用户名: 密码: 验证码:
光纤光栅多参数传感理论技术研究及在地下工程灾害监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国现代化建设和可持续发展战略的实施,在交通、水利水电与矿山等领域正在或即将修建大量的隧道(洞)等地下工程,随着重大交通与水电工程向西部山区转移以及矿山采掘深度的增加,地下工程施工中所遭遇的水文地质条件日益复杂,突涌水、塌方等高风险地质灾害呈现上升趋势,造成了严重的人员伤亡与经济损失。在目前地下工程地质灾害监测技术相对落后的情况下,地质灾害的实时监测与预测已经成为亟待解决和突破的关键科技难题。光纤光栅传感技术的不断发展为解决该难题提供了可行的途径,但目前光纤光栅传感器种类少,传感系统功能简单、测量参数单一,且传感器信号提取及分析技术落后,不能有效剔除啁啾效应的影响,尚不能满足地下工程地质灾害实时监测与预测的需要。
     针对上述问题,本文以光纤Bragg光栅(fiber Bragg grating,简称FBG)传感理论与技术研究为突破口,以重大地下工程地质灾害模型试验为依托,在深入分析光纤光栅本征参数与应变分布对反射光谱特性影响的基础上,提出了基于光谱中心波长位置约束的光栅光谱重构理论及其改进遗传算法优化方法,实现了光纤光栅啁啾效应的快速准确识别与剔除,提出了传感器数值仿真优化设计方法,研制了高灵敏度渗压传感器、新型应变传感器、靶式流速传感器、微型位移传感器与多点位移传感器;构建了大容量、多参数光纤光栅实时监测网络,相关研究成果已在不同地下工程地质灾害模型试验中得到成功应用。本文的主要研究工作如下:
     (1)针对光纤光栅光谱特性同时受多个参数影响这一基础问题,基于光纤光栅传输矩阵理论及应变传感模型,开发了光纤光栅光谱仿真程序,揭示了光纤光栅本征参数及应变分布对反射光谱特性的影响规律,尤其是沿光栅的应变分布对光栅反射谱中心波长、反射率及带宽等因素的影响,通过两端固定压杆调谐光纤光栅试验,获得了光纤光栅在非均匀应变条件下的光栅反射谱,验证了光纤光栅数值分析的有效性,为光纤光栅参数重构与传感器研究奠定了理论基础。
     (2)针对以往光纤光栅参数重构尤其是应变分布重构效果差且收敛速度慢的难题,提出了基于中心波长位置约束的光纤光栅参数重构理论及其改进的遗传算法优化方法,解决了以往光纤光栅参数重构中未考虑中心波长相对位置而导致重构效果差的难题,显著改善了重构的非唯一性和置信度,开发了光栅本征参数与应变重构程序,系统的开展了光纤光栅参数重构数值试验,结合两端固定压杆调谐光纤光栅试验,验证了该重构方法的有效性、适用性和可操作性,形成了种光纤光栅参数精确重构方法。
     (3)针对光纤光栅传感器设计方法落后的现状,基于有限元数值分析方法,提出了光纤光栅传感器优化设计方法,构建了光纤光栅重构理论与标定试验相结合的光纤传感器优化设计平台。针对目前光纤传感器种类少、与周围介质匹配性差的难题,突破了光纤光栅传感技术用于渗压、流速等传感测量的技术瓶颈,采用基于有限元理论的光纤光栅传感器优化设计方法,研制了高灵敏度光纤光栅渗压传感器与靶式光纤光栅流速传感器,同时基于被测物体基体材料研制了与周围介质匹配性能好的光纤光栅应变传感器,开发了微型光纤光栅位移传感器与多点位移传感器,构建了适用于地下工程地质灾害实时监测与信息识别的新型传感器体系。
     (4)针对目前光纤传感系统简单、测量参数单一的难题,基于波分复用与空分复用理论,构建了多参数、大容量光纤光栅传感系统,并采用Labview与C++Builder开发了地下工程灾害实时监视与在线分析软件,实现了多元数据的同步采集与实时显示。
     (5)针对地下工程灾害监测中传感器灵敏度低、防水性能差的缺陷,将光纤光栅传感系统用于工程灾害关键物理参数的实时监测中。针对典型的地质灾害,开展了煤矿突涌水模型试验、隧道围岩稳定性模型试验与分区破裂模型试验等大型模型试验,揭示了温度、应变、位移、渗压、流速等参数对岩体的破坏过程尤其是灾害发生前兆信息的响应特征,建立了地下工程地质灾害前兆判别标准,形成了基于光纤传感技术的地下工程灾害实时监测与预测系统,对解决地下工程地质灾害的实时监测与预测难题具有重要的理论意义和工程价值。
As modernization construction and sustainable development strategy are carried out in China, a large number of tunnels (holes)and other underground engineering are being or are about to be constructed in the transportation, water conservancy and hydropower, mining and other areas. Since the major transportation and hydropower engineering turn to the western mountains and the depth of mining increases, the hydrogeological condition suffered by the underground engineering construction are increasingly complicated. As a result, more and more geological disasters such as sudden water inrush and collapse with high risk occur, which induce to serious casualties and economic losses. However, the technology of monitoring underground engineering geological hazards is relatively backward at present. It has become a key scientific problem to be solved that monitoring and forecasting the geological hazards real-timely. Fiber grating sensing technology provide a feasible approach to solve this problem. Unfortunately, since there are a few kinds of FBG sensors, and the system with simple function can monitor single parameter, in which signals extraction and analysis technology is poor and chirp effects could not be effectively removed, FBG sensing technology can not well satisfied with the needs of real-time monitoring and forecasting underground geological disasters currently.
     In response to above problems, regarding fiber Bragg grating sensing theory and technology as breakthrough in this dissertation, based on the significant underground engineering geological hazards model test, the influence of FBG intrinsic parameters and strain distribution on the reflective spectral characteristics is analyzed, and FBG parameters reconstruction theory based on central wavelength constraint and optimization method on the basis of improved genetic algorithm are both proposed. Therefore, fast recognition and elimination of FBG chirp effects is realized. The dissertation presents numerical simulation optimization design method of FBG sensors. Consequently, FBG seepage pressure sensors with high sensitivity, new FBG strain sensors, target-type FBG flow velocity sensors, micro FBG displacement sensor and multipoint FBG displacement sensors have been developed. FBG multi-parameter sensing system is also established and the system has been successfully used in the different underground engineering geological hazards model tests. The major research is expressed as followings:
     (1) According to the basic problem that FBG spectral characteristics is conditioned by multiple parameters, FBG spectral simulation program based on FBG transfer matrix theory and fiber grating strain sensing model has been developed. The influences of FBG intrinsic parameters and strain distribution on the spectral characteristics are disclosed. Especially, the influences of strain distribution on central wavelength, reflectivity, and bandwidth have been revealed. In tuning FBG by two ends fixed compression bar experiment, the reflection spectrums of FBG which is tuned by uneven strain is obtained, and the validity of FBG numerical analysis work is verified. As a result, the research lays a theory foundation for reconstruction of FBG parameters and study on FBG sensors.
     (2) In response to that traditional FBG parameters reconstruction theory and especial strain distribution reconstruction theory both have poor effect and slow convergence speed, FBG parameters reconstruction theory based on central wavelength constraint and optimization method on the basis of improved genetic algorithm is presented, which solves the difficult problem that the reconstruction theory has poor effect because of neglecting central wavelength and which significantly improves the non uniqueness and the confidence of reconstruction. FBG intrinsic parameters and strain reconstruction program has been developed, and parameters reconstruction numerical simulation experiments are comprehensively carried out. Through tuning FBG by two ends fixed compression bar experiment, the validity, applicability and practicability of the novel reconstructing method have been verified. Consequently, a novel method of accurately reconstructing FBG intrinsic parameters and strain distribution is generated.
     (3) In the current situation that the design technology of FBG sensor is backward, numerical simulation optimization design technology of FBG sensors based on finite element numerical analysis theory is presented. Optimization design platform for FBG sensors is established based on reconstruction theory and calibration experiments. For there are only a few kinds of FBG sensors which have poor matching ability with ambient medium, technological bottlenecks of measuring seepage pressure and flow velocity using FBG sensing technology are resolved. Based on the optimization design technology of FBG sensors adopting finite element theory, the FBG seepage pressure sensor with high sensitivity and target-type FBG flow velocity sensor are exploited. At the same time, FBG strain sensor based on matrix material of measured object is developed, which has good matching ability with ambient medium. The micro FBG displacement sensors and multipoint FBG displacement sensors are also designed. Ultimately, novel FBG sensor system suitable for monitoring underground engineering geological hazards and identifying information real-timely is constructed.
     (4) For the problem that FBG sensing system is simple and it can not monitor various parameters, FBG multi-parameter sensing system adopting wavelength division multiplexing and space division multiplexing technology is constructed. The software which can monitor underground engineering disasters real-timely and analysis information on-line is also developed based on Labview and C++Builder. As a result, it realizes synchronous acquisition and real-timely display of multivariate data.
     (5)According to the defects that the traditional FBG sensors used in underground engineering have low sensitivity and poor waterproof property, the FBG sensing system has been used to real-timely monitor key physical parameters of engineering disasters. Regarding to the typical geological disasters, coal mining water inrush model test, stability of tunnel surrounding rock model test, zonal disintegration model test and other full-scale model test are carried out. It reveals the influence of the parameters such as temperature, strain, displacement and seepage pressure on the damage process of the rock, and the especial response characteristics on the precursory information of hazard. Consequently, judging standard of underground engineering geological disasters precursor information has established, and underground engineering disasters real-timely monitoring and forecasting system based on the fiber grating sensing technology has formed. It has significant theory significance and engineering value to realize real-timely monitoring and forecasting underground engineering disasters.
引文
[1]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [2]束加庆.深埋隧洞工程区初始地应力场研究及围岩稳定分析[D].南京:河海大学,2006.
    [3]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].武汉:中国科学院研究生院武汉岩土力学研究所,2008.
    [4]袁风波,刘建,李蒲健,乔丽苹,李鹏.拉西瓦工程河谷区高地应力场反演与形成机理[J].岩土力学,2007,28(04):836-842.
    [5]朱维申,李勇,张磊,辛小丽,孙林锋,马庆松,陈五一,李杰,张罗彬.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(07):1308-1314.
    [6]张民庆,黄鸿健,张生学,吴军,李谢怀.宜万铁路马鹿箐隧道1·21突水突泥抢险治理技术[J].铁道工程学报,2008,(11):49-56.
    [7]金新锋,夏日元,梁彬.宜万铁路马鹿箐隧道岩溶突水来源分析[J].水文地质工程地质,2007,(02):71-74.
    [8]邬立,万军伟,陈刚,赵璐.宜万铁路野三关隧道“8.5”突水事故成因分析[J].中国岩溶,2009,28(02):212-218.
    [9]李兵.钻爆法海底隧道建设期工程安全风险分析及控制[D].北京:北京交通大学,2010.
    [10]黄明琦.海底隧道突涌水特点及施工风险管理[J].全国地下工程超前地质预报与灾害治
    理学术及技术研讨会论文集(Ⅲ)[C].中国山东青岛,2009.
    [11]丁浩,蒋树屏,李勇.控制排放的隧道防排水技术研究[J].岩土工程学报,2007,29(09):1398-1403.
    [12]石志龙,徐超.亚婆髻隧道施工监控量测与稳定分析[J].地下空间与工程学报,2010,6(03):526-531.
    [13]王汉鹏,李术才,郑学芬,朱维申.地质力学模型试验新技术研究进展及工程应用[J].岩土力学与工程学报,2009,28(z1):2765-2771.
    [14]陈陆望,白世伟,殷晓曦,赵瑜.坚硬岩体中马蹄形洞室岩爆破坏平面应变模型试验[J].岩土工程学报,2008,30(10):1520-1526.
    [15]赵瑜,卢义玉,陈浩.深埋隧道三心拱洞室平面应变模型试验研究[J].土木工程学报,2010,43(3):68-74.
    [16]AlanD.Kersey,Michae A.Davis, Heather J.Patrick, etal. Fiber Grating Sensors[J].Journal of Light wave Technology,1997,15(8):1442-1463.
    [17]Sungchul Kim,Seungwoo Kim,Jaejoong Kwon, et al. Fiber Bragg Grating Strain Sensor Demodulator Using a Chirped Fiber Grating[J]. IEEE Photonics Technology Letters,2001,13(8): 839-841.
    [18]Agostino Iadicicco,Andrea Cusano,Stefania Campopiano,et al. Thinned Fiber Bragg Gratings as Refractive Index Sensors[J]. IEEE Sensors Journal,2005,5(6):1288-1295.
    [19]W.Y. Li a,C.C. Chenga,Y.L. Lob. Investigation of Strain Transmission of Surface-bonded FBGs used as Strain Sensors [J]. Sensors and Actuators A,2009,149:201-207.
    [20]吴永红,晏启祥,丁睿等.反射式光纤水工渗压传感器的研究与实验[J].四川大学学报(工程科学版),2003,35(3):26-29.
    [21]William R. Allan,Zachary W. Graham,Jose R. Zayas,et al. Multiplexed Fiber Bragg Grating Interrogation System Using a Microelectrol mechanical Fabry-Perot Tunable Filter[J]. IEEE Sensors Journal,2009,9(8):937-943.
    [22]常天英,李东升,隋青美等.光纤光栅传感技术在分岔隧道模型中的实验研究[J].仪器仪表学报,2008,29(1):103-108.
    [23]刘金碹,柴敬,朱磊等.岩层变形检测的光纤光栅多点传感理论与工程应用[J].光学学报,2008,28(11):2143-2147.
    [24]王燕花.新型光纤传感系统的研究与实现[D].北京:北京交通大学,2009.
    [25]苗银萍.多功能、多参量、新型闪耀光纤光栅特性及应用研究[D].天津:南开大学,2009.
    [26]吴朝霞.基于光纤光栅的桥梁多参数传感技术及系统的研究[D].河北:燕山大学,2006.
    [27]Gong Y, Michael O L C, Hao J, et al. Extension of Sensing Distance in a ROTDR with An Optimized Fiber [J]. Optics Communications.2007,280(1):91-94.
    [28]Wang F, Bao X, Li Y, et al. Reverse Peak of Brillouin Spectrum in BOTDA Sensor[C]. Beijing, China:Proc. SPIE,2008, pp.71580J-71586J.
    [29]Si Zhi Yan, Lee Sheng Chyan. Performance Enhancement of BOTDR Fiber Optic Sensor for Oil and Gas Pipeline Monitoring. Original Research Article Optical Fiber Technology,2010, 16(2):100-109.
    [30]Yong Ding,Bin Shi, Dan Zhang. Data Processing in BOTDR Distributed Strain Measurement Based on Pattern Recognition Original Research Article[J].Optik-International Journal for Light and Electron Optics,2010,121(24):2234-2239.
    [31]A.R. Bahrampour,A. Moosavi,M. J. Bahrampour,L. Safaei. Spatial Resolution Enhancement in Fiber Raman Distributed Temperature Sensor by Employing ForWaRD Deconvolution Algorithm Original Research Article[J].Optical Fiber Technology,2011,17(2):128-134.
    [32]Ren-sheng SHEN, Rui TENG, Xiang-ping LI, Jin ZHANG, Dao-cheng XIA, Zhao-qi FAN, Yong-sen YU, Yu-shu ZHANG, Guo-tong DU. Electroless Nickel Plating and Electroplating on FBG Temperature Sensor Original Research Article[J].Chemical Research in Chinese Universities,2008,24(5):635-639.
    [33]Wentao Zhang, Fang Li, Yuliang Liu. FBG Pressure Sensor Based on the Double Shell Cylinder with Temperature Compensation Original Research Article[J].Measurement,2009, 42(3):408-411.
    [34]Tarun Kumar Gangopadhyay, Mousumi Majumder, Ashim Kumar Chakraborty, Asok Kumar Dikshit, and Dipak Kumar Bhattacharya. Fiber Bragg Grating Strain Sensor and Study of Its Packaging Material for Use in Critical Analysis on Steel Structure. Sensors and Actuators A, 2009,150:78-86.
    [35]Jun Hong Ng, Xiaoqun Zhou, Xiufeng Yang and Jianzhong Hao.A Simple Temperatu e-Insensitive Fiber Bragg Grating Displacement Sensor, Optics Communications,2007, 273:398-401.
    [36]K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki. Photosensitivity in Optical Fiber Waveguides:Application to Reflection Filter Fabrication. App.Phys. Lett.,1978,32:647-64.
    [37]B. S. Kawasaki, K.O. Hill, D. C. Johnson, and Y. Fujii. Narrow-band Bragg Reflectors in Optic Fibers. Opt. Lett,1978,3:66-68.
    [38]G. Meltz,W. W. Morey, W. H. Glenn. Fomration of Brgag Gratings in Optical Fibers by Transverse Holographic Method. Opt.Lett,1989,14:823-825.
    [39]R. M. Atkins, V. Mizrahi, T. Erdogan.248 Induced Vacuum UV Spectral Changes In Optical Fiber Perform Cores:Support for a Color Centre Model of Photosensitivity. Electronics Letters, 1993,29(4):385-387.
    [40]K.O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert.Bragg Gratings Fabricated in Monomode Photosensitivity Optical Fiber by UV Exposure Through a Phase Mask.Applied Physics Letters,1993,62(10):1035-1037.
    [41]M. Bernier, D. Faucher, R. Valee et al. Bragg Gratings Photo-Induced in ZBLAN Fibers by Femtosecond Pulses at 800 nm[J]. Opt. Lett.,2007,32(5):454-456.
    [42]W. W. Morey, G. Meltz, W. H. Glenn. Bragg Grating Temperature and Strain Sensor:Sixth Optical Fiber Sensor Conference [Z]. Paris, France:Springer,1989,526-531.
    [43]Chulhun Seo, Taesun Kim. Temperature Sensing with Different Coated Metals on Fiber Bragg Grating Sensors. Microwave And Optical Technology Letters,2001,21(3)162-165.
    [44]J. Canning, Lasers Photonics Rev.2 (4) (2008) 275 Wiley, USA./J. Canning, M. Stevenson, S. Bandyopadhyay, K. Cook, Sensors 8 (2008)1.
    [45]姜德生,郭明金,袁宏才,干维国.光纤Bragg光栅低温特性研究[J].光电子·激光,2004,15(6):660-662.
    [46]詹亚歌,向世清,何红,朱汝德,王向朝.光纤光栅高温传感器的研究[J].中国激光,2005,36(09):1235-1238
    [47]李阔,周振安,刘爱春等.一种高温下高灵敏光纤光栅温度传感器的制作方法[J].光学学报,2009,29(1):249-251.
    [48]Peter K.C. Chan, W. Jin, K.T. Lau, and et al. Multi-point Strain Measurement of Composite-bonded Concrete Materials with a RF-band FMCW Multiplexed FBG Sensor Array [J],2000,87, pp.19-25.
    [49]李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析[J].力学学报,2005,37(4):435-441.
    [50]兰玉文,刘波,罗建花.光纤光栅三维应力传感器的设计与实现3[J].光子学报,2009,38(3):656-659
    [51]Abdelfateh Kerrouche, William J.O. Boyle. Tong Sun.Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring[J]. IEEE Sensors Journal,2009,9(11):1456-1461.
    [52]张伟刚,刘艳格,王跃等.利用单光纤光栅实现力学量垂直感测的研究[J].中国激光,2003,30(1):71-74.
    [53]M. Noshad, H. Hedayati, A. Rostami. A Proposal for High-Precision Fiber Optic Displacement Sensor [J]. Proceedings of Asia-Pacific Microwave Conference 2006,2006.
    [54]H. Golnabi, P. Azimi. Design and Operation of a Double-Fiber Displacement Sensor [J]. Optics Communications,2008,281, pp.614-620. [55] Yong Zhao, Hua-wei Zhao, Xin-yuan Zhang. A Novel Double-Arched-Beam-Based Fiber Bragg Grating Sensor for Displacement Measurement[J]. IEEE Photonics Technology Letters, 2008,20(15):1296-1298.
    [56]Yang Zhang and Bai-Ou Guan. High-Sensitivity Distributed Bragg Reflector Fiber Laser Displacement Sensor[J]. IEEE Photonics Technology Letters,2009,21(5):280-282.
    [57]夏元友,芮瑞,梁磊等.光纤渗压传感器与公路软基监控试验研究[J].岩土工程学报,2005,27(2):162-166.
    [58]K. Bremer, E. Lewis, B. Moss, et al. Fabrication Of a High Temperature-Resistance Optical Fiber Micro Pressure Sensor [J].6th International Multi-Conference on Systems, Signals and Devices,2009, pp.978-982.
    [59]Dongcao Song, Zhanxiong Wei, Jilin Zou, et al. Pressure Sensor Based on Fiber Bragg Grating and Carbon Fiber Ribbon-Wound Composite Cylindrical Shell [J]. IEEE Sensor Journal, 2009,9(7):828-831.
    [60]Lucas J. Cashdollar, Kevin P. Chen. Fiber Bragg Grating Flow Sensors Powered by In-Fiber Light [J]. IEEE Sensor Journal,2005,5(6):1327-1331.
    [61]陈建军,张伟刚,涂勤昌,邹玉娇,赵天工,杜晓娜,董孝义.基于光纤光栅的高灵敏度流速传感器[J].光学学报,2006,26(8):1136-1139.
    [62]Leandro Grabarskil, Jean C. C. Silval,3, Eduardo Cacao, et al. Fiber Bragg Grating Temperature Sensors Used To Measure Flow In A Pipline[J]. SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC 2007),2007, pp.379-383.
    [63]J.WANG,Q.SUI, D.Feng,M.Jiang. Novel FBG Vibration Sensor Based on Matching Filter Demodulation, Proc.SPIE,2009,Vol.7283,pp.251-256.
    [64]Pieter L Swart,Anatoli A Chtcherbakov,A J van Wyk.Bragg Grating Sensor for Torsion and Temperature Measurements in Rotating Machinery [A].Proceedings of Photonics Asia 2004;Sensors and Imaging——5634volume[C].Beijing,China,2004
    [65]冯德军,开桂云,赵启大,董孝义.光纤布喇格光栅电流传感器研究(英文)[J].红外与毫米波学报,2001,20(04):241-243.
    [66]张智海,黄尚廉,张洁,金珠,王宁MOEMS光栅平动式光调制器的吸合电压分析与实验[J].仪器仪表学报,2009,30(07):1368-1372.
    [67]Daqing Tang, Dexing Yang, Yajun Jiang, Jianlin Zhao, Haiyan Wang, Shiquan Jiang.Fiber Loop Ring-down Optical Fiber Grating Gas Pressure Sensor Original Research Article[J].Optics and Lasers in Engineering,2010,48(12):1262-1265.
    [68]Zia-ur- Rehman, W. H. Shah. Domestic Processing Effects on Some Insoluble Dietary Fibre Components of Various Food Legumes[J]. Food Chemistry,2004,87(4):613-617.
    [69]李志全,许明妍,汤敬,陈颖,赵彦涛.光纤光栅传感系统信号解调技术的研究[J].应用光学,2005,26(4):36-41.
    [70]KerseyAD,DavisMA,PattiekHJetal.Fibergratingsensors[J].JLightwaveTechnology.1997,15(8 ):1442-1463
    [71]王静,冯德军,隋青美,姜明顺.光纤Bragg光栅传声器设计[J].仪表技术与传感器,2009,(10):10-12.
    [72]马玉玲.双光栅匹配解调系统研究[D].沈阳:沈阳工业大学,2009.
    [73]Kersey A.D.,Berkoff T.A., Morey W.W. Multiplexed Fiber Bragg Grating Strain-Sensor System with a Fiber Fabry-Perort Wavelength Filter. Opt.Lett.,1993,18(16):1370-1372.
    [74]Chuan Li, Yong-Gui Zhao, Hao Liu, Zhou Wan, Chen Zhang, Ning Rong. Monitoring second lining of Tunnel with Mounted Fiber Bragg Grating Strain Sensors.Automation in Construction,2008,17(5):641-644.
    [75]A. Kerrouche, W.J.O. Boyle, T. Sun, K.T.V. Grattan.Design and In-the-Field Performance Evaluation of Compact FBG Sensor System for Structural Health [J].Monitoring Applications, Sensors and Actuators A:Physical,2009,151(2):107-112.
    [76]Sinem Kaya, Ebru Mancuhan, Kurtul Kucukada. Modelling and Optimization of The Firing Zone of A Tunnel Kiln to Predict the Optimal Feed Locations and Mass Fluxes of the Fuel and Secondary Air[J].Applied Energy,2009,86(3):325-332.
    [77]虢红霞.基于光纤光栅的电力电缆温度在线监测系统研究[D].武汉:武汉理工大学,2010.
    [78]Gaozhi Xiao,Mrad.N., Fang Wu, Zhiyi Zhang, Fengguo Sun. Miniaturized Optical Fiber Sensor Interrogation System Employing Echelle Diffractive Gratings Demultiplexer for Potential Aerospace Applications [J].IEEE Sensors Journal,2008,8 (7):1202-1207.
    [79]SeeYenn Chong, Jung-Ryul Lee,Chang-YongYun,Hoon Sohn. Design of Copper/Carbon-Coated Fiber Bragg Grating Acoustic Sensor Net for Integrated Health Monitoring of Nuclear Power Plant Original Research Article[J].Nuclear Engineering and Design,2011,241(5): 1889-1898.
    [80]C.Z.Shi, N.Zeng, M.Zhang, Y.B.Liao and S.R.Lai. Adaptive simulated annealing algorithm for the fiber Bragg grating distributed strain sensing[J]. Optics Communications, 2003,226:167-173.
    [81]Yun Binfeng, Wang Yiping, Li Anmin, Cui Yiping. Simulated Annealing Evolutionary Algorithm for the Fibre Bragg Grating Distributed Strain Sensor. Measurement Science and Technology.2005, Vol.16,pp.2425-2430.
    [82]恽斌峰,吕昌贵,王著元,汪弋平,崔一平.非均匀应变场中光纤布拉格光栅的数值分析[J].光电子·激光,2006,(02):151-154.
    [83]恽斌峰.布拉格光纤光栅传感器理论与实验研究[D].南京:东南大学,2006.
    [84]Turan Erdogan,Fiber Grating SpectraJourcal Of Lightwave Technology,1997.15:1277-1994
    [85]Yariv A.Coupled-Mode Theory for Guided-Wave Optics.IEEE Journal of Quantum Electronics,1973,9:919-933.
    [86]Kogelnik H.Filter Response of Nonuniform Almost-Periodic Structures.Bell System Technical Journal,1976,55:109-126.
    [87]Yamada M,and Sakuda K. analysis of Almost-Periodic Distributed Feedback Slab Waveguide Via a Fundamental Matrix Approach. Applied Optics,1987,26:3474-3478.
    [88]Winick K A.Effective-index method and coupled mode theory for almost-periodic waveguide gratings:acomparison 1992(06).
    [89]K.A.Winick, J. E. Roman.Design of Corrugated Waveguide Filters by Fourier Transform Techniques[J].IEEEJ.QuantumElectron,1990,26(11):1918-1929.
    [90]E.Peral, J. Capmany, J.Marti. Iterative Solution to The GelFand-Levitan-Marchenko Coupled Equations and Application to Synthesis of Fiber Gratings[J].IEEEJ.Quantum Electron.1996,32 (12):2078-2084.
    [91]M. A. Muriel, J. Azana, A. Carballar. Fiber Grating Synthesis by Use of Time-Frequency Represent at Ions[J]. Opt. Lett.,1998,23(19):1526-1528.
    [92]R.Feced,M.N. Zervas, M. A. Muriel.An Efficient Inverse Scattering Algorithm for the Design of Non-uniform Fiber Bragg Gratings[J].IEEEJ.Quantum Electron.,1999,35(8):1105-1115.
    [93]J.Skaar,K. M. Risvik. A Genetic Algorithm for the Inverse Problem in Synthesis of Fiber Gratings[J].J.Lightwave Te chnol.,1998,16(10):1928-1932
    [94]Cormier,R. Boudreau, Sylvain T heriault. Real-Coded Genetic Algorithm for Bragg Grating Parameter Synthesis[J].J.Opt.Soc.Am.B,2001,18(12):1771-1776.
    [95]Apninder Gill,Kara Pet ers,Mi chel Studer.Genetic Algorithm for the Reconstruction of Bragg Grating Sensor Strain Profiles[J].Measurement Science and Technology,2004,15:1877-1884.
    [96]穆柯军,周晓军,任国荣,杨健君,周建华,兰岚.用遗传算法从时延特性重构光纤光栅参数[J].中国激光,2007,34(5):688-693.
    [97]Federico Casagrande, Paola Crespi,Anna Maria Grassi,and et al.From the Reflected Spectrum to the Properties of A Fiber Bragg Grating:A Genetic Algorithm Approach with Application to Distributed Strain Sensing.APPLIED OPTICS,2002,41(25):5238-5244.
    [98]P. Dong, J.Azan a, A. G. Kirk. Synthesis of Fiber Bragg Grating Parameters From Reflecti-vity by Means of a Simulated Annealing Algorithm[J].Opt.Commun.,2003,228(46):303-308.
    [99]胡顺仁,陈伟民.基于神经网络的光纤光栅应变传感器重构[J].光子报,2010,39(4):689-692.
    [100]施纯峥.基于宽谱光源的光纤布喇格光栅传感器解调技术的研究[D].北京:清华大学,2004.
    [101]A.Rostami and A.Yazdanpanah-GoharriziProgress. A New Method for Classification and Identification of Complex Fiber Bragg Grating Using Genetic Algorithm[J]. In Electromagnetics Research,2007,PIER 75,329-356.
    [102]文晓艳,余谦.基于差分演化算法的惆啾光纤光栅参数重构方法[J].仪器仪表学报,2008,29(10):2216-2219.
    [103]张荣祥,郑世杰,夏彦君,张绥远.支持向量回归算法在光纤光栅非均匀应变重构中的应用[J].光学学报,2008,28(8):1513-1518.
    [104]陈哲敏,陈军,舒睿俊.Bragg光纤光栅传感器内不均匀应力分布的模拟和重构[J].传感技术学报,2006,(06):2399-2404.
    [105]韦芙芽,刘洪武,付春林.基于量子粒子群优化算法的光纤光栅参数重构[J].中国激光,20]1,38(2):0205004-1-0205004-6.
    [106]韩子夜,薛星桥.地质灾害监测技术现状与发展趋势[J].中国地质灾害与防治学报,2005,16(3):138-141.
    [107]陈义军;刘长武;徐进;方延强;新型套管式同轴多点位移计及其在隧道围岩变形监测中的应用[J].岩土工程学报,2008,(07):1084-1089.
    [108]李保雄.黄土滑坡临滑预报的应变控制方法[J].中国地质灾害与防治学报,2003,14(02):28-30.
    [109]周德培.隧道结构蠕变性质的模型试验研究[J].西南交通大学学报,1993,(03):15-20.
    [110]MCCREARY R, MCGAUGHEY J, POTVIN Y, et al. Results From Microseismic Monitoring, Conventional Instrumentation, And Tomography Surveys in the Creation And Thinning of A Burst-Prone Sill Pillar[J].Pure and Applied Geophysics,1992,139(3/4):349-373.
    [111]MILEV A M, SPOTTISWOODE S M, RORKE A J, et al.Seismic Monitoring of a Simulated rock Burst on a wall of an Underground Tunnel [J]. Journal of the South African Insti-tute of Mining and Metallurgy,2001,101(5):253-260.
    [112]THEODORE I U, TRIFU C I. Recent Advances in Seismic Monitoring Technology at Canadian mines[J].Journal of Applied Geophysics,2000,45(4):225-237.
    [113]杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [114]姜福兴,叶根喜,王存文,张党育,关永强.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):1932-1938.
    [115]姜福兴,宋广东,孔令海,王存文.微地震波在煤矿岩层中的传播特征研究[J].岩石力学与工程学报,2009,28(supp 1):2674-2679.
    [116]陈炳瑞,冯夏庭,曾雄辉,肖亚勋,张照太,明华军,丰光亮.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报,2011,30(2):275-283.
    [117]徐奴文,唐春安,沙椿;梁正召,杨菊英,邹延延.锦屏一级水电站左岸边坡微震监测系统及其工程应用[J].岩石力学与工程学报,2010,29(5):915-925.
    [118]王新华,祁贵仲,赵玉林.断层失稳前的扩展及电阻率前兆[J].中国科学(B辑),1984,11:1026-1038.
    [119]杜学彬,叶青,马占虎,李宁,陈军营,谭大诚.强地震附近电阻率对称四极观测的探测深度[J].地球物理学报,2008,1(6):1943-1949.
    [120]葛宝堂,李德春.岩体电阻率观测技术预报顶板失稳的前景[J].中国矿业大学学报,1993,22(2):48-52.
    [121]Aristodemou E,THOMAS-BETTS A. DC Resistivity and Induced Polarization Investigatio-ns At a Waste Disposal Site and Its Environments[J].Journal of Applied Geophysics,2000,44:275-302.
    [122]Dominique Gibert,Florence Nicollin, Bruno Kergosien,Paul Bossart,Christophe Nussbaum, Agnes Grislin-Mouezy,Frederic Conil,Nasser Hoteit.Electrical Tomography Monitoring of the Exvaion Damaged Zone of the Gallery 04 In the Mont TerriRock Laboratory:Field Expeimets, odelling,and Relationship With Structural Geology[J].Applied ClayScience,2006,33:21-34.
    [123]盛东,吴荣新,曹煜.采煤面覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(9):1870-1875.
    [124]刘斌,李术才,李树忱,李利平.电阻率层析成像法监测系统在矿井突水模型试验中的应用研究[J].岩石力学与工程学报,2010,29(02):297-307.
    [125]Pierre Ferdinand,O. Ferragu, J.L. Lechien, B. Lescop,S.Magne, V. Marty, S. Rougeault, G. Kotrotsios, V. Neuman, Y. Depeursinge, J. B. Michel, M. VanUffelen, D. Varelas, H. Berthou, G. Pierre, Christine Renouf, Bertrand Jarret,Yves Verbandt, W. Stevens, M. R. H. Vcet and Duarte Toscano. Mine Operating Accurate Stability Control with Optical Fiber Sensing and Bragg Grating Technology:The European BRITEEURAM STABILOS Project. Journal Of Lightwave Technology,1995,13(7):1303-1313.
    [126]欧进萍,周智,武湛君,赵雪峰,莫淑华.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(01):45-49+64.
    [127]周智,李冀龙,欧进萍.埋入式光纤光栅界面应变传递机理与误差修正[J].哈尔滨工业大学学报,2006,38(01):49-55.
    [128]周智,何建平,吴源华,欧进萍.土木结构的光纤光栅与布里渊共线测试技术[J].土木工程学报,2010,43(03):111-118.
    [129]李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展[J].地震工程与工程振动,2002,22(06):76-83.
    [130]嵇雪蘅,李宏男,任亮,孙丽.光纤布拉格光栅传感器在钢架结构健康监测中的应用研究[J].防灾减灾工程学报,2008,28(01):43-48.
    [131]李宏男,孙丽,梁德志.光纤布拉格光栅传感器用于混凝土结构施工监测[J].建筑材料学报,2007,10(03):342-347.
    [132]丁勇,施斌,崔何亮,索文斌,刘杰.光纤传感网络在边坡稳定监测中的应用研究[J].岩土工程学报,2005,(03):338-342.
    [133]李焕强,孙红月,刘永莉,孙新民,尚岳全.光纤传感技术在边坡模型试验中的应用[J].岩石力学与工程学报,2008,27(08):1703-1708.
    [134]隋海波,施斌,张丹,王宝军,魏广庆,朴春德.边坡工程分布式光纤监测技术研究[J].岩石力学与工程学报,2008,27(S2):3725-3731.
    [135]裴华富,殷建华,朱鸿鹄,洪成雨,凡友华.基于光纤光栅传感技术的边坡原位测斜及稳定性评估方法[J].岩石力学与工程学报,,2010,29(08):1570-1576.
    [136]刘泉声,徐光苗,张志凌光纤测量技术在岩土工程中的应用[J].岩石力学与工程学报,2004,23(02):310-314.
    [137]林传年,刘泉声,高玮,肖春喜.光纤传感技术在锚杆轴力监测中的应用[J].岩土力学,2008,29(11):3161-3164.
    [138]施斌,徐学军,王镝,王霆,张丹,丁勇,徐洪钟,崔何亮.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报,2005,(15):2622-2628.
    [139]赵星光,邱海涛.光纤Bragg光栅传感技术在隧道监测中的应用[J].岩石力学与工程学报,2007,26(03):587-593.
    [140]柴敬,邱标,魏世明,李毅.岩层变形检测的植入式光纤Bragg光栅应变传递分析与应用[J].岩石力学与工程学报,2008,27(12):2551-2556.
    [141]陈朋超,李俊,刘建平,靳世久.光纤光栅埋地管道滑坡区监测技术及应用[J].岩土工程学报,2010,32(06):897-902.
    [142]朱鸿鹄;殷建华;张林;董建华;冯嘉伟;靳伟;大坝模型试验的光纤传感变形监测[J].岩石力学与工程学报,2008,27(06):1188-1194.
    [143]Peng Wei-bin. Wu De-long. Analysis of Response of Optical Fiber Bragg Grating sensors in Non-Homogeneous Strain Fields.Optical Technology,2003,3:188-191.
    [144]Shang tao.Shu xue-wen.Fiber Bragg Grating Reflective Spectrum Under Uneven Distributi-on Strain.Journal of HUAZHONG University of Science And Technology,2000,28:96-98. [145] Turan erdogan. Fiber Grating Spectra.Journal of Light wave Technology,1997,15:1277-1293.
    [146]朱四荣,谭敏峰.光纤布拉格光栅的横向效应研究[J].武汉理工大学学报,2005,27(9):7-9.
    [147]吴飞.基于光纤光栅的多力参数测量及信号分析技术的研究[D].河北:燕山大学,2007
    [148]罗跃纲,高凌霞,刘贵立等.材料力学[M].北京:科学出版社,2004.
    [149]杨东周.光纤光栅的两端固定压杆调谐技术研究[D].济南:山东大学,2010
    [150]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [151]刘福深,刘耀儒,杨强,王少立.基于改进遗传算法的拱坝位移反分析[J].岩石力学与工程学报,2005,24(23):4341-4345.
    [152]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西南交通大学出版社,2002.
    [153]刘波.遗传算法及其在通信中的应用[D].济南:山东大学,2009
    [154]王春莲.基于改进遗传算法的网格任务调度算法[D].济南:山东大学,2009
    [155]刘斌.基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究[D].济南:山东大学,2010
    [156]范淑梅.基于自适应遗传算法的航天器快速轨道机动研究[D].济南:山东大学,2008
    [157]轩辕思思.基于本体知识的产品配置求解技术研究[D].济南:山东大学,2009
    [158]马昕,宋锐,郭睿,李贻斌.基于免疫自适应遗传算法的机器人栅格地图融合[J].控制理论与应用,2009,26(09):1004-1008.
    [159]孙丽.光纤光栅传感技术与工程应用研究[D].大连:大连理工大学,2006
    [160]申人升.FBG的金属化封装及其传感应用技术研究[D].大连:大连理工大学,2008
    [161]梁德志,孙丽,黄昌铁,李宏男.埋入式FBG传感器应变传递的有限元计算与理论分析比较[J].沈阳建筑大学学报(自然科学版),2008,24(01):72-76.
    [162]孙丽,任学玲,周鹏,谷凡.温度与非轴向力对光纤光栅应变传递影响的分析[J].防灾减灾工程学报,2010,30(S]):231-234.
    [163]蒙富强.基于ANSYS的土石坝稳定渗流场的数值模拟[D].大连:大连理工大学,2006
    [164]成大先.机械设计手册[M].北京:化学工业出版社,2004:7-179~7-182.
    [165]张鹏,阎阔,孙晓翠.基于点对多点波长复用/解复用的CWDM/TDM-PON结构[J].光通信技术,2007,(04):12-15.
    [166]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社,2007.
    [167]M.A.Davis. D.G.Bellemore. MA Putam. et al. Interrogation of 60 Fiber Bragg Grating Sensors with Microstrain Resolution Capacity.Electronic Letters,1996,32,1393-1394.
    [168]Peng peng-chun,lin jia-he,Intensity and Wave length-Division Multiplexing FBG Sensor System Using a Tunable Multiport Fiber Ring Laser[J].Photonics Technology Letters, IEEE,2004, 16(1):230-232.
    [169]张记龙,王鹏,王志斌,李晓,王智文.基于空分复用的矿井瓦斯浓度光纤检测网络研究[J].光谱学与光谱分析,2010,30(06):1722-1726.
    [170]王玉宝,兰海军.基于光纤布拉格光栅波/时分复用传感网络研究[J].光学学报,2010,30(08):2196-2201.
    [171]《滑坡模型试验理论及其应用》罗先启,葛修润.北京:水利水电出版社,2008.
    [172]李仲奎,卢达溶,洪亮,刘军.大型地下洞室群三维地质力学模型试验中隐蔽开挖模拟系统的研究和设计[J].岩石力学与工程学报,2004,23(02):181-186.
    [173]朱维申,张乾兵,李勇,孙林锋,张磊,郑文华.真三轴荷载条件下大型地质力学模型试验系统的研制及其应用[J].岩石力学与工程学报,2010,29(01):1-7.
    [174]王静,刘斌,隋青美,李术才,李树忱,李利平.新型FBG渗压传感器在隧道涌水模型中的应用[J].光电子·激光,2009,20(10):1286-1289.
    [175]李树忱,冯现大,李术才,李利平,袁超.矿井顶板突水模型试验多场信息的归一化处理方法[J].煤炭学报,2011,36(03):447-451.
    [176]李青锋,王卫军,彭文庆,彭刚.断层采动活化对南方煤矿岩溶突水影响研究[J].岩石力学与工程学报,2010,(S1):3417-3424.
    [177]李利平.高风险岩溶隧道突水灾变演化机理及其应用研究[博士学位论文][D].济南:山东大学,2009.
    [178]李术才,李利平,李树忱,冯现大,李国莹,刘斌,王静,许振浩.地下工程突涌水物理模拟试验系统的研制及应用[J].采矿与安全工程学报,2010,27(03):299-304.
    [179]倪绍虎,肖明.基于围岩松动圈的地下工程参数场位移反分析[J].岩石力学与工程学报,2009,28(07):1439-1446.
    [180]靖洪文,李元海,梁军起,于德成.钻孔摄像测试围岩松动圈的机理与实践[J].中国矿业大学学报,2009,38(05):645-649+669.
    [181]陈旭光,张强勇,杨文东,李术才,刘德军,王汉鹏.深部巷道围岩分区破裂现象的试验与现场监测对比分析研究[J].岩土工程学报,2011,33(01):70-76.
    [182]张强勇,陈旭光,林波,刘德军,张宁.深部巷道围岩分区破裂三维地质力学模型试验研究[J].岩石力学与工程学报,2009,28(09):1757-1766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700