用户名: 密码: 验证码:
高精度绝对重力仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重力场是反映地球内部物质结构及其变迁的地球物理基本场,高精度绝对重力观测资料是地震监测预报、地球科学研究、资源勘探等领域研究的基础。国际上虽然很多国家开展了对绝对重力观测技术的探索,但实际上仅有美国Micro-G公司生产的FG5和A10两种类型的绝对重力仪实现了实用化,而且对我国施行出口管制,价格昂贵,维修周期长。我国虽然在二十世纪七八十年代由中国计量科学研究院的专家推出了与国际测量精度水平相当的NIM-Ⅰ和NIM-Ⅱ两种绝对重力仪,但仅停留在实验样机阶段,未能形成产品。同时,随着近年来我国在时间基准、长度基准、高精度数字化采集与控制、宽频带高精度振动测量技术等领域的飞速发展,使得研究具有自主知识产权的高精度绝对重力仪成为可能。
     本文首先对绝对重力仪研究的国内外发展动态做了综合性描述,然后针对设计中可能出现的误差源及其影响水平进行量化估计,主要集中以下三个关键技术进行研究:
     1、落体伺服控制技术研究。利用数字控制技术,实现了对落体控制的精确度和稳定性的要求。通过对同轴齿轮系统、拖架理论运动曲线的设计,确定了电机的动作过程。通过对落体控制机构的理论计算,确定了伺服电机的容量。从而在最小化系统自振的前提下,解决了落体的伺服跟踪技术;
     2、落体轨迹重建算法与振动干扰抑制技术研究。利用经过外部铷原子钟同步的高速数字化仪对光电接收器输出的干涉带信号进行采样,得到了数字化的干涉带信号。利用数字信号处理技术,提取干涉带上包含的落体相对于参考棱镜的位置和时间信息。这部分经过误差模拟计算表明,其平均误差为0.00052微伽。同时利用与干涉带信号同步采集的高精度、宽频带参考棱镜的振动信号,开发了一套振动干扰的抑制算法。实验证明该算法可以补偿地面振动带来的系统偏差和测量精度。通过本部分的研究,解决了高精度重力加速度的计算方法问题。
     3、干涉测量的误差补偿技术研究。通过对理想平面上反射镜对光线平行性的影响、分光镜第一面分光比的确定、光线垂直性调节技术分析以及高精度落体的有限元法设计等方面的理论分析,确定了干涉测量系统中的误差源及其对测量结果的影响水平。在实际的设计中根据这部分的分析,确定了整套干涉测量系统的测量光路,解决了绝对重力仪中的高精度干涉测量问题。
     通过对以上三个关键技术的分析研究,笔者所属的研究团队实现了实验样机的构建,通过在自家疃国家重力基准点的误差实验,确定其测量系统偏差为-55微伽(未经误差修正),2小时测量精度优于10微伽。基本实现了高精度绝对重力观测的设计目标,同时也为下-步进行更高精度的绝对重力仪的设计和实验样机的产品化定型准备了相关的关键技术。
Gravitational field is one of the Earth's basic fields which reflects the internal structure and change of the Earth. High precise absolute gravitate observation is the base to research the Earthquake Prediction, Solid Earth Sciences and Exploration. Although many countries have begun to design their own absolute gravitate gravimeter (AG), only the U.S.A has the breakthrough of key technologies of AG and formed their own products, for example the FG5, A10 and others, But these products are expensive and Export Control by the U.S.A, and also have a very long period to repair. Our country is one of countries who began to develop the absolute gravimeter at the first time. Last century, the NIM-Ⅰand NIM-Ⅱabsolute, which were developed by the National Institute of Metrology P.R.China, have got the High-tech level in the International Comparison of Absolute Gravimeters. But because of the investment, technology of Machining and electronics and information technology, our country has not developed our brand of the absolute gravimeter. As the progress of the precision of Time Base, Length Base, high precise digitizer and Precision Control, broadband, high precise vibration monitoring technology, it is possible to solve the key technical difficulties and develop our own high precise AG.
     First of all, this paper comprehensive describes the developments of AG and then quantitative estimates the possible error sources. The whole research focus on these three kinds of key technologies: First, the study on the servo controlling of the free-fall body (FB). By using the digital control technology, we achieved the requirements of precise and stability in controlling the FB. By designing of the Coaxial Gear System and the theory motion curve, the motion of the servo motor was identified. By the calculation of the mechanism of FB servo controlling, the motor power was identified. So, on the condition of minimizing the system vibration, we successfully solve technology in the FB Servo Tracking.
     Second, the study on the algorithm of rebuilding the trace of FB and the technology of the disturbance inhibition. The digital interference signal, which used to get the Time and distance coordinates of the FB's trace by using the digital signal processing, can be got from the high speed digitizer. And the time base of the digitizer is provided by the Rubidium Atomic Clock. The error simulation confirmed the truth that the mean error of this algorithm is 0.0005μGal. And then, we got the vibration signal of the reference prism which was synchronously collected of the digitizer to develop a new algorithm to inhibit the disturbance which can introduce the error in the measurement result of AG.
     Third, the study on the compensating the error of interferometry. In this section, the influence of the mirrors to the light parallelism in the ideal plane, the study of the splitting ratio of the first side of the beam splitter, the theory of the adjustment of the light vertical were studied and the errors coming from these units have been confirmed. These studies also identified the design ideas in the interferometry system, and solved the high precise measurement of AG.
     Through the study of these three sections, we built the experimental prototype successfully. After the error experiments in the international absolute gravity reference point, in Beijing national geophysics observatory, the prototype's systematic bias is-55μGal(no Error Correction), the precision is less than 10μGal during the 2 hours measurements. And we also own the ability to design the even more precision AG.
引文
ADINA中国代表处2006. ADINA入门手册[M]. http://www.adina.com.cn/main_download.htm;
    陈立群,戈新生等.理论力学[M].2010.北京.清华大学出版社:28-30
    程力,张雅杰,蔡体菁.2007.重力辅助导航匹配区域选择准则[J].中国惯性技术学报,15(5):559-563
    郭允晟,方永源.1982.符合原理在激光绝对重力仪中的应用.计量学报.3(4):259-266
    郭有光,李德禧,黄大伦等.1990.高精度绝对重力仪观测研究.地球物理学报.33(4):447-453
    高景龙.1993.NIM-3型新的轻小高精度可移式绝对重力仪.测绘学报.22(3):223-229.
    郭有光,黄大伦,方永源等.1998.中国NIM型绝对重力仪及国际绝对重力仪比对.现代计量测试.6:12-16.
    郭有光,黄大伦,方永源等.2000.第五次国际绝对重力仪比对(ICAG'97)[J].现代计量测试.6:25-28
    郭吉坦.2002.复杂性体转动惯量计算方法的研究[J].大连铁道学院学报.23(1):1-7;
    郭有光,钟斌,边少峰.2003.地球重力场确定与重力场匹配导航[J].海洋测绘,23(5):61-64
    黄健,鲜浩等.2009.角锥棱镜的误差引起的反射光束相位误差分析[J].光学学报.29(7):1951-1955
    籍利平,李丹.2002.原子干涉仪—一种新型重力仪[J].装备园地.4:32-36
    匡萃方,冯其波等.2003.用矢量方法分析角锥棱镜直角误差对其光路反射特性的影响[J].光学仪器.25(4):55-58
    刘栋勋,刘文泰.1984,重力预报地震动态.四川地震,01:27-31
    申重阳,李辉,孙少安等,2009,重力场动态变化与汶川Ms8.0地震孕育过程.地球物理学报,52(10):2547-2557
    钱进,刘忠有,张小平等.2005.实用型633nm碘稳定He-Ne激光系统特性的实验研究[C].2005国家安全地球物理学术研讨会.西安,中国地球物理学会,120-124
    钱进,刘忠有,张小平等.一种新型的碘稳定633nm He-Ne激光系统[J].计量学报.2008,29(1):10-13
    王勇,张为民等.2004.重复绝对重力测量观测的滇西地区和拉萨点的重力变化及其意义.地 球物理学报.47(1):95-100
    王勇,张为民.中国大陆绝对重力测量及在地球动力学中的作用[A].《大地测量与地球动力学进展》论文集.2004年.10
    王晓兵,张伟明,钟敏.2009.净月潭水库蓄水对长春基准站绝对重力变化的影响[J].大地测量与地球动力学.30(5):72-75
    叶声华.激光在精密计量中的应用[M].1980.北京,机械工业出版社
    游泽霖,王晓权,孙贵荣.1985.我国一些绝对重力点精度的初步评价.地壳形变与地震,5(1):1-13
    徐家骅.计量工程光学[M].1981.北京.机械工业出版社:139-144
    郁道银,谈恒英.工程光学[M].1999.北京.机械工业出版社:41-46
    张昌达.2000.利用原子干涉测量重力加速度[J].物探与化探.24(5):321-326
    张赤军,张伟民.2007.空气阻力与科里奥利力对绝对重力观测的影响[J].大地测量与地球动力学.27(1):77-103
    张善法,孟令顺,杜晓娟等.2009.高精度重力测量在金矿采空区探测中的应用研究[J].地球物理学进展.24(2):590-595
    祝意青,郭树松,刘芳.2010.攀枝花6.1、姚安6.0级地震前后区域重力场变化.大地测量与地球动力学.30(4):8-11
    A. Sakuma.1984. Present Status of the Absolute Measurement of Gravitational Acceleratiohn, Natl. Bur. Stand (U.S.), Spec. Publ.617:405-409.
    A. Peter, K.Y. Chung, SChu.1999. Measurement of Gravitational Acdeleration by Dropping Atoms. Nature.400(6747):849-852.
    A Peter, K,Y Chung, SChu.2001. High-precision Gravity Measurements Using Atom Interferometry. Metrologia.38:25-61.
    A Germak, S Desogus and C Origlia.2002. Interferometer for the IMGC rise-and-fall absolute gravimeter[J]. Metrologia.39(5):471-475
    Ch Rothleitner, S Svitlov, H Merimeche, etc..2009. Development of new free-fall absolute gravimeters. Metrologia.46:283-297.
    D van Westrum, T M Niebauer.2003. The diffraction correction for absolute gravimeters[J]. Metrologia.40:258-263
    G D'Agostino, A Germak, S Desogus, C Origlia and G Barbato. A method to estimate the time-position coordinates of a free-falling test-mass in absolute gravimetry[J]. INSTITUTE OF PHYSICS PUBLISHING.2005,42:233-238
    Giancarlo D'Agostino, Sergio Desogus, Alessandro Germak,.etc.2008. The new IMGC-02 transportable absolute gravimeter:measurement apparatus and applications in geophysics and volcanology. ANNALS OF GEOPHYSICS.51(1):39-49.
    Fischer, J., Gerasimov, S., Hill, K., et al.2007. Preparative steps towards the new definition of the kelvin in terms of the boltzmann constant. International Journal of Thermophysics, 28:1753-1765
    FG5 Manual,2007, http://www.microglacoste.com/fg5.php
    Hideo HANADA,Tsuneya TSUBOKAWA, Masatsugu OOE, and letsune TSUBOKAWA.1982. ABSULTUE DETERMINATION OF GRAVITY WITH TRANSPORTABLE APPARATUS. Proceedings of the General Meeting of the IAG, Tokyo,7-15:358-365.
    Hanada H, Tsubokawa T, Tsuruta S.1996. Possible large systematic error source in absolute gravimetry. Metrologia,33:155-160
    I. M. Smith, D. V. Griffiths.2004. Programming the Finite Element Method(FOURTH EDITION)[M]. John Wiley & Sons, Ltd;
    I. Marson, J. E. Faller, G. Cerutti, et al.1995. Fourth International Comparison of Absolute Gravimeters[J]. Metrologia.32:137-144
    Ivica Vilibic.1997. Global sea level rise? New techniques for the absolute sea level measurement. GEOFIZIKA,14:119-131
    Jean-Marie Chartier, Jacques Labot,Glenn Sasagawa, et al.1993. A Portable Iodine Stabilized He-Ne Laser and its Use in an Absolute Gravimeter[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT.42(2):420-422
    J. Liard, C. Gagnon.2002. The new A-10 absolute gravimeter at the 2001 International Comparison of Absolute Gravimeters[J]. Metrologia.39:477-483
    J E Faller, A LVitouchiking.2003. Prospects For Portable Absolute Garvimeter.EARTH AND ENVIRONMENTAL SCIENCE.129(7):276-270.
    J E Faller, A. L.Vitouchiking.2005. A New Small Cam-Driven Absolute Gravimeter. Journal of Geodynamics.35:567-572.
    J. E. Faller.2005. The Measurement of Little g:A Fertile Ground for Precision Measurement Science. Journal of Research of the National Institute of standards and Technology. 110:559-581
    Monchalin J P, Kelly M J, Thomas J E et al..1981. Accurate laser wavelength measurement with a precision two-beam scanning Michelson interferometer[J]. Appl. Opt.20:736-757
    M.M.S.Gualini.2001. A new modified Michelson's interferometer and its applications in metrology as new miniaturized absolute portable gravimeter[J]. Proceedings of SPIE.4401: 318-328
    Niebauer T. M., Sasagawa G.S., Faller J.E., et al.1995. A new generation of absolute gravimeters. Metrologia.32:159-180
    Rothleitner C.2008. Ultra-high precision, absolute, earth gravity measurements. PhD Thesis University of Erlangen-Nuremberg. http://www.opus.ub.uni-erlangen.de/opus/volltexte/2008/994
    Sakuma A.,1984.Present status of the absolute measurement of gravimeter gravitational acceleration, NBS(U.S), Spcc, public.,617:387-404.
    Simon D.P. Williams, Trevor F. Baker, Graham Jeffries.2001. Absolute Gravity Measurements at UK Tide Gauges[J].GEOPHYSICAL RESEARCH LETTERS,28(12):2317-2320.
    T. M. Niebauer, G. S. Sasagawa, J. E. Faller.1995. A new generation of absolute gravimeters. Metrologia.32:159-180
    V. Yu. Baranov, N. G. Koval.1967. Conference on Laser engineering and Applications[J]. Translate from Atomnaya Energiya.40(1):89-90
    Van Camp. M, CamelBeeck. T, Richard. P.,2003. The FG5 absolute gravimeter:metrology and geophysics. Physicalia Magazine, Journal of the Belgian Society.25(3):161-174.
    W. TORGE, R.H. RODER, M. SCHNULL, H.G. WENZEL.,1987. First Results with the Transportable Absolute Gravity Meter JILAF-3. Journal of Geodesy.61(2):161-176.
    Walter Bich, Giancarlo D' Agostino, Alessandro Germak, Francesca Pennecchi.2007. Uncertainty Propagation in a Non-linear Regression Analysis:Application to a Ballistic Absolute Gravimeter (IMGC-02) [J]. on Advanced Methods for Uncertainty Estimation in Measurement,16-18:30-34.
    Zumberge M R.1981. A portable apparatus for absolute measurements fo the Earth's gravity[D]. PhD Thesis University of Colorado,Boulder
    Zhiping Zhang, Zhaogu Cheng, Zhaoyu Qin, and Jianqiang Zhu.2007. Micro-Gal laser absolute gravimeter based on high precision heterodyne interferometer[J]. CHINESE OPTICS LETERS. 5(6):344-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700