用户名: 密码: 验证码:
太阳能土壤蓄热供暖(冷)系统埋地换热器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能-土壤源热泵(Solar-Ground Source Heat Pump, SGSHP)因其利用太阳辐射热和可再生的浅层土壤热,被认为是21世纪一项最具有发展前途的、具有节能和环保意义的制冷空调技术。该系统是以太阳能作为主要热源的热泵系统。制约太阳能-土壤源热泵技术发展的因素很多,其中,太阳能的蓄存、地下埋管换热器换热和土壤热平衡问题一直是太阳能土壤源热泵技术的研究关键。
     本文在总结了国内外太阳能土壤源热泵技术与蓄能技术的基础上,将二者有机地结合在一起,设计了太阳能季节性土壤蓄热供暖(冷)系统(Heating (Cooling) System of Solar Seasonal Soil Storage),该系统主要是由太阳能集热系统、土壤蓄热系统、热泵机组、地板辐射末端装置组成。本文以该系统的地下埋管换热器作为研究对象,主要从以下几个方面进行了研究:
     首先,利用有限单元法建立了土壤换热器三维数理模型,模拟了系统连续运行两年土壤温度场的变化及恢复情况。运行结束,土壤温度比初始值高了将近1℃。该系统特别适合用于严寒地区,冬季:太阳能做为主要热源,土壤源热泵做为辅助热源;夏季:土壤换热器直接供冷。土壤一年三季(春、夏和秋)进行长期蓄热,这样不仅保持了土壤的热平衡,还为下一个冬季更好地供暖提供了保证。
     其次,在所建立的数理模型基础上,本文首先模拟了单根U型管换热器的运行特性,研究了以年为周期,系统运行两年的不同深度(5m、30m和50m)土壤的温度变化情况、不同运行工况下U型管换热器对周围土壤温度的影响、不同土壤热物性和不同U型管管材对周围土壤温度的影响。
     再次,又模拟了多根U型管换热器的运行特性,从土壤热物性、埋管管材、埋管间距及埋管排列方式四个方面分析了影响土壤与埋管换热器之间的换热效果。其中,埋管管材对长期运行的太阳能季节性土壤蓄热供暖(冷)系统影响不是很大。在选择管材类型时,可从经济上考虑,本文选择了价格低廉的普通聚乙烯管材。
     另外,对换热影响最大的是埋管排列方式。四种排列方式中圆形的排列方式换热器换热能力最强,其次是多边形和正方形排列方式,最差的为矩形排列。换热能力强的排列方式,冬季换热器日取热量大,出水温度高;但夏季出水温度过低,不利于地板辐射供冷。因此,在选择换热器排列方式时,本文采用的是矩形排列,虽然冬季换热效果没有前三种好,但完全可以满足供暖要求,夏季又符合地板辐射供冷水温的要求。
     最后,为了考察太阳能季节性土壤蓄热供暖(冷)系统的运行特性,同时验证本文所建数学模型的正确性,在哈尔滨市松北区建立了太阳能季节性土壤蓄热供暖(冷)实验系统示范工程。本实验系统是把太阳能热泵、土壤蓄热及地板辐射系统有机的结合在一起的供暖(冷)空调系统,于2007年11月开始运行。实验测得:供暖中期平均供暖性能系数为5.01,供暖末期供暖性能系数可达13.02。在相同(或近似)的条件下,通过比较实验值和模拟值吻合较好,验证了本文建立的数学模型的正确性和可靠性。
     太阳能季节性土壤蓄热供暖(冷)系统是一种新型节能、环保的供暖(冷)系统,由于经济性等原因,目前该系统在实际中还得不到广泛的应用,但是随着常规能源的日益枯竭、能源价格的逐渐上涨、环保压力的不断增加,同时还由于太阳能供暖、空调技术的不断完善,太阳能季节性土壤蓄热供暖(冷)系统将成为一种非常有竞争力的供暖(冷)方式。本文的工作可以为今后太阳能季节性土壤蓄热供暖(冷)系统的应用提供理论基础和技术支持。
Solar with ground source heat pump (SGSHP) is taken as an air conditioning technique which has the greatest future, energy saving and environmental protection in the 21st century, since it utilizes solar radiant and renewable underground heat. Solar energy is regarded as the main heat source of the heat pump. The development of SGSHP is restricted by a lot of factors, and storage of solar energy, heat transfer of underground heat exchangers and heat balance of soil are three key points of research.
     Based on the researches done on the SGSHP and energy storage technology, a novel system combined the two systems was proposed and named as heating (cooling) system of solar seasonal soil storage. It consists of a solar energy collecting system, soil storage system, a heat pump unit, floor radiant terminal device. The main study object is underground heat exchanger. The research is based on the following aspects:
     First, three-dimensional numerical model of underground heat exchanger was established using finite element method. Simulation was done for observing soil temperature field variation and resumption and soil temperature was enhanced 1℃after two years running. The system is suitable in cold weather areas. Solar energy is the main heat source and ground source heat pump is the auxiliary heat source in winter; cooling can be extracted by underground heat exchangers directly in summer. Soil storage is a long period energy storage process that goes along in three seasons (spring, summer and autumn). It can not only maintain the balance of soil, but also supply the guarantee for heating of next winter.
     Second, based on the numerical model, operation characteristics of single U-type heat exchanger were simulated. Variation of temperature of different depths (5m, 30m, 50m), influence of different operation conditions on soil temperature, influence of soil properties and pipe materials on soil temperature were studied for two years’operation with period of year.
     Third, operation characteristics of muti U-type heat exchangers were simulated, too. Heat transfer effect between soil and heat exchangers was analyzed in four aspects: thermal physical properties of soil, material of pipes, and space of pipes and arrangement mode of pipes. Material of pipes has little influence on long period running solar storage soil storage system. It can be considered economically when choosing. Common PE plastic pipe has been chosen as the material in the system because of its low price.
     Forth, the most influential factor is arrangement mode of pipes. The best heat transfer ability is arrangement of circuit rotundity; the better ones are polygon and square arrangement; the worst one is rectangle one. Arrangement of strong heat transfer ability has large heat extraction per day of heat exchangers and high outlet water temperature in winter; meanwhile, it has low outlet water temperature in summer. It goes against floor radiant cooling. Rectangle arrangement has been used in the system. It can not get to the requirement of heating in winter though its heat transfer effect is the worst in four arrangement, but also accord with the demand of low temperature radiant floor cooling in summer.
     Last, demonstration engineering started to operate from Nov. 2007 which was established in Songbei district Harbin in order to research the operation characteristics of the solar seasonal soil storage heating (cooling) system which combined with solar heat pump, soil storage and floor radiant system together, and meanwhile, to validate the simulation results. Experimental test data: mean heating COP is 5.01 in middle heating period and 13.01 in end heating period. The results between the experimental measurements and simulations under the same (similar) conditions tally well, so that the numerical model was validated within acceptable accuracy and reliability.
     The novel heating (cooling) system of solar seasonal soil storage cannot be quite popular at present due to certain financial constrain. However, with energy sources decreasing, energy prices increasing and an awareness of the sustainable development increasing, it promises a bright future as an alternative means for heating (cooling) system. It is believed that the system could be popular with the development of the solar energy heating and air conditioning technologies. The study done in this thesis provides a fundamental and theoretical support for the further application of the system.
引文
1马经国.新能源技术.南京:江苏科学技术出版社. 1992: 1~4
    2王长贵,郑瑞澄.新能源在建筑中的应用.第1版.北京:中国电力出版社. 2003
    3王荣光,沈天行.可再生能源利用与建筑节能.北京:机械工业出版社. 2004: 1~8
    4 21世纪议程.北京:中国环境科学出版社. 1993
    5李道增.国际建筑界有关“生态建筑”的实践.世界建筑. 2001, (4): 20~22
    6魏凤,张晓黎.可再生能源发展对我国能源结构的影响.中国建设动态(阳光能源. 2006, (2): 65~67
    7王鹤,司士荣.建设和谐小康社会的能源保障——《中华人民共和国可再生能源法》颁布.太阳能. 2005, (3): 3~5
    8赖明.大力发展节能与绿色建筑.建设科技. 2005, 5: 16~17
    9刘志武.建筑与绿色技术.华中建筑. 2002, 20(3): 37~39
    10李新国.埋地换热器内热源理论与地源热泵运行特征研究.博士学位论文.天津大学. 2004
    11蒋能照.空调用热泵技术及应用.北京:机械工业出版社. 1997
    12方荣生,项立成,李亭寒等.太阳能应用技术.北京:中国农业机械出版社. 1985: 276~278
    13杨启岳.国内太阳能热利用现状与发展.能源技术. 2001, 22(4): 162~165
    14刘贞先,伊晓路,傅军.太阳能综合利用技术探讨.应用能源技术. 2006, 107(11): 31~33
    15李申生.太阳能的特点.太阳能. 2003, 5: 10~12
    16姚杨,马最良.浅议热泵定义.暖通空调. 2002,32(3): 33~35
    17李元旦,张旭.土壤源热泵的国内外研究和应用现状及展望.制冷空调与电力机械. 2002, 23 (1): 4~7
    18胡鸣明.国外地源热泵的发展与设计方法.四川制冷. 1999, (2): 20~24
    19丛旭日.地源热泵发展及应用.建设科技. 2005, (Z1): 72~73
    20戴书坚.绿色制冷空调技术的应用与发展.中国科技信息. 2005, 17(9): 44~45
    21徐云生.地源热泵的工程应用.节能技术. 2005, (10): 27~28
    22 L. R. Ingersoll, O. J. Zoeble, A. C. Ingersoll. Heat Conduction with Engineering,Geological and Other Application, New York, McGraw-Hill,1954
    23 L. R. Ingersoll, H. J. Plass. Theory of the Ground Pipe Heat Source for the Heat Pump.Heating. Piping and Air Conditioning. 1948, 20(7): 319~336
    24 S. P. Kavanaugh. Simulation and Experimental Verification of Vertical Ground Coupled Heat Pump Systems. Oklahoma State University Ph. D. Dissertation. 1985
    25 V. C. Mei et al.Vertical Concentric Tube Ground Coil Design for Applied Heat Pump Systems. ASHRAE Transactions, 1983, Part 2B
    26 P. Eskilson, J. Claesson. Simulation Model for Thermally Interacting Heat Extraction Boreholes. Numerical Heat Transfer. 1988, 13(2): 149~165
    27 K. Norman, Muraya, Dennis L. O’Neal, Warren M. Heffington. Thermal Interference of Adjacent Legs in a Vertical U-Tube Heat Exchanger for a Ground–Coupled Heat Pump. ASHRAE Trans. 1996,102(2): 231~245
    28 K. Rafferty. Geothermal Heat Pump Systems: An introduction. Water Well Journal, 2003, 57(8): 24~28
    29 P. S. Doherty, S. Al Huthaili, S.B. Riffat. Ground Source Heat Pump-Description and Preliminary Results of the Eco House System. Applied Thermal Engineering, 2004,24(7): 2627~2641
    30 G. H. Gan, S. B .Riffat, C. S. A.Chong. A Novel Rainwater-Ground Source Heat Pump-Measurement and Simulation. Applied Thermal Engineering. 2007, 27(2-3): 430~441
    31 H. Esen, M. Inalli, M. Esen. Technoeconomic Appraisal of a Ground Source Heat Pump System for a Heating Season in Eastern Turkey. Energy Conversion and Management. 2006, 47(9-10): 1281~1297
    32 H. Esen, M. Inalli, M. Esen. Numerical and Experimental Analysis of a Horizontal Ground-Coupled Heat Pump System. Building and Environment. 2007, 42(3): 1126~1134
    33 Louis Lamarche, Benoit Beauchamp. A New Contribution to the Finite Line-Source Model for Geothermal Boreholes. Energy and Buildings. 2007, 39(2): 188~198
    34 Louis Lamarche, Benoit Beauchamp. New Solutions for the Short-Time Analysis of Geothermal Vertical Boreholes. International Journal of Heat and Mass Transfer. 2007, 50(7-8): 1408~1419
    35 V. Badescu. Economic Aspects of Using Ground Thermal Energy for Passive House Heating. Renewable Energy, 2007, 32(6): 895~903
    36 A. Michopoulos. Three-Year Operation Experience of a Ground Source Heat Pump System in Northern Greece. Energy and Buildings. 2007, 39 (3): 328~334
    37 D. J. Harris Ground Temperatures in Britain. International Journal of Ambient Energy. 2006, 27(3): 149~159
    38 Y. Hamada, M. Nakamura, H. Saitoh, H. Kubota, K. Ochifuji. ImprovedUnderground Heat Exchanger by Using No-Dig Method for Space Heating and Cooling. Renewable Energy. 2007, 32(3): 480~495
    39 Y. Komaniwa, H. Moriya, H. Asanuma, H. Niitsuma. Development of a Simulator for Evaluating the Dynamic Behavior of an Integrated Renewable Energy System with Geothermal Heat Pump. Transactions-Geothermal Resources Council, Geothermal Resources Council Transactions-GRC 2005 Annual Meeting. 2005, 29: 71~75
    40 A. Hepbasli, O. Akdemir, Ebru Hancioglu. Experimental Study of a Closed Loop Vertical Ground Source Heat Pump System. Energy Conversion and Management. 2003, 44(4): 527~548
    41 O. Ozgener, A. Hepbasli. Modeling and Performance Evaluation of Ground Source (Geothermal) Heat Pump Systems. Energy and Buildings. 2007, 39(1): 66~75
    42 A. Hepbasli, M. T. Balta. A Study on Modeling and Performance Assessment of a Heat Pump System for Utilizing Low Temperature Geothermal Resources in Buildings. Building and Environment. 2007, 42(3): 3747~3756
    43 B. Sanner, E. Mands, M. K. Sauer. Larger Geothermal Heat Pump Plants in the Central Region of Germany. Geothermics. 2003, 32(4): 589~602
    44 B. Sanner, C. Karytsas, D. Mendrinos, L. Rybach. Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe. Geothermics. 2003, 32(4): 579~588
    45 S. E. Lambert, S. P. Kavanaugh. Operational Performance of Ground-Coupled (Closed Loop) Ground-Source Heat Pump System Pumping Alternatives. ASHRAE Transactions. 2004, 110 PART 1: 543~549
    46 Y. A. Kara. Experimental Performance Evaluation of Closed-Loop Vertical Ground Source Heat Pump in the Heating Mode Using Energy Analysis Method. International Journal of Energy Research. 2007, 31(15): 1504~1516
    47 Abdeen Mustafa Omer. Ground-Source Heat Pumps Systems and Applications. Renewable and Sustainable Energy Reviews. 2008, 12(2): 344~371
    48 Vasile Minea. Ground-Source Heat Pumps: Energy Efficiency for Two Canadian Schools. ASHRAE Journal. 2006, 48(5): 28~38
    49 Katsunori Nagano, Takao Katsura, Sayaka Takeda. Development of a Design and Performance Prediction Tool for the Ground Source Heat Pump System. Applied Thermal Engineering. 2006, 26(14-15): 1578~1592
    50 Kentaro Sekine, Ryozo Ooka, Mutsumi Yokoi, Yoshiro Shiba, Suckho Hwang. Development of a Ground-Source Heat Pump System with Ground Heat Exchanger Utilizing the Cast-in-Place Concrete Pile Foundations of Buildings. ASHRAE Transactions, v 113 PART 1, ASHRAE Transactions-Papers Presented at the 2007Winter Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2007: 558~566
    51 Y. J. Nam, Ryozo Ooka, Suckho Hwang. Development of a Numerical Model to Predict Heat Exchange Rates for a Ground-Source Heat Pump System. Energy and Buildings. 2008, 40(12): 2133~2140
    52李元旦,张旭,周亚素,陈沛霖.土壤源热泵冬季启动土况实验研究.暖通空调. 2001, 31(1): 17~20.
    53周亚素,张旭.土壤热源热泵系统垂直U形埋地换热器传热过程及合理间距的分析.东华大学学报:自然科学版. 2001, 27(5): 10~15
    54张旭,徐琳.上海某别墅土壤热源热泵系统节能效果分析.制冷技术. 2004, (4): 23-26
    55徐琳,张旭,张学庆.土壤热源热泵系统节能分析.煤气与热力. 2006, 26(3): 42~44
    56刘宪英,王勇,胡鸣明等.地源热泵地下垂直埋管换热器的试验研究.重庆建筑大学学报. 1999,21(5): 21~26
    57何雪冰,刘宪英.某住宅地源热泵系统夏季运行测试研究.暖通空调. 2006,36(1): 118~121
    58孙纯武,张素云,刘宪英.水平埋管换热器地热源热泵实验研究及传热模型.重庆建筑大学学报. 2001, 23(6): 49~55
    59程群英,罗明智,孙纯武等.地源热泵夏季性能测试及传热模型.暖通空调. 2005,35(3): 2~6
    60李芃,仇中柱,于立强.垂直埋管式土壤源热泵埋管周围土壤温度场的数值模拟.建筑热能通风空调. 2000, (4): 1~4
    61李芃,刘士龙,陈汝东.土壤源热泵的选择应用及设计中的几个问题.流体机械. 2005, 33(3): 73~76
    62曾和义,方肇洪.竖直埋管地热换热器的稳态温度场分析.山东建筑土程学院学报. 2002, 17(1): 1~6
    63曾和义,刁乃仁.地源热泵竖直埋管的有限长线热源模型.热能动力工程. 2003, 18(2): 166~170
    64陈卫翠,刘巧玲,贾立群等.高性能地埋管换热器钻孔回填材料的实验研究.暖通空调. 2006, 36(9): 1~6
    65于明志,彭晓峰,方肇洪等.基于线热源模型的地下岩土热物性测试方法.太阳能学报. 2006, 27(3): 279~283
    66范蕊,马最良.地埋管换热器传热模型的回顾与改进.暖通空调. 2006, 36(4):25~29
    67朱强,李新国,赵军.不同方式地下埋管换热器的实验研究.华北电力大学学报. 2004, 31(6): 61~64
    68赵军,王华军.密集型桩埋换热器管群周围土壤换热特性的数值模拟.暖通空调. 2006, 36(2):11~14
    69宋著坤,赵军,李新国等.地源热泵冬夏两季运行性能分析与实验研究.流体机械. 2006, 34(2): 55~59
    70张燕立,张新君,由世俊.土壤源热泵空调工程的设计与施工.制冷与空调. 2006, 6(2): 97~101
    71 M. Esen. Thermal Performance of a Solar-Aided Latent Heat Store Used for Space Heating by Heat Pump. Solar Energy. 2000,69(1): 15~25
    72 M. Esen. Thermal Performance of a Solar Cooker Integrated Vacuum-Tube Collector with Heat Pipes Containing Different Refrigerants. Solar Energy. 2004, 76(6): 751~757
    73 V. Badescu. Model of a Solar-Assisted Heat Pump System for Space Heating Integrating a Thermal Energy Storage Unit. Energy and Buildings. 2002, 34(7): 715~726
    74 V. Badescu. First and Second Law Analysis of a Solar Assisted Heat Pump Based Heating System. Energy Conversion and Management. 2003, 43(18): 2539~2552
    75 V. Badescu. Model of a Thermal Energy Storage Device Integrated into a Solar Assisted Heat Pump System for Space Heating. Energy Conversion and Management. 2003, 44(6): 1589~1604
    76 R. Yumrutas, M. Kunduz, T. Ayhan. Investigation of Thermal Performance of a Ground Coupled Heat Pump System with a Cylindrical Energy Storage Tank. International Journal of Energy Research. 2003, 27(11): 1051~1066
    77 R. Yumrutas, O. Kaska. Experimental Investigation of Thermal Performance of a Solar Assisted Heat Pump System with an Energy Storage. International Journal of Energy Research. 2004, 28(2): 163~175
    78 A. Ucar, M. Inalli. Thermal and Economical Analysis of a Central Solar Heating System with Underground Seasonal Storage in Turkey. Renewable Energy, 2005, 30(7): 1005~1019
    79 A. Ucar, M. Inalli. Exergoeconomic Analysis and Optimization of a Solar-Assisted Heating System for Residential buildings. Building and Environment, 2006, 41(11): 1551~1556
    80 O. Ozgener, A. Hepbasli. Experimental Performance Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System. Energy and Buildings.2005, 37(1): 101~110
    81 O. Ozgener, A. Hepbasli. Performance Analysis of a Solar-Assisted Ground-Source Heat Pump System for Greenhouse Heating: An Experimental Study, Building and Environment. 2005, 40(8): 1040~1050
    82 O. Ozgener, A. Hepbasli. Experimental Investigation of the Performance of a Solar-Assisted Ground-Source Heat Pump System for Greenhouse Heating, International Journal of Energy Research. 2005, 29(3): 217~231
    83 O. Ozgener, A. Hepbasli. A parametrical Study on the Energetic and Exergetic Assessment of a Solar-Assisted Vertical Ground-Source Heat Pump System Used for Heating a Greenhouse. Building and Environment. 2007, 42(1): 11~24
    84 O. Ozgener, A. Hepbasli. A Review on the Energy and Exergy Analysis of Solar Assisted Heat Pump Systems. Renewable and Sustainable Energy Reviews. 2007, 11(3): 482~496
    85 M. K. Ewert, D. J. Bergeron III. Development of a Solar Heat Pump for Space. International Solar Energy Conference, Solar Engineering 2005 - Proceedings of the 2005 International Solar Energy Conference. 2006: 707~712.
    86 F. Cuadros, F. Lopez-Rodriguez, C. Segador, A. Marcos. A Simple Procedure to Size Active Solar Heating Schemes for Low-Energy Building Design. Energy and Buildings. 2007, 39(1): 96~104
    87 J. Steinbock, D. Eijadi, T. McDougall. Net Zero Energy Building Case Study: Science House. ASHRAE Transactions, v 113 PART 1, ASHRAE Transactions-Papers Presented at the 2007 Winter Meeting of the American Society of Heating. Refrigerating and Air-Conditioning Engineers. 2007: 26~35
    88 M. Lundh, J. O. Dalenback. Swedish Solar Heated Residential Area with Seasonal Storage in Rock: Initial Evaluation. Renewable Energy. 2008, 33(4): 703~711
    89赵军,马一太,郑宗和等.太阳能热泵供热水系统的实验研究.太阳能学报. 1993, 14 (4): 306~310
    90赵军. R134a应用于直接膨胀式太阳能热泵系统.天津大学学报. 2000, 33(3): 302~305
    91 Y. H. Kuang, R. Z. Wang, L. Q. Yu. Experimental Study on Solar Assisted Heat Pump System for Heat Supply. Energy Conversion & management. 2003, 44(6): 1089~1098
    92旷玉辉,王如竹,于立强.太阳能热泵供暖系统的实验研究.太阳能学报. 2002, 23(4): 408~413
    93余延顺,廉乐明.寒冷地区太阳能一土壤源热泵系统运行方式的探讨.太阳能学报. 2003, 24(1): 111~115
    94余延顺,马最良,廉乐明.太阳能热泵系统运行工况的模拟研究.流体机械. 2004, 32(5): 65~69
    95 M. Y. Zheng, D. M. Wang, Y. S. Zhi. The Study of Heating and Cooling Technique with Solar Energy in Severe Cold Area. Energy and the Environment - Proceedings of the International Conference on Energy and the Environment, Shanghai, 2003: 186~191
    96 M. Y. Zheng, Y. S. Zhi, Y. Lin. Study of Heating and Cooling System with Solar Heat Soil Storage in Sever Cold Area, Proceedings of the 2003 4th International Symposium on Heating, Ventilating and Air Conditioning, Beijing, 2003: 1123~1128
    97韩宗伟,郑茂余,刘威等.严寒地区太阳能-土壤源热泵相变蓄热供暖系统.太阳能学报. 2006, 27(12): 214~1218
    98孙洲阳.太阳能+地源热泵暖通空调新技术研究.博士后出站报告.上海交通大学. 2005: 4~6
    99吴晓寒.地源热泵与太阳能集热器联合供暖系统研究及仿真分析.吉林大学博士论文. 2008: 42~45
    100杨卫波,施明恒,陈振乾.太阳能-U型埋管土壤蓄热特性数值模拟与实验验证.东南大学学报(自然科学版). 2008, 38(4): 651~656
    101张瑜.冷暖辐射地板系统的数值仿真与实验研究.青岛建筑工程学院硕士学位论文. 2004: 3~4
    102王海霞.板式地板辐射采暖传热性能的研究.天津大学硕士学位论文. 2005:6~8
    103胡松涛,张莉,王刚.太阳能-地源热泵与地板辐射空调系统联合运行方式探讨.暖通空调. 2005, 35(3): 41~53
    104张长兴,胡松涛,张瑜.地板辐射供暖与供冷系统换热能力的研究.住宅科技. 2006, 5: 22~26
    105闫晓娜.土壤热泵U型埋管换热器传热研究.南京理工大学硕士论文. 2006: 8~9
    106李雅昕.桩基式土壤源热泵管群换热及恢复特性的研究.同济大学硕士论文. 2007: 12~13
    107范蕊.土壤蓄冷与热泵集成系统地埋管热渗耦合理论与实验研究.哈尔滨工业大学博士论文.2006: 24~25
    108蒋建龙.土壤源热泵单U型垂直埋管换热器的传热研究和设计计算.浙江大学硕士论文. 2007: 26~27
    109 P. Cui, H. Yang, Z. Fang. Numerical Analysis and Experimental Validation of Heat Transfer in Ground Heat Exchangers in Alternative Operation Modes. Energy and Buildings. 2008, 40(6): 1060~1066
    110 G. Bandyopadhyay, W. Gosnold, M. Mann. Analytical and Semi-Analytical Solutions for Short-TimeTransient Response of Ground Heat Exchangers. Energy and Buildings, 2008, 40(10): 1816~1824
    111余延顺.土壤蓄冷与耦合热泵集成系统的蓄冷与释冷特性研究.哈尔滨工业大学博士论文. 2004: 33~40
    112王勖成,邵敏.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社. 2002: 421~438
    113王勖成.有限单元法.北京:清华大学出版社. 2003: 441~461
    114余延顺.寒区太阳能一土壤源热泵系统运行工况模拟研究.哈尔滨工业大学硕士论文. 2001: 19~22
    115程群英,罗明智,阳晴等.地源热泵及其相关问题讨论.建筑热能通风空调. 2005, 24(6): 30~32
    116余传辉.地下土壤导热系数计算方法及结果分析.吉林大学论文. 2006: 18~19
    117高青,余传辉.地下土壤导热系数简化柱热源模型确定方法.太阳能学报,2007,28(12):1402~1406
    118于明志,彭晓峰,方肇洪等.基于线热源模型的地下岩土热物性测试方法.太阳能学报. 2006, 27(3): 279~283
    119 N. Mattsson, G. Steinmann, L. Laloui. Advanced compact device for the in situ determination of geothermal characteristics of soils. Energy and Buildings. 2008, 40(7): 1344~1352
    120 Song Yan, Yao Yang, Na Wei. Impact of Soil Thermal Conductivity on Temperature Field of Soil Around Horizontal Buried Pipe in Ground-Source Heat Pump. Journal of Harbin Institute of Technology (New Series). 2007, 14( SUPPL.): 381~384
    121 B. G. Clarke, A. Agab, D. Nicholson. Model Specification to Determine Thermal Conductivity of Soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering. 2008, 161(3): 161~168
    122 http://www.thheat.com
    123毛会敏.土壤源热泵空调系统的设计与经济性分析.哈尔滨工业大学硕士论文. 2006: 22~23
    124韩宗伟.太阳能热泵潜热储能供暖系统性能研究.哈尔滨工业大学博士论文. 2008: 80~82
    125张洪敏.高效平板太阳能集热器盖板的热工性能实验研究.哈尔滨工业大学硕士论文. 2006: 14~15
    126叶琪.太阳能-土壤源热泵系统优化.哈尔滨工业大学硕士论文. 2008: 19~23
    127韩宗伟.太阳能-土壤源热泵相变蓄热供暖系统运行模式的实验研究.哈尔滨工业大学硕士论文. 2005: 56~58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700