling in a narrow space between two vertical surface[J]. International Journal of Multiphase Flow,1998,24(6):947-960
    [15]Licheng S, Kaichiro M. An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels[J]. International Journal of Heat and Mass Transfer,2009,52(23-24): 5323-5329
    [16]Hibiki T, Hazuku T, Takamasa T, et al. Some characteristics of developing bubbly flow in a vertical mini pipe[J]. International Journal of Heat and Fluid Flow,2007,28(5):1034-1048
    [17]Bowers M B, Mudawar I. High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer,1994,37(2): 321-332
    [18]Jean-Marie L, Shi-Chune Y, Cristina H. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions [J]. Nuclear Engineering and Design,2010, 240(2):245-251
    [19]Fujita Y, Ohta H, Uchida S, Nishikawa K. Nucleate boiling heat transfer and critical heat flux in narrow space between rectangular surfaces[J]. International Journal of Heat and Mass Transfer,1988,31(2):229-239
    [20]Bonjour I, Lallemand M. Effects of confinement and pressure on critical heat flux during natural convective boiling in vertical channels[J]. International Communications in Heat and Mass Transfer,1997,24(2):191-200
    [21]Suo M, Griffith P. Two-phase flow in capillary tubes[J]. ASME. Series D, Journal of Basic Engineering,1964,86(3):576-582
    [22]Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow,1996,22(4):703-712
    [23]Yang C Y, Shieh C C. Flow pattern of air-water and two-phase R134a in small circular tubes[J]. International Journal of Multiphase Flow,2001,27(7):1163-1177
    [24]Santosh K, Yoav P. Surface tension effects on adiabatic gas-liquid flow across micro pillarsfJ]. International Journal of Multiphase Flow,2009,35(1):55-65
    [25]Deendarlianto, Akiharu, Indarto, et al. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube [J]. Experimental Thermal and Fluid Science,2010,34(7):813-826
    [26]吴玉庭,杨春信,袁修干.核态池沸腾换热的数值模拟[J].化工学报,2002,53(5):479-486
    [27]Krustalev D, Faghri A. Thermal characteristics of conventional and flat miniature axially grooved heat pipes[J]. Journal of Heat Transfer,1995,117(4):1048-1054
    [28]Li J, Peterson G P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow[J]. International Journal of Heat and Mass Transfer,2004,47(19-20):4215-4231
    [29]Li J, Peterson G P.3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow[J]. International Journal of Heat and Mass Transfer,2007,50(15-16):2895-2904
    [30]Yongping C, Jiafeng W, Mingheng S, et al. Numerical simulation for steady annular condensation flow in triangular microchannels[J]. International Journal of Heat and Mass Transfer,2008,35(7):805-809
    [31]Yongping C, Chengbin Z, Mingheng S, et al. Study on flow and heat transfer characteristics of heat pipe with axial"'-shaped microgrooves[J]. International Journal of Heat and Mass Transfer,2009,54(3-4):636-643.
    [32]Fukano T, Kariyasaki A, Kagawa M. Flow patterns and pressure drop in isothermal gas-liquid flow in a horizontal capillary tube[C]. Proceedings of National Heat Transfer Conference, ANS,1989,4:153-161
    [33]Cornwell K, Kew P A. Boiling in small parallel channels[C]. Proceedings CEC Conference on Ecergy Efficiency in Process Technology. Athens, Greece, October,1992:624-638
    [34]Kasza K A, Didasealon T, Wambsganss M W. Microscale flow visualization of nucleate boiling in small channels:mechanisms influencing heat transfer[C]. Proceedingsof International Conference on Compact Heat Exchangers for the Process Industries, Begell House, New York,1997:343-352
    [35]Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels Part Ⅰ:two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999,25(3):377-394
    [36]Coleman J W, Garimella S. Characterization of two-phase flow patterns in small diameter round and rectangular tubes[J]. International Journal of Heat and Mass Transfer,1999,42(15): 2869-2881
    [37]Hetsroni G, Mosyak A, Segal Z, et al. A uniform temperature heat sink for cooling of electronic devices[J]. International Journal of Heat and Mass Transfer,2002,45(16): 3275-3286
    [38]Kawahara A, Chung P M, Kawaji M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel[J]. International Journal of Multiphase Flow.2002,28(9): 1411-1435
    [39]Pehlivan K, Hassan I, Vaillancourt M. Experimental study on two-phase flow and pressure drop in millimeter-size channels[J]. Applied Thermal Engineering,2006,26(14-15): 1506-1514
    [40]Li J, Peterson G P, Cheng P. Dynamic characteristics of transient boiling on a square platinum microheater under millisecond pulsed heating[J]. International Journal of Heat and Mass Transfer,2008,51(1-2):273-282
    [41]Rezkallah K S. Weber number based flow-pattern maps for liquid-gas flows at microgravity[J]. International Journal of Multiphase Flow,1996,22(6):1265-1270
    [42]Coleman J W, Garimella S. Characteristics of two-phase patterns in small diameter round and rectangular tubes[J]. International Journal of Heat Mass Transfer,1999,42(15):2869-2881
    [43]Pedram H, Soheil G, Mohammad H S. Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump[J]. Journal of Petroleum Science and Engineering,2011, 75(3-4):327-335
    [44]Ghiaasiaan S M, Abdel-Khalik S I. Two-phase flow in microchannels[J]. Advanced Heat Transfer,2001,34:145-254
    [45]Julia E, Ozar B, Jae-Jun J, Takashi H, et al. Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus[J]. International Journal of Heat and Fluid Flow, 2011,32(1):164-175
    [46]Embrechts M J. The application of neural networks to two-phase flow regime identification[C]. Proceeding of the American Power Conference,1996:860-864
    [47]Monji H, Matsui G. Flow pattern recognition of gas liquid two-phase flow using a neural network[C]. Proceedings of the 3nd International Conference On Multiphase Flow, Lyon, 1998:152-156
    [48]Mi Y, Ishii M, Tsoukals L H. Flow regimes identification methodology with neural networks and two-phase flow models[J]. Nuclear Engineering and Design,2001,204(1-3):87-100
    [49]Tatiana T, Imre P. A general regression artificial neural network for two-phase flow regime identification[J]. Annals of Nuclear Energy,2010,37(5):672-680
    [50]Cesar M S, Claudio P, Roberto S, et al. Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks[J]. Progress in Nuclear Energy,2010,52(6):555-562
    [51]童明伟,石程名,辛明道.两相闭式热虹吸管的强化传热实验[J].工程热物理学报,1984,5(4):371-373
    [52]姜培学,王补宣,任泽霈.微尺度换热器的研究及相关问题的探讨[J].工程热物理学报,1996,17(3):328-332
    [53]Xiaofeng P, Peterson G P. Convective heat transfer and flow friction in micro-channel structures[J]. International Journal of Heat Mass Transfer,1996,39(12):2599-2608
    [54]Xiaofeng P, Peterson G P. The effect of thermofluid and geometrical parameters on convection of liquids through rectangular micro channels[J]. International Journal of Heat Mass Transfer, 1995,38(4):755-758
    [55]潘良明等.垂直矩形窄缝流道内的过冷流动沸腾换热[J].工程热物理学报,2002,23(2):215-217
    [56]潘良明,辛明道,何川等.垂直矩形窄缝内的过冷流动沸腾换热性能[J].热科学与技术,2002,](2):185-188.
    [57]王际辉,唐大伟,颜晓虹.矩形微槽内水的流动沸腾换热及可视化实验研究[J].中国科学院研究生院学报,2007,24(1):34-38
    [58]杨晓强等.水平矩形窄缝通道内水沸腾换热的实验研究[J].核动力工程,2007,28(3):38-42
    [59]林瑞泰.沸腾传热[M].北京:科学出版社,1988:20-29
    [60]孙中宁,阎昌琪,杜泽.光管及窄环隙流动池沸腾换热实验研究[J].工程热物理学报,2001,22(4):485-487
    [61]孙中宁,曹夏昕,吕襄波.窄隙自然循环过冷沸腾流道中的温度分布特性[J].哈尔滨工程大学学报,2008,29(6):563-567
    [62]Wei L, Zan W. A general criterion for evaporative heat transfer in micro/mini-channels[J]. International Journal of Heat and Mass Transfer,2010,53(9-10):1967-1976
    [63]胡自成,马虎根.微圆管内非共沸混合物流动沸腾压降试验[J].江苏大学学报(自然科学版),2007,28(5):413-416
    [64]罗小平.热孤子与微细通道相变传热研究[J].华南理工大学学报(自然科学版),2008,36(11):12-16
    [65]罗小平,唐杨.矩形微槽道饱和沸腾临界热流密度特性[J].低温与超导,2010,38(6):66-70
    [66]陈钢,全晓军,郑平.脉冲加热下微尺度表面流动沸腾[J].上海交通大学学报,2010,44(1):120-123
    [67]姜茂,白博峰.流动沸腾空穴核化机理的实验研究[J].工程热物理学报,2008,29(3):434-438
    [68]黄卫星,王冬琼,帅剑云等.矩形微通道内流动沸腾压力降实验研究[J].四川大学学报 (工程科学版),2008,40(3):81-85
    [69]苏顺玉,黄素逸,于晓墨.环状细通道流动沸腾换热的实验研究[J].工程热物理学报,2004,25(1):106-108
    [70]魏文建,丁国良,王凯建.含油制冷剂在小管径换热管内流动沸腾换热关联式[J].上海交通大学学报,2007,41(3):404-410
    [71]张鹏,付鑫,王如竹.微通道内流动沸腾的研究进展[J].制冷学报,2009,30(2):1-7
    [72]龙恩深,赵力.水平窄空间沸腾换热的数理模型研究[J].热科学与技术,2003,2(4):324-329
    [73]易杰.竖直细管内气-水环状两相流的蒸发对流耦合换热特性研究[D].上海交通大学博士学位论文,2003:96-99
    [74]何川,潘良明,赵琴等.窄流道内过冷流动沸腾汽泡生长的数值研究[J].工程热物理学报,2002,23(5):614-616
    [75]梁祥飞,辛明道,潘良明.竖直矩形窄缝两相同向分相流动沸腾传热模型[J].热科学与技术,2004,3(2):99-103
    [76]蒲鹏飞,潘良明,李午中等.竖直矩形狭缝通道内环状流沸腾换热分析模型[J].热科学与技术,2005,4(3):208-212
    [77]曾建邦,李隆键,廖全等.沸腾过程的格子Boltzmann方法模拟[J].西安交通大学学报,2009,43(7):25-29
    [78]Chen H, Groll M, Rosler. Micro heat pipe:experimental investigation and theoretical modeling[C]. Proceedings of the 8th International Heat Pipe Conference, Beijing, China,1992
    [79]Lee Y S, Lee Y P, Lee Y. An experimental study on micro two-phase closed thermosyphones with inserts[C]. Proceedings of the 8th International Heat Pipe Conference, Beijing, China, 1992
    [80]Zhao T S, Bi Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels[J]. International Journal of Multiphase Flow,2001,27(5):765-782
    [81]Wu H Y and Cheng P. Visualization and measurements of periodic boiling in silicon microchannels[J]. International Journal of Heat and Mass Transfer,2003,46(14):2603-2614
    [82]Chen Y P and Cheng P. An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets[J]. International Communications in Heat and Mass Transfer,2005, 32(7):931-938
    [83]林宗虎.近期多相流基础理论研究综述.西安交通大学学报.2001,35(9):881-885
    [84]阎其吕著.气液两相流[M].哈尔滨:哈尔滨工程大学出版社,2007:37-52
    [85]栾锋,阎昌琪.摇摆状态下水平管内气-水两相流流型的判定方法[J].核动力工程,2008,29(4):39-43
    [86]潘良明,辛明道,何川等.垂直窄缝流道内过冷沸腾时的汽泡行为[J].工程热物理学报,2003,24(4):661-663.
    [87]王冬琼,帅剑云,黄卫星等.微通道内流动沸腾可视化观察与流型转换研究[J].化工装备技术,2008,29(1):59-61
    [88]陈德奇,潘良明,袁德文等.竖直矩形窄流道内气泡生长的实验研究.核动力工程,2008,29(5):52-55
    [89]付鑫,黄禹,于如竹等.微细通道内液氮流动沸腾的流型特性[J].机械工程学报,2009, 45(9):301-306
    [90]白鹏飞,汤勇,陆龙生等.以水为工质的铜基微通道热沉的流态可视化与传热特性[J].吉林大学学报(工学版),2010,40(4):959-964
    [91]甘云华,徐进良.硅基微通道中周期性沸腾的光学可视化[J].化工学报,2007,58(7):1641-1647
    [92]周云龙,孙斌,陆军.改进BP神经网络在气液两相流流型识别中的应用[J].化工学报,2005,56(1):110-115
    [93]关跃波,周云龙,孙斌.垂直上升管内空气-水两相流压差波动信号的Hurst指数分析[J].东北电力学院学报,2005,25(6):14-17.
    [94]周云龙,陈飞,孙斌.基于灰度共生矩阵和支持向量机的气液两相流型识别[J].化工学报,2007,58(9):2232-2237
    [95]孙斌,周云龙,向新星等.基于经验模式分解和概率神经网络的气液两相流识别[J].中国电机工程学报,2007,27(17):72-77
    [96]孙斌,周云龙,关跃波等.基于连续小波变换和RBF神经网络的气液两相流型识别方法[J].吉利大学学报(工学版),2007,37(4):833-837
    [97]王妍芃,林宗虎.改进BP神经网络在流型识别中的应用[J].热能动力工程,2001,16(1):63-65
    [98]白博峰,郭烈锦,陈学俊.基于反传神经网络和压差波动识别气液两相流流型[J].化学报,2000,51(6):848-851
    [99]白博峰,郭烈锦,陈学俊.气液两相流流型在线智能识别[J].中国电机工程学报,2001,21(7):46-50
    [100]白博峰,郭烈锦,陈学俊.气液两相流流型BP网络识别[J].计量学报,2001,22(2):122-127
    [10I]吴浩江,吴浩扬,周芳德.分形理论在油气水多相流流型识别中的应用[J].西安交通大学学报,1999,33(9):50-52
    [102]吴浩江,周芳德.应用RBF神经网络只能识别油气水多相流流型[J].石油学报,2000,21(3):57-60
    [103]吴浩江,胡志华,周芳德.改进BP神经网络在流型智能识别中的应用[J].西安交通大学学报,2000,34(1):22-25
    [104]张丽春,马同泽,张正芳.微槽平板热管传热性能的实验研究[J].工程热物理学报,2003,24(3):493-495
    [105]张丽春,马同泽,葛新石.微小型多槽平板热管的流动和传热分析及实验研究[J].中国科技大学学报,2003,33(4):450-458
    [106]Xiaofeng P, Peterson G P. Convective heat transfer and flow friction in microchannel structures[J]. International Journal of Heat Mass Transfer,1996,39(12):2599-2608
    [107]Nguyen N T, Bochnia D, Kiehnscherrf R, et al. Investigation of forced convection in microfluid systems[J]. Sensors Actuators,1996,55(A):49-55
    [108]Sajith V, Haridas D, Sobhan C B, et al. Convective heat transfer studies in macro and mini channels using digital interferometry[J]. International Journal of Thermal Sciences,2011, 50(3):239-249
    [109]Ewelina S, Rudi K, Rainer M. Heat transfer mechanism and flow pattern during flow boiling of water in a vertical narrow channel-experimental resultsfJ], Journal of Thernal Sciences, 2007,46(11):1172-1181
    [110]林宗虎等著.气液两相流和沸腾换热[M].西安:西安交通大学出版社,2003:14-28
    [111]Akimi S, Ziping F, Zensaku K. Two-phase flow in microchannels[J].Experimental Thermal and Fluid Science,2002,26(6-7):703-714
    [112]Balasubramanian P, Kandlikar S G. High speed photographic observation of flow patterns during flow boiling in single rectangular minichannel[C]. Proceedings of HT2003 ASME Summer Heat Transfer Conference, Las Vegas, Nevada, USA, July 21-23,2003:1-7
    [113]Vlasie C, Macchi H, Guilpart J, et al. Flow boiling in small diameter channels[J]. International Journal of Refrigeration,2004,27(2):191-201
    [114]Hewitt G F, Roberts D N. Studies of two-phase flow patterns by simultaneous X-ray and flash photography, AERE-M 2159, HMSO,1969.
    [115]Lin S, Kew P A, Cornwell K. Characteristic of air/water flow in small tubes[J]. Heat and Technology,1999,17(2):63-70
    [116]Tabatabai A, Faghri A. A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal miniature and micro tubesfJ]. Journal of Heat Transfer, 2001,123(5):958-968
    [117]范菁.微通道内流体流动传热的数值模拟[D].山东大学硕士学位论文,2007:39-41
    [118]徐济望著.沸腾换热和气液两相流[M].北京:原子能出版社,2001:212-215
    [119]Westwater J W. Boiling of liquids[J]. Advances in Chemical Engineering,1958,2:1-30
    [120]Bemath L. Theory of bubble formation in liquids[J]. Journal of Industial and Engineering Chemistry,1952,44(6):1310-1313
    [121]Roero C. Contact angle measurements of sessile drops deformed by a DC electric field. High Voltage Laboratory, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland,24 January 2006
    [122]哈恩E,格里古尔U.沸腾换热[M].王兴国,等译.北京:国防工业出版社,1988:2-8
    [123]鲁钟琪编著.两相流与沸腾传热[M].北京:清华大学出版社,2002:10-11
    [124]Stralen V, Sohal M S, Cole R, et al. Bubble Growth Rates in Pure and Binary Systems: Combined Effect of Relaxation and Evaporation Microlayers[J]. International Journal of Heat and Mass transfer,1975,18(3):453-467
    [125]Shai I, Rohsenow W M. The mechanisim of stability criterion of nucleate pool boiling of sodium[J]. Journal of Heat Transfer,1969,91(3):315-329
    [126]Ivey H J. Relationships between bubble frequency departure diameter and rise velocity in nucleate boiling[J]. International Journal of Heat and Mass Transfer,1967,10(8):1023-1040
    [127]Bergles A E, Rohsenow W M. The determination of convection surface-boiling heat transfer[J]. Journal of Heat Transfer,1964,86C:365-372
    [128]Hsu Y Y. On the size range of active nucleationcavities on a heating surfacefJ]. Journal of Heat transfer,1962,84C(3):207-216
    [129]Fluent Inc. FLUENT User's Guide. America:Fluent Inc,2003:273-326
    [130]苏顺玉.环状狭缝通道流动沸腾传热的理论及实验研究[D].华中科技大学博士论文,2005:53-56
    [131]陶文铨编著.数值传热学[M].西安:西安交通大学出版社,2001:28-70
    [132]汤传义.水的表面张力与温度的关系[J].安庆师范学院学报(自然科学版),2000,6(1):73-74.
    [133]DDBST. Surface tension. Dortmund:Dortmund Data Bank Software and Separation Technology GmbH,2010[2010-10-12]. http://www. ddbst.com/en/online /Online_Calc_sft106_Form.php.
    [134]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:25-36
    [135]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. New York:Prentice Hall,1995:98-105
    [136]Lee W H. A Pressure Iteration Scheme for Two-Phase Flow Modeling (Technical Paper No. LA-UR-79-975). Los Alamos, New Mexico, USA:Los Alamos National Laboratory.
    [137]苏博,罗小平.竖直矩形微槽道内的饱和沸腾换热研究[J].兰州大学学报(自然科学版),2008,44(5):281-284
    [138]Yoshio U, Shuhei O, Yutaka T. Configuration of the micro-layer and characteristics of heat transfer in a narrow gap mini/micro-channel boiling system[J]. International Journal of Heat and Mass Transfer,2009,52(9-10):2205-2214
    [139]于国庆,谢致薇,王世平等.乙醇在改进型机加工多孔管上的池核沸腾换热研究[J].化学工程,2000,28(3):21-24.
    [140]Qu W, Mudawar I. Prediction and measurement of incipient boiling heat flux in micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer,2002,45(19):3933-3945.
    [141]孙斌.基于小波和混沌理论的气液两相流流型智能识别方法[D].华北电力大学博士论文,2005:1-2
    [142]孙斌,许明飞.制冷系统中气液两相流流型识别的研究进展[J].制冷,2010,29(3):40-45
    [143]胡红利,张娟,陈夏.用于两相流测量的ECT图像重构技术研究[J].工业仪表与自动化装置,2010,2:100-103
    [144]李作进.中医脉象信号的统计分析[D].重庆大学硕士论文,2007:5-6
    [145]杨萍,杨良煜,张玉杰.基于改进型BP网络的气液两相流流型识别[J].计算机测量与控制,2009,17(9):1828-1830
    [146]邢兰昌,耿艳峰.基于BP神经网络的气液两相流分相流量测量[J].电子测量与仪器学报,2007,21(4):102-107
    [147]周云龙,陈飞,刘川.基于图像处理和Elman神经网络的气液两相流流型识别[J].中国电机工程学报,2007,27(29):108-112
    [148]王强,周云龙,程思勇等.基于小波和Elman神经网络的气液两相流流型识别方法[J].热能动力工程,2007,22(2):168-175
    [149]张德丰等编著.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009:95-98
    [150]肖锋.变压器在线监测混合智能专家系统的研究[D].湖南大学硕士论文,2007:32-33
    [151]王强.基于小波和希尔伯特一黄变换的气液两相流流型智能识别方法[D].东北电力大学硕士论文,2007:45-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700