用户名: 密码: 验证码:
新疆奇台绿洲土壤碱化特征及遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐渍土是指一系列受土体中盐碱成分作用的、包括各种盐土和碱土以及其他不同程度盐化和碱化的各种类型土壤的统称。新疆是我国土壤盐渍化面积最大的省份,程度重,类型多,有“世界盐碱土博物馆”之称。土壤盐渍化已成为绿洲——这一新疆人民赖以生存空间土地的主要退化原因之一。因此土壤盐渍化问题一直是新疆干旱区环境改善及可持续发展的战略问题和热点研究领域。碱化土与盐化土属于不同的土类,具有不同的理化特性、表现特征和发生发展机理。目前学者们的研究多集中于积盐严重的南疆地区,对于天山北坡大面积存在的碱化土壤研究较少。
     本文通过大量的野外调查与定点土壤、光谱、植被样本采集,以地理学、土壤学、环境学、生态学及遥感学理论为基础,以3S技术为手段,采用定性与定量相结合的方法,对奇台绿洲碱化土壤的理化特征、土壤碱化与环境因子的耦合关系、土壤碱化强度、不同尺度光谱对碱化土壤的响应以及碱化土壤的遥感监测进行了系统的探讨。
     在论文的第一章主要介绍了研究碱化土壤的目的、意义,总结了国内外对碱化土壤的研究进展,阐述了研究思路、研究内容及采用的技术方法。第二章对研究区概况、野外考察、数据采集及样本处理过程进行了详细说明。第三章在对土壤碱分进行实测分析的基础上,探讨了研究区碱化土壤的理化性质,并利用SRTM数据提取的地形信息研究了基于区域尺度地形因子的碱化土壤空间分异规律。第四章讨论了盐(碱)生植被盖度与各个土壤碱化指标的关系,分析不同土壤碱化程度对植物生长的影响,建立了基于盐(碱)生植被盖度的土壤碱化分级。第五章着重分析了端元、材料、像元三种不同尺度光谱反射率与土壤pH值之间的关系,进行了不同尺度的光谱转换,建立了碱化土壤的定量遥感监测模型。第六章对整个研究过程、主要成果和进展进行了概括和总结。
     主要研究成果与结论如下:
     (1)研究区土壤碱化强烈,土壤pH均值超过8.8,属苏打碱化土。研究区土壤碱化与盐化并存,在研究区西北角临近沙漠边缘的小范围区域内仍有积盐现象。
     区域尺度上,地形对当前碱化土壤空间分布格局起着主要作用,东南部高于740m高程的陡坡区为碱化区,西北角低于680m高程的缓坡区为积盐区,中间为脱盐碱化区。pH值随着海拔高度的上升而增加,盐分则随着海拔高度的增高而降低,碱化和盐化的演化趋势具有明显的相逆特征。高程与大部分碱(盐)指标呈极显著相关关系,其对碱、盐程度及各离子空间分异的影响大于坡度。
     (2)盐(碱)生植被盖度与土壤各碱化指标均呈极显著的负相关关系,其与土壤pH值的相关系数最高,达0.810,其次为钠碱化度ESP。土壤碱化程度是影响盐(碱)生植被盖度的主要因素,盐(碱)生植被盖度对土壤碱化强度具有良好的指示作用。基于盐(碱)生植被盖度并结合土壤碱化指标,建立了研究区的土壤碱化分级标准。该标准既符合研究区实际特点,也与国内外其他土壤碱化分级具有良好的对应。
     (3)分析碱化土壤的端元、材料及影像光谱响应特征并进行了相应的尺度转换。裸土的端元光谱与影像光谱拟合关系良好,R~2可达0.9627,但其与材料光谱的转换模型则相对复杂。利用回归分析方法分别建立了基于端元反射率和影像反射率的土壤碱化预测模型,二者对研究区以板结为特征的碱化土壤均具有良好的监测潜力。其中,端元反射率建模精度最高,多波段回归预测模型的判定系数R~2为0.873,可以快速、高精度地对土壤碱化程度进行估算。植被对TM影像反射率预测精度的影响较大,直接用TM反射率预测pH值精度不如端元反射率理想。材料光谱与土壤有机质关系良好,但与碱化土壤之间没有明显的相关关系。碱化程度对野外实际环境中土壤表面性状的影响是土壤碱化遥感监测的重要依据。
     (4)通过对碱化土壤的不同尺度光谱响应的对比分析,构建了基于pH-NDVI特征空间的土壤碱化遥感监测指数pHI。该指数对碱化土壤的提取精度达94%。pHI指数图像提取的pH值与实测值吻合较好,平均误差0.25个pH单位。利用pHI对研究区碱化土壤进行提取应用,弱碱化土和中度碱化土占荒地面积的84%,其中pH8.0~8.5的弱碱化土中游离的碱性盐Na_2CO_3和NaHCO_3较少,易于进行改良利用。如果能够解农业供水问题,该区耕地开发的潜力很大。
Saline-alkali soil is a general designation of a series of soil which is affected by saline-alkali components and includes all kinds of saline soil, sodic soil and soil with different degrees of alkalization and Salinization. Xinjiang has the largest area of saline-alkali soil hence is called as“the saline-alkali soil museum in the world”. Soil alkalinization and salinization have already become tone of the major land degradation reasons in oasis, the only land for the people to live in Xinjiang. The problem about soil alkalinization and salinization is also an issue related to the regional sustainable development and the environment improvement in Xinjiang’s arid areas. Hence soil alkalinization and salinization have always been a focused research field. Alkali soil and salty soil have different chemical and physical properties, land surface symptoms, occurrence and development mechanism, therefore they belong to different soil types. So far, in Xinjiang, studies on the soil salinization and alkalinization mostly focuson southern areas where salt is significantly accumulated in topsoil but very few on larger areas of alkalinized soil in the Northern Slope Area of Tianshan Mountain in Xinjiang
     Based on a large number of field investigations and soil, spectrum and vegetation samples collected from given spots, as well as the application of geography, agrology, environmentology, ecology and remote sensing theory, this thesis systematically discusses the physical and chemical characteristics of alkalinized soil, the correlations between soil alkalinization and environment factors, the subdivision of degree of soil alkalinization, the characteristic s of spectra of alkalinization soil in different scales and the investigation by remote sensing on the alkalinized soil in Qitai Oasis in Xinjiang by the 3S techniques and quantitative and qualitative method s.
     The first chapter mainly introduces the background and the purpose of the soil alkalinization study summarizes the domestic and international advances of soil alkalinization research, and then demonstrates author’s research concepts, research contents, research procedures and methods in detail. The second chapter primarily introduces general situations of the study area, and specifies the procedures of field investigations, data collection and sample tests. The third chapter discusses soil physical and chemical properties in the study area, investigates into the distribution of the alkali -saline soil and the correlation between this spatial pattern and the topographic factor extracted from SRTM data and analyzes the spatial variation and distribution based on the regional topographic factor using the data from monitoring the soil alkali content in Qitai oasis. The fourth part studies the relationship between halophyte coverage and soil alkalinization indices and builds the subdivision of the degree of soil alkalinization based on the restraining effect on halophyte from different levels of soil alkalinization. The fifth part focuses on the correlation between soil pH and spectrums in three different scale (field-measured spectrum,laboratory-measured spectrum and the image spectrum). A new quantitative remote sensing monitoring index pHI for soil alkalinization is built. The last chapter summarizes the whole thesis and lists the achievements, difficulties and prospect s of this study.
     Main conclusions and developments as follows:
     (1) Alkaline-earth in the study area presents a typical desalination-alkalinization feature. The average value of soil pH is more than 8.8, and the soil within the study area is belong to sodic alkali soil. The alkalinization and salinization of soil occurs simultaneously in the study area because a small area near the Gurbantunggut Desert still has the phenomenon that salt is being accumulating in topsoil.
     At a regional scale, topography plays an important role in the spatial distribution of the alkali -saline soil, and salt is accumulated within the slightly sloped area below the elevation of 680m. Alkalinization occurred in the steeply sloped area above 740m. With the altitude decreasing, the soil salt content increases and the PH value drops concurrently, so the evolvement of salination has a reversal pattern as alkalinization. Elevation has more impact on the soil salinization-alkalinization degree and the spatial distribution of ions of salt compared with slope.
     (2)There is a significant negative correlation between halophyte coverage and each soil alkalinization index. The correlation coefficient between halophyte coverage and soil pH is the greatest of 0.810 and the next highest is ESP. Soil alkalinization is the major restrained factor to halophyte coverage; therefore halophyte coverage could be a good indicator of the soil alkalinization level. Based on halophyte coverage, the subdivision of the degree of soil alkalinization is built and the degree standard has good response to other soil alkalinization degree standards in domestic and overseas.
     (3)Both the filed-measured reflectance and the image reflectance multivariate linear regression models were built to the evaluate soil alkalinization level. Filed-measured reflectance had good potential ability to rapidly and accurately estimating changes of the soil alkalinization and the model obtained the best effect with a R~2 of 0.873. If building model by TM reflectance directly, the accuracy of fitting is lower than the model of the filed-measured spectrum because of the vegetation distraction in the image spectrum. The Laboratory -measured spectrum is significantly negatively correlated to the soil OM, but not correlated to the soil pH.
     (4)From the analysis and comparison of the response characteristics of the spectrums in three different scales (field-measured spectrum,laboratory-measured spectrum and the image spectrum) of alkalinized soil, pH-NDVI space-based remote sensing synthesis index models for monitoring soil alkalinization was built. The result of extracting alkalinized soil shows a high accuracy of 94% by pHI method. The extracted pH from the image by pHI is in good agreement with the measured soil pH with the average error of 0.25 pH unit. The application of extracting alkalinized soil in the study area based on pHI covers the area of lightly alkalized soil and medium-alkalized soil that represent 84% of the total wasteland. The lightly alkalized soil with pH8.0~8.5 has little free Na_2CO_3 and NaHCO_3 , so it is easy regarding to improvement and utilization. If irrigation water supply problem can be solved, Qitai oasis will has great potential in ploughland developments.
引文
[1]李述刚,王周琼.荒漠碱土.乌鲁木齐:新疆人民出版社,1988.
    [2] Gedroiz K K. Zhur Opyt Agrou.1918 .
    [3] Kelley W P. Cation Exchange in Soils[M]. NewYork:Reinhold Publishing Corp. 1948.
    [4] Kelley W P.Alkai.I Soils[M]. New York:Reinhold Publishing Corp. 1951.
    [5] Babcock K L. Theory of The Chemical Properties of Soil Colloidal Systems at Equilibrium[J]. Hilgardia.1963,34: 417-542.
    [6] Glinka K D. Dokuchaev's ideas in the development of pedology and cognate sciences. First Int. Congr. Soil Sci. 1927, I: 116-136.
    [7] Gupta R K, Singh R R,and Abrol I P. Influence of Simultaneous Changes in Sodicity and ph on the Hydraulic Conductivity of an Alkali soil Under Rice Culture[J]. Soil Sci. 1988,147: 28-33.
    [8] Qadir M, Oster J D, Schubert S, et al. Phytoremediation of Sodic and Saline-Sodic Soils[J]. Advances in Agronomy. 2007, 96: 197-247.
    [9] Ilyas M, Qureshi R H, Qadir M A. Chemical Changes in a Saline-sodic Soil After Gypsum Application and Cropping[J]. Soil Technology. 1997, 10:247-260.
    [10] Pal D K, Bhattacharyya T, Ray SK, et al. Significance of Soil Modifiers (Ca-zeolites and Gypsum) in Naturally Degraded Vertisols of the Peninsular India in Redefining the Sodic Soils[J]. Geoderma. 2006,136:210-228.
    [11]熊毅.中国碱土问题[J].改良碱地月刊.1936,1(5):23-32.
    [12]熊毅.熊毅文集[M].北京:科学出版社,2003.
    [13]田兆顺.皖北“花碱土”的形成及其利用改良[J].土壤.1961,9: 19-30.
    [14]田兆顺,董汉章.华北平原瓦碱的特性和形成[J].土壤学报.1965,13(1):24-38.
    [15]田兆顺,董汉章.河西走廊镁质碱化盐渍土的初步研究[J].土壤.1977,5: 233-240.
    [16]俞仁培,杨道平,蔡阿兴等.瓦碱的形成与改良[J].土壤学报.1982,19(1):34-42.
    [17]俞仁培.黄淮海平原的碱化问题及其防治[J].土壤通报. 1983, (04):3-5.
    [18]俞仁培等.土壤碱化及其防治[M].北京:农业出版社,1984.
    [19]俞仁培,杨道平,蔡阿兴.内蒙呼盟草原碱化土壤的形成与分类的商榷[J].土壤通报.1984, (4): 145-148.
    [20]卢升高,俞仁培,王遵亲.黄淮海平原碱化土壤物理性质的研究[J].河北农学报.1985,10(3):38-42.
    [21]李述刚,王周琼.准噶尔盆地的荒漠碱化土壤及其改良[J].干旱区研究, 1987, (2):1-8.
    [22]马毅杰,李述刚,王周琼.风化煤对土壤胶体特性的影响[J].土壤学报, 1979,16(1):22-28.
    [23]顾国安,张连弟,黎泽.斌青藏高原碱土的发生类型[J].土壤学报.1992,29(4):442-446
    [24]桑以琳.内蒙古河套灌区碱化土壤的发生原因和特性[J].土壤学报.1996,(04) :398-404.
    [25]杨允菲,郑慧莹.松嫩平原碱斑进展演替实验群落的比较分析[J].植物生态学报.1998, 22(3): 214-221.
    [26]王力,石滨嘉夫,关胜寿等.黑龙江省安达市草地碱化后土壤物理性状变化[J].草业科学.2007,24 (10):19-25.
    [27]吴忠东,王全九.微咸水钠吸附比对土壤理化性质和入渗特性的影响研究[J].干旱地区农业研究2008,26(1):231-236.
    [28]罗金明,王永洁,邓伟等.浅地下水埋深微域尺度苏打盐渍土的积盐机理探讨[J].土壤学报.2010,47(2):238-245.
    [29]李彬,王志春,武恒.苏打碱化土壤碱化参数的干湿季节动态变化[J].土壤.2010,42(4):639-643.
    [30]李彬,王志春,梁正伟等.吉林省大安市苏打碱土盐化与碱化的关系[J].干旱地区农业研究.2007,25(2):151-155.
    [31]王全九,孙海燕,姚新华.滴灌条件下石膏配比对盐碱土水盐运移特征影响[J].农业工程学报2008,24(11):36-40.
    [32]孙海燕,王全九,彭立新等.滴灌施钙时间对盐碱土水盐运移特征研究[J].农业工程学报.2008,24(3):53-58.
    [33]孙海燕,王全九,刘建军.施钙浓度对滴灌盐碱土水盐运移特征研究[J].水土保持学报. 2008,22(1):20-23.
    [34]张海军,李跃进,陈昌和等.脱硫石膏改良碱土过程中特征值变化的研究[J].干旱区资源与环境.2007,21(7):165-168.
    [35]迟春明,王志春.沙粒对碱土饱和导水率和盐分淋洗的影响[J].水土保持学报.2009,23(1):99-102.
    [36]迟春明,王志春.松嫩平原盐碱土饱和浸提液与土水比1∶5浸提液间化学参数的换算关系[J].生态学杂志.2009,28(1):172-176.
    [37]理查兹,L.A.(厉兵译).盐碱土的鉴别和改良[M].北京:科学出版社.1965.
    [38] FAO/UNESO.Irrigation, Drainage and Salinity. 1973.
    [39] K H Northcote, skens K M. Australian Soil With Saline and Sodic properties.Commonwealth Sientific and Industrial Reserch Organization Australian.1972:6-9.
    [40] Agarwal,R R, Yadau J S P, Cupta R N. Saline and Alkali Soiles of India. Indian Council Agricultural Research New Delhi.1979.
    [41]李述刚,余其立,王周琼.荒漠碱化土壤水解性碱度的探讨[J].土壤学报, 1982,19(3) 311-314.
    [42]万洪富,俞仁培,王遵亲.黄淮海平原土壤碱化分级的初步研究[J].土壤学报.1983,20(2):129-139.
    [43]杨国荣,孟庆秋,王海岩.松嫩平原苏打盐渍土数值分类的初步研究[J]土壤学报,1986, 23(4): 291-298.
    [44]亢庆,于嵘,张增祥,等.土壤盐碱化遥感应用研究进展[J].遥感技术与应用.2005,20(4):447-454.
    [45] Singh A N, Kristof S J, Baumgardner M R. Delineating salt-affected Soils in the Gangetic Plain India by Digital Analysisof Landsat Data〔R〕. Purdue University Laboratory for Applications of Remote Sensing. Technical report 111477,1977.
    [46] Venkataratnam, L., 1980, Delineation and mapping of agricultural limitations/hazards inarid and semi-arid tropics using Landsat-MSS data: an Indian example. Proceedings of 14th International Symposium on Remote Sensing of Environment (Ann Arbor,Michigan: ERIM), pp. 905914.
    [47] Budd J T C. Remote Sensing of Salt Marsh Vegetation in theFirst Four Proposed Thematic Mapper Bands[J]. Interna-tional Journal of Remote Sensing, 1982, 3(2): 147-161.
    [48] Sommerfeldt T G, Thompson M D, Pront N A. Delineationand Mapping of Soil Salinity in Southern Alberta from Land-sat Data[J]. Canadian Journal of Remote Sensing, 1985, 10:104-118.
    [49] Sharma R C, Byhargava G P. Landsat Imagery for MappingSaline Soils and Wetlands in North-west India[J]. Interna-tional Journal of Remote Sensing, 1988, 9 (1):39-44.
    [50] Kalra N K, Joshi D C. Potentiality of Landsat, SPOT andIRS Satellite Imageries, for Recognition of Salt AffectedSoils in Indian Arid Zone[J]. International Journal of RemoteSensing, 1996, 17(15): 3001-3014.
    [51] Taylor G R, Mah A H,et al. Characterization of Saline Soils Using Airborne Radar Imagery[J]. Remote Sensing of Environment, 1996, 57(3):127-142.
    [52] Dwivedi R S, Sreenivas K. Delineation of Salt-affected Soils and Waterlogged Areas in the Indo- Gangetic Plains Using ERS-1C LISS-Ⅲ[J]. International Journal of Remote Sensing, 1998, 19(14): 2739-2751.
    [53] Sethi Madhurama, Dasog G. S, Van Lieshout, Arno et al. Salinity appraisal using IRS images in Shorapur Taluka, Upper Krishna Irrigation Project, Phase I, Gulbarga District, Karnataka, India[J]. International Journal of Remote Sensing, 2006,27:14, 2917- 2926
    [54] Mullen I C, Wilkinson K E, Cresswell R G, et al. Three-dimensional mapping of salt stores in the Murray-Darling Basin, Australia2. Calculating landscape salt loads from airborneelectromagnetic and laboratory data International Journal of Applied Earth Observation and Geoinformation. 2007, 9:103–115.
    [55] Metternichit G, Zinck J A. Spatial discrimination of salt-and sodium-affected soil surfaces[J]. International Journal of RemoteSensing, 1997, 18(12): 2571-2586
    [56] Dehaan R L,Taylor G R.Field-derived spectra of salinized Soils and vegetation as indicators of irrigation-induced soil salinization[J].Remote Sensing of Environment.2002,80:406- 418.
    [57] Dehaan R L,Taylor G R.Image-derived spectral endmembers as Indicators of salinisation[J]. 1nternational Journal of Remote Sensing.2003,24(4):775-794.
    [58] Silvastri S,Marani M,Settl J,et a1.Salt marsh vegetation rediometry Data analysis and scaling[J]. Remote Sensing of Environment.2002,80:473-482.
    [59] Csillag F, Pa′sztor L, Biehl L. Spectral band selection for the characterization of salinity status of soils[J].Remote Sensing of Environment, 1993, 43:231-242.
    [60] J. Farifteh, F. van der Meer, M. van der Meijde, et al. Spectral characteristics of salt-affected soils: Alaboratory experiment[J]. Geoderma.2008, 145, 196-206.
    [61] J. Farifteh, F. Van der Meer, C. Atzberger, et al. Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods (PLSR and ANN) [J]. Remote Sensing of Environment. 2007,110:59-78.
    [62] A. Volkan Bilgili, H.M. van Es, F. Akbas, et al. Visible-near infrared re?ectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey [J].Journal of Arid Environments. 2010, 74:229–238.
    [63] N. Fernandez-Buces, C. Siebe, S. Cramb, et al. Mapping soil salinity using a combined spectral response index for bare soil and vegetation:A case study in the former lake Texcoco, Mexico[J]. Journal of Arid Environments 2006,65 : 644-667.
    [64]曾志远.卫星图像土壤类型自动识别与制图研究:计算机分类及其结果的光谱学分析[J].土壤学报,1984,21(2):183-193.
    [65]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2001(4):12-15.
    [66]王文生,肖冬,王智.内蒙河套灌区土地盐碱动态遥感监测[J].遥感信息,1994,(1):42-46.
    [67]关元秀,刘高焕.区域土壤盐渍化遥感监测研究综述[J].遥感技术与应用.2001,1(1):40-44.
    [68]霍东民,张景雄,孙家.利用CBERS-1卫星数据进行盐碱地专题信息提取研究[J].国土资源遥感. 2001, 2(48):48-52.
    [69]许迪,王少丽,蔡林根等.利用NDVI指数识别作物及土壤盐碱分布的应用研究[J].灌溉排水学报.2003,22(6):5-8.
    [70]汤洁,林年丰,卞建民等.应用GIS-ANN进行土地盐碱化危险度评价—以吉林西部平原为例[J].自然灾害学报.2003,12(4):34-39.
    [71]王耿明,李达,王忠忠等.松辽平原盐碱土含盐量的遥感反演研究[J].水土保持研究. 2009, 16 (3): 235-237.
    [72]安永清,屈永华,高鸿永等.内蒙古河套灌区土壤盐碱化遥感监测方法研究[J]遥感技术与应用. 2008,23(3):316-322.
    [73]屈永华,段小亮,高鸿永等.内蒙古河套灌区土壤盐分光谱定量分析研究2009,29(5):1362-1366.
    [74]郗金标,张福锁,毛达如等.新疆盐渍土分布与盐生植物资源[J].土壤通报,2005, 36(3):299-303.
    [75]江红南,塔西甫拉提·特依拜,徐佑成,等.于田绿洲土壤盐渍化遥感监测研究[J].干旱区研究, 2007, 24(2): 168-173.
    [76]何祺胜,曹春香,塔西甫拉提·特依拜.星载雷达影像对盐渍地微观离子的响应研究[J].水土保持通报.2009,29(5):17-20.
    [77]李和平,田长彦,乔木等.新疆耕地盐渍土遥感信息解译标志及指标探讨[J].干旱地区农业研究.2009,27(2):218-222.
    [78]李会志,李新国,王影.基于遥感技术的开都河下游绿洲区土壤盐渍化动态监测研究[J].国土资源遥感.2010,(1):85-88.
    [79]张飞,塔西甫拉提·特依拜,丁建丽等.基于对应分析的土壤盐渍化现状特征及其与光谱关系研究[J].土壤学报.2009,46(3):513-519.
    [80]张飞,塔西甫拉提·特依拜,丁建丽等.渭干河-库车河三角洲绿洲土壤盐渍化现状特征及其与光谱的关系[J].环境科学研究.2009,22(2):227-235.
    [81]哈学萍,丁建丽,塔西甫拉提·特依拜等.基于SI-Albedo特征空间的土壤盐渍化遥感监测指数研究[J].土壤学报.2009,46(4):698-703.
    [82]哈学萍,丁建丽,塔西甫拉提·特依拜等.基于SI-Albed特征空间的干旱区盐渍化土壤信息提取研究[J].2009,46(3):381-390.
    [83]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    [84]梅安新,彭望琭,秦其明等.遥感导论[M].北京:高等教育出版社,2001.
    [85]吴秀芹,张洪岩,李瑞改等.ArcGIS9地理信息系统应用与实践[M].北京:清华大学出版社,2007.
    [86]陈世平.21世纪初期航天遥感技术发展展望[J].航天返回与遥感2001,22(1):20-26.
    [87]彭望琭.土壤盐渍化量化的遥感与GIS实验[J].遥感学报.1997,1 (3): 237-240.
    [88]汪潇,张增祥,赵晓丽等.遥感监测土壤水分研究综述[J].土壤学报.2007,44(1):157-163.
    [89]刘咏梅,杨勤科,汤国安.陕北黄土丘陵地区坡耕地遥感分类方法研究[J].水土保持通报.2004,24(4):51-54
    [90]亢庆,张增祥,赵晓丽.基于遥感技术的干旱区土壤分类研究[J].遥感学报.2008,12(1): 159-167.
    [91] Li X W, Wang J D, Gao F,et al. Accumulation of Spectral BRDF Knowledge for Quantitative Remote Sensing of Land Surfaces [A]. In Proceedings of the First International Symposium on Recentadvances in Quantitative Remote Sensing[C]. Spain, 2002.
    [92]万华伟,王锦地,屈永华等.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报2008/12(4):538-545.
    [93]苏理宏,李小文,黄裕霞.遥感尺度问题研究进展.地球科学进展. 2001,16(4):544-548.
    [94] A Savvides, R Corstanje , S J Baxter, B.G. Rawlins, R.M. Lark. The Relationship Between Diffuse Spectral Re?ectance of the Soil and Its Cation Exchange Capacity Is Scale-Dependent. Geoderma, 2010,154:353-358
    [95] Raymond E E Jongschaap, Remmie Booij. Spectral Measurements at Different Spatial Scales in Potato:Relating Leaf, Plant and Canopy Nitrogen Status. International Journal of Applied Earth Observation and Geoinformation. 2004,5 :205-218
    [96]鲁学军,周成虎,张洪岩,徐志刚.地理空间的尺度一结构分析模式探讨.地理科学进展.2004, 23(2):108-114.
    [97]孟斌,王劲峰.地理数据尺度转换方法研究进展.地理学报.2005,60(2):277-288.
    [98]吴骅,姜小光,习晓环,李传荣,李召良.两种普适性尺度转换方法比较与分析研究.遥感学报.2009,13(2):183-189.
    [99]汪自军,陈圣波,韩念龙,湛邵斌,吕航.地学尺度转换理论及方法研究.地理空间信息.2007,5(4):60-63.
    [100] Goetz A F H,Vane G,Solomon J E,et a1.Imaging spectroscopy for Earth remote sensing[J]. Science. 1985,228:1147-l153.
    [101]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [102] Priyabrata Santra, Rabi Narayan Sahoo, Bhabani Sankar Das, et al. Estimation of Soil Hydraulic Properties Using Proximal Spectral Re?ectance in Visible,Near-Infrared, and Shortwave-Infrared (VIS–NIR–SWIR) Region. Geoderma. 2009, 152:338-349.
    [103] Cristine L.S. Morgan, Travis H. Waiser, David J. Brown, et al. Simulated in Situ Characterization ofSoil Organic and Inorganic Carbon with Visible Near-Infrared Diffuse Re?ectance Spectroscopy. Geoderma 2009, 151:249-256.
    [104] R. Lugassi, E. Ben-Dor b, G. Eshel. A Spectral-Based Method for Reconstructing Spatial Distributions of Soil Surface Temperature During Simulated Fire Events. Remote Sensing of Environment. 2010, 114:322-331.
    [105]刘焕军,张柏,宋开山,等.基于室内光谱反射率的土壤线影响因素分析[J].遥感学报,2008, 12(1):119-127
    [106]周萍,王润生,阎柏琨等.高光谱遥感土壤有机质信息提取研究[J].地理科学进展.2008, 27(5):027-034.
    [107]徐金鸿,徐瑞松,苗莉.水分含量与红土野外光谱的定量分析[J].测绘科学2008,33(5):43-45.
    [108] Mathias Ulrich,Guido Grosse, Sabine Chabrillat, et al. Spectral Characterization of Periglacial Surfaces and Geomorphological Units in the Arctic Lena Delta Using field Spectrometry and Remote Sensing. Remote Sensing of Environment 2009,113: 1220-1235.
    [109]翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学.2006,26(3):369-375.
    [110]韩茜,熊黑钢.奇台县绿洲农田土壤盐渍化逆向演替过程[J].水土保持学报.2008,22(2):93-97.
    [111]付金花,熊黑钢.人类活动对奇台县地下水变化的影响[J].水资源与水工程学报2007,18(2):12-15.
    [112]韩春鲜,熊黑钢.奇台绿洲开发下的人地关系发展规律及可持续发展研究[J].新疆大学学报(自然科学版).2008,25(2):222-240. [113赵明燕,熊黑钢,陈西玫.新疆奇台县化肥施用量变化及其与粮食单产的关系[J].中国生态农业学报.2009,17(1):75-78.
    [114]宋文娟,熊黑钢,戚冉.新疆奇台县近42a气候变化特征分析[J].干旱区资源与环境.2009, 23(4):100-106.
    [115]于堃,熊黑钢,陆殿梅.新疆奇台绿洲地下水与生态景观关系研究[J].第四纪研究.2007, 27(5):880-888.
    [116]李宝富,熊黑钢,张建兵等.不同耕种时间下土壤剖面盐分动态变化规律及其影响因素研究[J].土壤学报2010,47(3):429-438.
    [117]熊黑钢,常春华,冒静.基于模糊综合评判的新疆奇台县农业水资源承载力分析[J].水资源与水工程学报.2010,21(4):38-42.
    [118]于言哲,熊黑钢.基于SD模型的新疆奇台县水资源的优化配置研究[J].干旱区资源与环境.2010,24(5):37-41.
    [119]李宝富,熊黑钢,张建兵等.两种植被覆盖度下土壤水分和盐分的空间变异性研究[J].新疆农业科学.2010.47(1):168-173.
    [120]龙桃,熊黑钢,李宝富等.微型蒸发器测量精度的影响因素试验[J].农业工程学报.2010, 26(5):21-26.
    [121]张建兵,熊黑钢,郭宇翔等.古尔班通古特沙漠南缘春季沙丘不同部位表层土壤水分空间变异性研究[J].水土保持研究.2010,17(2):125-130.
    [122]龙桃,熊黑钢,李宝富等.灌溉前后沙质裸地表层土壤蒸发量的时空变异性[J].干旱地区农业研究.2010,28(4):1-6.
    [123]龙桃,熊黑钢,张建兵等.不同降雨强度下的草地土壤蒸发试验[J].水土保持学报.2010, 24(6):240-245.
    [124]陈西玫,熊黑钢;赵明燕.新疆化肥利用的空间特征及增产潜力分析[J].中国生态农业学报.2009, 17(1):70-74.
    [125]陈西玫,熊黑钢,赵明燕.基于C-D函数的地下水动态变化对不同农作物产量和灌溉量的响应——以新疆奇台县平原井灌区为例[J].水土保持研究2009,16(4):137-141.
    [126]奇台县史志编纂委员会.奇台县志[M].乌鲁木齐:新疆大学出版社,1994.64-71,84-86.
    [127]昌吉回族自治州农业局.昌吉州土壤[M].乌鲁木齐:新疆科技卫生出版社,1993.13.
    [128]韩茜.新疆奇台县绿洲土壤特性空间变异及盐渍化逆向演替研究[D].新疆大学2008.
    [129]常春华.奇台县农业水资源评价与优化配置研究[D].新疆大学,2007.
    [130]宋文娟.新疆奇台县冰川波动与气候、水文变化研究[D].新疆大学,2008.
    [131]中国土壤学会.土壤农业化学常规分析方法[M] .北京:科学出版社,1983:45-56.
    [132]李慧,蔺启忠,王钦军等.基于小波包变换和数学形态学结合的光谱去噪方法研究[J].光谱学与光谱分析.2010,30(3):644-648.
    [133]谢伯承,薛绪掌,刘伟东等.基于包络线法对土壤光谱特征的提取及其分析[J].土壤学报2005, 42(1):171-175.
    [134]李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版). 2005, 35(4): 49-56.
    [135] John R. Jensen著,陈晓玲,龚威,李平湘等译.遥感数字影像处理导论[M].2007:216-232.
    [136] Liang Shunlin.Quantitative Remote Sensing of Land Surface[M]. New Jersey: john wiley & sons, inc. 2004, 25-71.
    [137] Vermote E F,Tanre D,Deuze J L,et a1.The Second Simulation of the Satellite Signal in the Solar Spectrum(6S), User’s Guide. France:Laboratoire d’Optique Atmospherique. 1997.
    [138]哈学萍.干旱区土壤盐渍化遥感监测模型构建研究[D].新疆大学,2009.
    [139] Lee T Y,Kaufman Y J.Non—Lambertian Efects on Remote Sensing of Surface Reflectance and Vegetation Index.IEEE Trans Geosci Remote Sensing,1986,GE·24:699-70.
    [140] Sonoyo Mukai.Atmospheric Corection of Remote Sensing Images of the Ocean Based on Multiple Scattering Calculations.IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):696-702.
    [141]田源.干旱区典型绿洲空间热环境遥感研究[D].新疆大学,2009.
    [142] Zhou S W, Zhang G Y, Zhang X. Exchange reaction between selenite and hydroxylion of variable charge soil surfaces I. Electrolyte species and pH effects. Pedosphere.2003, 13(3):227-232.
    [143]毛任钊,田魁祥,松本聪,等.盐渍土盐分指标及其与化学组成的关系.土壤,1997,(6):326-330.
    [144]郗金标,张福锁,田长彦著.新疆盐生植物.北京:科学出版社,2006.
    [145]王遵亲.中国盐渍土.北京:科学出版社,1993.
    [146]周洪华,陈亚宁,李卫红.新疆铁干里克绿洲水文过程对土壤盐渍化的影响.地理学报,2008,63(7):714-724
    [147]张飞,丁建丽,塔西甫拉提·特依拜,等.于旱区典型绿洲土壤盐渍化特征分析.草业学报,2007, 16(4):34-40.
    [148]王全九,王文焰,汪志荣,等.排水地段土壤盐分变化特征分析.土壤学报,2001,38(2):271-276.
    [149]牛宝茹.塔里木河上游表土积盐量遥感信息提取研究.土壤学报, 2005,42(4):674-677.
    [150]中国科学院新疆综合考察队.新疆土壤地理[M].北京:科学出版社, 1965.
    [151]新疆农业厅,新疆土壤普查办公室.新疆土壤[M].北京:科学出版社,1996.458-464.
    [152]于堃,熊黑钢,陆殿梅.新疆奇台绿洲地下水与生态景观关系研究[J].第四纪研究.2007, 27(5): 880-888.
    [153]姚荣江,杨劲松,刘广明,等.黄河三角洲地区典型地块土壤盐分空间变异特征研究[J].农业工程学报,2006,22(6):61-66.
    [154]闫业超,张树文,岳书平.东北川岗地形区SRTM数据质量评价.中国科学院研究生院学报,2008,25(1):41-46.
    [155]苏里坦,宋郁东,张展羽.新疆渭干河流域地下水含盐量的时空变异特征.地理学报.2003,(6): 854-860.
    [156]李法虎.土壤物理化学[M].北京:化学工业出版社,2006.236.
    [157]欧芷阳,苏志尧,叶永昌等.东莞地表植被对表层土壤化学特性的指示作用[J].生态学报.2009,29(2):984-992.
    [158]罗廷彬,任崴.新疆盐渍化土地种植耐盐小麦效应分析[J].中国生态农业学报.2001,9(4):102-103.
    [159]王芳,朱军,布如力等.盐胁迫对新疆两个小麦品种种子发芽及幼苗生长的影响[J].新疆农业大学学报.2007,30 (1):l-5.
    [160]郑重,张凤荣,马富裕等.基于棉花-水-盐生产函数的耕地盐碱化分级与评价[J].灌溉排水学报.2010,29(1):47-49.
    [161]赵振勇,王让会,尹传华等.天山南麓山前平原土壤盐分空间异质性对植物群落组成及结构的影响[J].干旱区地理.2007,30(6):839-845.
    [162]郗金标,张福锁,毛达如等.新疆盐生植物群落物种多样性及其分布规律的初步研究[J].林业科学.2006,42(10):6-12.
    [163]李从娟,马健,李彦.五种沙生植物根际土壤的盐分状况[J].生态学报.2009,29(9):4649-4655.
    [164]何雪芬,高翔,吕光辉等.艾比湖湿地自然保护区植物群落多样性对土壤理化因子的响应[J].新疆农业科学.2010,47 (5): 1018-1024.
    [165]顾峰雪,张远东,潘晓玲等.阜康绿洲土壤盐渍化与植物群落多样性的相关性分析[J].资源科学.2002,24(3):42-48
    [166]张飞,塔西甫拉提·特依拜,丁建丽等.干旱区土壤盐渍化及其对生态环境的损害评估-以新疆沙雅县为例[J].自然灾害学报.2009,18(4):55-62.
    [167]赵彦坤,张文胜,王幼宁等.高pH对植物生长发育的影响及其分子生物学研究进展[J].中国生态农业学报.2008,16(3):783-787.
    [168]黄立华,梁正伟,马红媛.移栽羊草在不同pH土壤上的生长反应及主要生理变化[J].中国草地学报.2008,30(3):42-47.
    [169]马红媛,梁正伟.不同pH值土壤及其浸提液对羊草种子萌发和幼苗生长的影响[J].植物学通报.2007,2 4(2):181-188.
    [170] B.A.柯夫达.土壤科学原理.北京:科学出版社,1983.
    [171]李子熙.干旱地区盐土和碱土分级分类指标的研究[J].土壤.1990, (3):157-158
    [172]杨道平,俞仁培.土壤物理性状与碱化土壤分级[J].土壤通报.1998,29(2):54-57,
    [173]王周琼,李述刚.准噶尔盆地温带荒漠土壤碱化分级的初步研究[J].土壤学报.1990,27(4):438-444.
    [174]赵秀芳,杨劲松,姚荣江.基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究[J].土壤学报.2010,47(3):422-428.
    [175]高志方.荒漠碱土代换性钠对小麦苗期生长的影响[J].干早区研究.1989, (1):50-56.
    [176]万洪富,杨劲松,俞仁培.黄淮海平原土壤碱化度计算方法的探讨[J].土壤.1991,(6):319-324.
    [177]张飞,丁建丽,塔西甫拉提·特依拜等.渭干河一库车河三角洲绿洲盐渍化地地物光谱数据分析[J].光谱学与光谱分析.2008,28(12):921-2926.
    [178]宋韬,鲍一丹,何勇.利用光谱数据快速检测土壤含水量的方法研究[J].光谱学与光谱分析.2009,29(3):675-677.
    [179] Ignacio Melendez-Pastor, Jose Navarro-Pedre?o, Ignacio Gómez, et al. Identifying optimal spectral bands to assess soil properties with VNIR radiometry in semi-arid soils.Geoderma.2008,1-7.
    [180]朱登胜,吴迪,宋海燕等.应用近红外光谱法测定土壤的有机质和pH值[J].农业工程学报.2008,24(6):196-199.
    [181]王璐,蔺启忠,贾东,等.基于反射光谱预测土壤重金属元素含量的研究[J].遥感学报.2007,11(6): 906-913.
    [182]中国科学院南京土壤研究所.中国标准土壤色卡,南京:南京出版社),1989.
    [183]梁顺林.定量遥感[M].北京:科学出版社.2009.
    [184]徐彬彬,季耿善,朱永豪.中国陆地背景和土壤光谱反射特性的地理分区的初步研究.环境遥感, 1991, 6(2):142-151
    [185]刘焕军,张柏,宋开山,等.基于室内光谱反射率的土壤线影响因素分析[J].遥感学报,2008, 12(1):119-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700