用户名: 密码: 验证码:
高压在线荧光检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底热液系统及其生态系统的发现是近几十年来自然科学界最重要的发现之一。对海底热液系统中的极端环境生物和生物地球化学过程的研究工作对于揭示生命起源、生命演化以及生物成矿机制等重大科学问题具有重要意义。高压物理学作为一门重要的交叉学科已广泛应用于生物科学研究中,特别是极端环境生物的发现,使高压物理学成为极端生物及各类生物分子研究的重要工具之一。同时随着检测技术的进步,光谱检测法的引入使高压在线检测研究成为可能。其中荧光光谱法的引入使高压在线检测更加灵敏可靠,有力的推动了极端环境生物分子的研究,包括生物分子间的相互关系,生物分子的结构变化乃至对极端生物生命活动、适应机制等。
     本论文首先对高压在线检测的国内外现状进行了总结和分析,建立了新的可用于普通荧光分光光度计的小型高压在线荧光检测装置。该装置不但可以实时在线荧光检测,还可以与大型高压装置耦合以进行流动体系的高压在线荧光检测。以荧光物质虎红为研究对象,对该装置进行了试验,在此基础研究了虎红的高压荧光特性。实验结果表明该装置可以很好的用于高压在线荧光研究,同时首次揭示了这一物质的高压荧光特性。
     其次,色氨酸是多种海洋生物大分子的内源荧光物质之一,色氨酸的高压荧光检测无论在海洋生物总量的测定还是在生物大分子结构研究方面都具有重要的意义。据此,本文系统地考察了压力,金属离子,pH值等因素对色氨酸荧光效应的影响。获得了色氨酸在高压条件下新的荧光特性数据,系统化的阐述了压力对荧光效应的影响。
     另外,针对深海极端环境条件下生物研究中长期实时观测的困难,建立了新的可用于实验室在线显微观测和培养的高压显微观测装置。该装置不但可以实现实验室高压显微观测,还可以对生物进行实验室培养。利用该装置,实现了浮游生物的高压实时在线观测。
     论文主要包括以下几个部分:第一部分综述了目前高压检测研究的现状,分析了目前存在的问题及发展方向;第二部分对高压在线荧光检测基础理论进行分析和总结;第三部分介绍了自行研制开发的高压在线荧光检测装置以及虎红高压荧光检测;第四部分介绍了色氨酸的相关高压荧光检测实验,并系统化的阐述了压力对荧光效应的影响。第五部分介绍了自行研制的高压显微观测培养装置并进行了浮游生物的在线高压显微观测。最后一部分对本论文进行了总结并对今后相关研究进行了展望。
As an important parameter, pressure has been widely used in biology research. Especially after spectacular biological communities were discovered in extreme environments such as hydrothermal vent, pressure has attracted more attentions in the research of extremophiles and biomolecule. As the use of spectroscopy method in high pressure research, the on-line detection under high pressure becames possible. Especially fluorescence spectrometry was used in high pressure research, the experiment becames more sensitive and reliable. At present, There is tremendous progress in the researches about biomolecule under pressures. These researches are very important in studing the interaction of biomolecular, the changes of biomolecular structure, and the activities of extremophiles et al. With the progress of spectrum methods under pressures, the devices of on-line detection under high pressure were developed.
     First, the paper summarized the researches about on-line fluorescence detecion. Then We developed an on-line fluorescence detection device which could be installed in common fluorescence spectrophotometer. This device could be used for on-line fluorescence detection under high pressure, and also could be connected with a large-scale device for flow-system detection on-line. With this system, the fluorescence spectrum of Rose Bengal under pressure was studied. The results showed that the device was valid for on-line fluorescence detection under high pressure. At the same time, the results of Rose Bengal provied important direct evidence for biomolecule researches.
     Second, tryptophan is an important intrinsic fluorophore in reasearches of the deep sea, so we studied the fluorescence spectrum of pure tryptophan and metal ions/tryptophan mixtures under high pressures. The results showed that the effect of pressure on pure tryptophan and metal ions/tyrptophan mixtures must be considered in researches of macromolecular under pressure.
     Another important section of this paper was a high pressure on-line observation system for microorganism. The system could be used with fluorescence microscope or long distance microscope. Using this system, we studied Cyclops under different pressures. This was important in researches of the distribution of plankton and activities under high pressures.
引文
[1]李宗军,方武,徐建兴.高压生物科学与技术研究进展.生物物理学报,2004,20(1):1-6.
    [2]Hite BH, Giddings N J, and Weakly CE. The effect of pressure on certain microorganism encountered in the preservation of fruit and vegetablea. West Virginia University Agricultural. Experimental Station Bulletin, 1915,146:2-67.
    [3]Ludwig H. Advanced in high pressure bioscience and biotechnology, Processings of the international conference on high pressure bioscience and biotechnology. Berlin:Springer-Verlag Berlin and Heidelberg Gmbh & Co KG,1999,23-29.
    [4]Winter R. High Pressure Effects in Molecular Biophysics Ⅱ. Berlin: Springer Verlag Berlin Heideberg New York,2002,413-453.
    [5]Fourme R, Girard E, Kahn R, et al. Advances in High-Pressure Biophysics: Status and Prospects of Macromolecular Crystallography. Annual Review of Biophysics,2009,38:153-171.
    [6]Nicholson J, and Korber F. High pressure applications in structural molecular biology. Recent Research Developments in Molecular Biology, 2006,3:33-47.
    [7]Suzuki K. Studies on the kinetics of protein denaturation under high pressure. The Review of Physical Chemistry of Japan,1960,29:91-98.
    [8]Hawley S A. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry,1971,10:2436-2442.
    [9]Bridgman P W. Pressure effect on egg albumin. Journal of Biological Chemistry,1914,19:511-512.
    [10]Silva J L, Foguel D, Da Poian A T, et al. The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Current Opinion in Structural Biology,1996,6:166-175.
    [11]Meersman F. Proteins, lipids and nucleic acids at high pressure. SciTopics Retrieved 2010, http://www. scitopics. com/Proteins-lipids_and-nucleic_acids-at high-pressure, html.
    [12]Malgorzata G P. Effect of high hydrostatic pressure on metabolism of microorganisms. Biotechnologia,2009,3:44-58.
    [13]Rodiles-L 6 pez J 0, Arroyo-Maya I J, Jaramillo-Flores M E, et al. Effects of high hydrostatic pressure on the structure of bovine a-lactalbumin. Medical Image analysis,2010,93(4):1420-1428.
    [14]Panick G., and Winter R. Pressure-Induced Unfolding/Refolding of Ribonuclease A-a Statics and Kinetik Fourier-Trans-form Infrared Spectroscopy Study. Biochemistry,2000,39:1862-1869.
    [15]Smeller L, Roemich H, and Lange R. Proteins under high pressure. Biochimica et Biophysica Acta,2006,1764(3):329-330.
    [16]Silva J L, Foguel D, and Royer C A. Pressure provides new insights into protein folding, dynamics and structure. Trends in Biochemical Sciences,2001,26:612-618.
    [17]Balny C, Masson P, and Heremans K. High pressure effect on biological macromolecules:from structural changes to alteration of cellular processes. Biochimica et Biophysica Acta,2002,1595:3-10.
    [18]Marchal S, Torrent J, Masson P, et al. The powerful high pressure tool for protein conformational studies. Brazilian Journal of Medical and Biological Research,2005,38:1175-1183.
    [19]Heremans K. High Pressure Effects on Proteins and Other Biomolecules. Annual Review of Biophysics & Bioengineering,1982,11:1-21.
    [20]Gross M, and Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. European Journal of Biochemistry, 1994,221:617-630.
    [21]Bartlett D H. Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta,2002,1595(1-2):367-381
    [22]Lammi M J, Elo M A, Sironen R K, et al. Hydrostatic pressure-induced changes in cellular protein synthesis. Biorheology,2004,41(3-4): 309-313
    [23]高瑀珑,鞠兴荣,邱伟芬,等.超高压对大肠杆菌细胞膜流动性的影响.Scientia Agricultura Sinica,2009,42 (4):1365-1371
    [24]Marchal S, Lange R, Tortora P, et al. High pressure as a tool for investigating protein-ligand interactions. Journal of Physics: Condensed Matter,2004,16:S1271-S1275.
    [25]Perrett S, and Zhou J M. Expanding the pressure technique:insights into protein folding from combined use of pressure and chemical denaturants. Biochimica et Biophysica Acta,2002,1595:210-223.
    [26]Boonyaratanakornkit B B, Park C B, and Clark D S. Pressure effects on intra-and intermolecular interactions within proteins. Biochimica et Biophysica Acta,2002,1595:235-249.
    [27]Winter R, Lopes D, Grudzielanek S, et al. Towards an understanding of the temperature/pressure configurational and free-energy landscape of biomolecules. Journal of Non-Equilibrium. Thermodynamics.2007,32:41-97.
    [28]Linke K, Periasamy N, Ehrmann M, et al. Influence of High Pressure on the Dimerization of ToxR, a Protein Involved in Bacterial Signal Transduction. Applied and Environmental Microbiology,2008,74(24): 7821-7823.
    [29]Phelps D J, and Hesterberg L K. Protein disaggregation and refolding using high hydrostatic pressure. Journal of Chemical Technology and Biotechnology,2007,82:610-613.
    [30]Silva J, and Weber G.. Pressure stability proteins. Annual Review of Physical Chemistry,1993,44(1):89-113.
    [31]Hemley R J. The Revealing Role of Pressure in the Condensed Matter Sciences. Physics Today,1998,51:26.
    [32]Bassett W A, Shen A H, Bucknum M, et al. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from-190 to 1200 ℃. Review of Scientific Instruments,1993,64(8):2340-2345.
    [33]Pasternak S, Aquilanti G, Pascarelli S, et al. A diamond anvil cell with resistive heating for high pressure and high temperature x-ray diffraction and absorption studies. Review of Scientific Instruments, 2008,79(8):085103-1-085103-5
    [34]Chervin J C, Canny B, Besson J M, et al. A diamond anvil cell for IR microspectroscopy. Review of Scientific Instruments,1995,66(3): 2595-2598.
    [35]Gavriliuk A G, Mironovich A A, and Struzhkin V V. Miniature diamond anvil cell for broad range of high pressure measurements. Review of Scientific Instruments,2009,80(4):043906-043906-4.
    [36]Oger P M, Daniel I, and Picard A. Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T. Biochimica et Biophysica Acta,2006,176:.434-442.
    [37]Aizawa T, Kanakubo M, Ikushima Y, et al. "Totsu"-window_optical cell for absorption and emission studies of high-pressure liquids and supercritical fluids. Journal of Supercritical Fluids.2004,29: 313-317.
    [38]Arabas J, Butz P, Merkel C, et al. Miniature optical cell for spectrophotometry under high pressure[J]. High Pressure Research, 2000,19:379-383.
    [39]Alireza P L, and Lonzarich G. G. Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer. Review of Scientific Instruments, 2009,80:023906-023906-4.
    [40]Riesco N, and Trusler J P M. Novel optical flow cell for measurements of fluid phase behaviour. Fluid Phase Equilibria,2005,228-229: 233-238.
    [41]Hoffmann M M, Addleman R S, and Fulton J L. Short-pathlength, high-pressure flow cell for static and time-resolved infrared spectroscopy suitable for supercritical fluid solutions including hydrothermal systems. Review of Scientific Instruments,2000,71: 1552-1556.
    [42]Hurst W S, Hodes M S, Bowers W J Jr, et al. Optical flow cell and apparatus for solubility, salt deposition and Raman spectroscopic studies in aqueous solutions near the water critical point [J]. Journal of Supercritical. Fluids,2002,22:157-166.
    [43]Berger T, and Steffen W. Optical flow-through high pressure cell for light scattering investigations. Review of Scientific Instruments, 2000,71:2467-2470.
    [44]Suleimenova 0 M. Simple, compact, flow-through, high temperature high pressure cell for UV-Vis spectrophotometry. Review of Scientific Instruments,2004,75:3363-3364.
    [45]Weber G, and Drickamer H G. The effect of high pressure upon proteins and other biomolecules. Quarterly Reviews of Biophysics,1983,16: 89-112.
    [46]Heremans K, and Wong P T T. Pressure effect on the Raman spectrum of proteins:Pressure induced changes in the conformation of lysozyme in aqueous solutions. Chemical Physics Letters,1985,118:101-104.
    [47]Wong P T T, and Heremans K. Pressure effects on protein secondary structure and hydrogen deuterium exchange in chymotrypsinogen:a Fourier transform infrared spectroscopic study. Biochimica et Biophysica Acta,1989,956:1-9.
    [48]Silva JL, and Weber G. Pressure stability of proteins. Annual Review of Physical Chemistry,1993,44:89-113.
    [49]Marden M C, Hui Bon Hoa G., and Stetzkowski-Marden F. Heme proteins £uorescence versus pressure. Biophysical Jouenal,1986,49:619-627.
    [50]Freiberg A, Ellervee A, Kukk P, et al. Pressure eiects on spectra of photosynthetic light-harvesting pigment-protein complexes. Chemical Physics Letters,1993,214:10-16.
    [51]Zollfrank J, Friedrich J, Fidy J, et al. Photochemical holes under pressure:Compressibility and volume fluctuations of a protein. Journal of Chemical Physics,1991,94:8600-8603.
    [52]Friedrich J. Hole burning spectroscopy and the physics of proteins. Methods Enzymol,1995,246:226-259.
    [53]Cioni P, and Strambini G B. Pressure effects on protein flexibility monomeric proteins. Journal of Molecular Biology,1996,263:789-799.
    [54]Brandts J F, Oliveira R J, and Westort C. Thermodynamics of protein denaturation. Eject of pressure on the denaturation of ribonuclease A. Biochemistry,1970,9:1038-1047.
    [55]Hawley S A. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry,1971,10:2436-2442.
    [56]Zipp A, and Kauzmann W. Pressure denaturation of metmyoglobin. Biochemistry,1973,12:4217-4228.
    [57]Mombelli E, Afshar M, Fusi P, et al. The role of phenylalanine 31 in maintaining the conformational stability of ribonuclease P2 from Sulfolobus solfataricus under extreme conditions of temperature and pressure. Biochemistry,1997,36:8733-8742.
    [58]Partridge J C, White E M, and Douglas R H. The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments. The Journal of Experimental Biology,2006,209: 314-319.
    [59]Marchal S, Lange R, Tortora P, et al. High pressure as a tool for investigating protein-ligand interactions. Journal of Physics: Condensed Matter,2004,16:S1271-S1275.
    [60]The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments. J. C. Partridge, E. M. White and R. H. Douglas。The Journal of Experimental Biology 209, 314-319 Published by The Company of Biologists 2006. (同58)
    [61]Krimm S, and Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry,1986,38:181-364.
    [62]Smeller L, Goossens K, and Heremans K. Pressure-tuning spectroscopy of proteins:Fourier transform infrared studies in the diamond anvil cell. High Pressure Research,1994,12(4-6):263-267.
    [63]Goossens K, Smeller L, Frank J, et al. Conformation of bovine pancreatic trypsin inhibitor studied by Fourier transform infrared spectroscopy. European Journal of Biochemistry,1996,236:254-262.
    [64]Kamatari Y O, Kitahara R, Yamada H, et al. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods,2004,34(1):133-143.
    [65]Akasaka K, Tezuka T, and Yamada H. Pressure-induced changes in the folded structure of lysozyme[J]. Journal of Molecular Biology,1997, 271:671-678.
    [66]Li H, Yamada H, and Akasaka K. Effect of pressure on individual hydrogen bonds in proteins, basic pancreatic trypsin inhibitor. Biochemistry,1998,37:1167-1172.
    [67]Smeller L, Meersman F, Fidy J, et al. High-Pressure FTIR Study of the Stability of Horseradish Peroxidase. Effect of Heme Substitution, Ligand Binding, Ca++Removal, and Reduction of the Disulfide Bonds. Biochemistry,2003,42,553-561.
    [68]Taniguchia Y, Takedaa N, Adoa K, et al. High pressure FT-IR spectroscopic study on the secondary structure changes in insulin amyloid fibril and aggregate. High Pressure Research,2009,29(4): 676-679.
    [69]John R J St, Carpenter J F, and Randolph T W. High pressure fosters protein refolding from aggregates at high concentrations. Proceedings of the National Academy of Sciences of the United States of America,1999,96(23):13029-13033.
    [70]Xu J, Butler I S, Gibson D F R, et al. High-pressure infrared and FT-Raman investigation of a dental composite. Biomaterials,1997,8: 1653-1657.
    [71]Schulte A, Buchter S, Galkin 0, et al. Raman Spectroscopic Observation of a Conformational Change at the Heme-Protein Linkage in Myoglobin at High Pressure. Journal of the American Chemical. Society.1995,117,10149-10150.
    [72]Kundrot C E, and Richards F M. Crystal structure of hen eggwhite lysozyme at a hydrostatic pressure of 1000 atmospheres, Journal of Molecular Biology,1987,193:157-170.
    [73]Balny C, and Ruan K. An emerging field in bioscience:high hydrostatic pressure study.A.cta Biochimica-et Biophysica. Sinica,1999, 31 (6): 619-624.
    [74]Jones LM, Zhang H, Vidavsky I, et al. Online, High-Pressure Digestion System for Protein Characterization by Hydrogen/Deuterium Exchange and Mass Spectrometry. Analytical Chemistry (Anal. Chem.),2010, 82(4):1171-1174.
    [75]Torrent J, Maria Teresa Alvarez-Martinez, Fr'ed'eric Heitz, et al. Insights into alternative prion protein topologies induced under high hydrostatic pressure. Journal of Physics:Condensed matter,2004,16: S1059-S1065.
    [76]Belloque J, Chicon R, and Lopez-Fandino R. Unfolding and Refolding of β-Lactoglobulin Subjected to High Hydrostatic Pressure at Different pH Values and Temperatures and Its Influence on Proteolysis. 2007,55 (13):5282-5288.
    [77]Chico'n R, Belloque J, Recio I, et al. Influence of high hydrostatic pressure on the proteolysis of β-lactoglobulin A by trypsin. Journal of Dairy Research,2006,73:121-128.
    [78]Janfelt C, Talaty N, Mulligan C C, et al. Mass spectra of proteins and other biomolecules recorded using a handheld instrument. International Journal of Mass Spectrometry,2008,278(2-3):166-169.
    [79]Malliavin T E. Quantitative Analysis of Biomolecular NMR Spectra: A Prerequisite for the Determination of the Structure and Dynamics of Biomolecules. Current Organic Chemistry,2006,10(2):1-14.
    [80]Silva J L, Moles E W, and Weber G. Pressure Dissociation and Conformational Drift of the p Dimer of Tryptophan Synthase. Biochemistry,1986,25:5781-5786.
    [81]Ruan K C, and Weber G. Dissociation of Yeast Hexokinase by Hydrostatic Pressure. Biochemistry,1988,27:3295-3301.
    [82]Offen H W, and Phillips D T. Journal of Chemical. Physics.49: 3995-3997.
    [83]Li T M, Hook J W, Drickamer H G, et al. Effects of pressure upon the fluorescence of the riboflavin binding protein and its flavin mononucleotide complex. Biochemistry,1976,15:3205-3211.
    [84]Garcia C R, Amaral A, Abrahamsohn P, et al. Dissociation of F-actin induced by hydrostatic pressure. European Journal of Biochemistry, 1992,209:1005-1011.
    [85]Dumoulin M, Ueno H, Hayashi R, et al. Contribution of the carbohydrate moiety to conformational stability of carboxypeptidase Y. European Journal of Biochemistry,1999,262:475-783.
    [86]Tan C Y, Xu C H, Weng J, et al. Pressure Equilibrium and Jump Study on Unfolding of 23kDa Protein from Spinach Photosystem II. Biophysical Journal,2005,88 (2):1264-1275.
    [87]Dumont C, Emilsson T, and Gruebele M. Reaching the protein folding speed limit with large, sub-microsecond pressure jumps. Nature Methods,2009,6 (7):515-519.
    [88]Tanaka N, Ikeda C, Kanaori K, et al. Pressure effect on the conformational fluctuation of apomyoglobin in the native state, Biochemistry,2000,39:12063-12068.
    [89]侯凌燕,章竹君,周福林.几种常用荧光探针的化学发光成像研究,分析化学,2007,35(2):285-288.
    [90]Urayama P, Frey E W, and Savage S R. Fluorescent probe dyes for metabolic-ion sensing under high hydrostatic pressures. Annals of the New York Academy of Sciences,2010,1189(1):104-112.
    [91]Nishimoto M, Goto M, Tamai N, et al. Effect of pressure on interactions of anti-fluorescent probe monoclonal antibody with a ligand and inhibitors. Journal of Physics:Conference Series,2010, 215(1):012157-1-5.
    [92]Filabozzi A, Deriu A, Di Bari M T, et al. Elastic incoherent neutron scattering as a probe of high pressure induced changes in protein flexibility. Biochimica et Biophysica Acta-Proteins & Proteomics, 2010,1804(1):63-67.
    [93]Ruan K, Lange R, Zhou Y, et al. Unusual effect of high hydrostatic pressure on basic phospholipase A2 from venom of Agkistrodon Halys Pallas. Biochemical. and Biophysical. Research Communications,1998, 249:844-848.
    [94]Ruan K, Lange R, Meersman F, et al. Fluorescence and FTIR study of the pressure-induced denaturation of bovine pancreas trypsin. European Journal of Biochemistry,265(1999) 79-85.
    [95]Ruan R, Tian S, Lange R, et al. Pressure effects on tryptophan and its derivatives, Biochemical. and Biophysical. Research Communications,2000,269:681-686.
    [96]Fourme R, Girard E, Kahn R, et al. Advances in high-pressure biophysics:status and prospects of macromolecular crystallography. Annual Review of Biophysics,2009,38:153-71.
    [97]Girard E, Prange T, Dhaussy A C, et al. Adaptation of base-paired double-helix to extreme hydrostatic pressure. Nucleic Acids Research, 2007,35(14):4800-4808.
    [98]Kadri A, Lorber B, Charron C, et al. Crystal quality and differential crystalgrowth behaviour of three proteins crystallized in gel at high hydrostatic pressure. Acta Crystallographica D biological crystallography,2005,61 (Pt6):784-788.
    [99]Kim C U, Chen Y F, Tate M W, et al. Pressure-induced high-density ice in protein crystals. Journal of Applied Crystallography,2008, 41:1-7.
    [100]Kim CU, Hao Q, and Gruner S M. Solution of protein crystallographic structures by high-pressure cryocooling and noble-gas phasing. Acta Crystallographica D biological crystallography,2005,62:687-94
    [101]Kim C U, Kapfer R, and Gruner S M. High pressure cooling of crystals without cryoprotectants. Acta Crystallographica D biological crystallography,2005,61:881-90.
    [102]Johnson P C, and Offen H W. Effect of pressure on pyrene excimer fluorescence in toluene. Journal of Chemical. Physics,1972,56: 1638-1642.
    [103]Louzada Jr P R F, Scaramello M E, Maya-Monteiro C, et al. Effect of hydrostatic pressure on the fluorescence of indole derivatives. Journal of Fluorescence,1996,6:231-236.
    [104]Perez-Mateos M, Lopez-Caballero M E, and Montero P. Effect of high pressure and 4-Hexylresorcinol on enzymatic activity and darkening in oysters. Journal of Food Science,2002,67:2107-2112.
    [105]Kresic G, Lelas V, Herceg Z, et al. Effects of high pressure on functionality of whey protein concentrate and whey protein isolate. EDP Sciences,2006,86:303-315:
    [106]Reps A, Kuzmicka M, Wisniewska K, et al. The effect of high pressure on Lactococcus bacteria count in Edam rennin cheese. High Pressure Research,2009,29:28-32.
    [107]Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research,1977,24:857-863.
    [108]Partridge J C, White E M, and Douglas R H. The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments. Journal of Experimental Biology,2006,209:314-319.
    [109]Kaye J Z, and Baross J A. Synchronous Effects of Temperature, Hydrostatic Pressure, and Salinity on Growth, Phospholipid Profiles, and Protein Patterns of Four Halomonas Species Isolated from Deep-Sea Hydrothermal-Vent and Sea Surface Environments. Applied Environmental Microbiology,2004,70:6220-6229.
    [110]Campanaro S, Treu L, and Valle G. Protein evolution in deep sea bacteria:an analysis of amino acids substitution rates. BMC Evolutionary Biology,2008,8:313.
    [111]Hoshihara Y, Kimura Y, Matsumoto M, et al. An optical high-pressure cell for transient grating measurements of biological substance with a high reproducibility, Review of Scientific Instruments,2008,79: 34-101.
    [112]Nesting D C, and Badding J V. High-Pressure synthesis of sp2-Bonded Carbon Nitrides. Chemistry of Materials,1996,8:1535-1539.
    [113]Edwards C M, and Butler I S. Pressure-tuning spectroscopy of inorganic compounds:a summary of the past 15 years. Coordination Chemistry Reviews,2000,199:1-53.
    [114]Goncharov A F, Beck P, Struzhkin V V, et al. Laser-heating diamond anvil cell studies of simple molecular systems at high pressures and temperatures. Journal of Physics Chemistry Solids,2008,69: 2217-2222.
    [115]Duffy T S. Strength of materials under static loading in the diamond anvil cell. Shock compression of condensed matter-2007:Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Conference Proceedings, 2007,955:639-644.
    [116]Aquilanti G., Pascarelli S, Mathon 0, et al. Development of micro-XANES mapping in the diamond anvil cell. Journal of Synchrotron Radiation,2009,16:376-379.
    [117]Fumiyoshi ABE. Hydrostatic pressure enhances vital staining with carboxyfluorescein or carboxydichlorofluorescein in saccharomyces cerevisiae:efficient detection of labeled yeasts by flow cytometry. Applied and Environmental Microbiology,1998,64:1139-1142.
    [118]Adams D M, Payne S J, and Martin K. The fluorescence of diamond and raman spectroscopy at high pressures using a new design of diamond anvil cell. Applied Spectroscopy,1973,27:377-381.
    [119]Seybold P G, Gouterman M, and Call is J. Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochemistry and Photobiology,1969,9:229-242.
    [102]Grinberg M, and W. Gryk. Pressure effect on luminescence of insulating crystals doped with rare earth irons. Evidence for trapped exciton in Pr3+doped LiNb03 AND LiTa03. Reviews on Advanced Materials Science,2007,14:17-23.
    [121]Wenger 0 S, Sal ley G M, and Gudel H U. Effects of High pressure on the luminescence and Up conversion properties of Ti2+-doped NaCl. Journal of Physical Chemistry,2002,106:10082-10088.
    [122]Ruan K C, and Weber G. Dissociation of Yeast Hexokinase by Hydrostatic Pressure. Biochemistry,1988,27:3295-3301.
    [123]Verkhusha V V, Pozhitkov A E, Smirnov S A, et al. Effect of high pressure and reversed micelles on the fluorescent proteins. Biochimica et Biophysica Acta,2003,1622:192-195.
    [124]Jayasankar C K, Venkatramu V, Babu P, et al. High-pressure fluorescence study of Sm3+-doped borate and fluoroborate glasses. Journal of Applied Physics,2005,97:093523-093523-7.
    [125]Zhang B L, Meera Chandrasekhar, and Chandrasekhar H R. Pressure-induced shifts of the fluorescence spectrum of rhodamine 6G in solution. Applied Optics,1985,24:2779-2782.
    [126]Tran T, Kochar Y, and Seitzman J. Measurements of acetone fluorescence and phosphorescence at high pressures and temperatures. AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, Jan,2006, 9-12.
    [127]Wang Z P, Zhang Z M, and Ding Z J. Photoluminescence study of Congo red molecules under high pressure. Journal of Luminescence,2007, 122-123:237-240.
    [128]Mastrangelo C J, and Of fen H W. Pressure Effects on Aminonaphthalene Dye Fluorescence in H20 and D20. Journal of Solution Chemistry,1980, 9:325-330.
    [129]Kutty A P G, Venkateswaran S, Vaidya S N, et al. Pressure Effects on Absorption and Fluorescence of Polar Dyes. Journal of Physical Chemistry,1993,97:7132-7134.
    [130]Luo J F, Tang B C, Gao C X, et al. Effects of high pressure on the Raman and uorescence emission spectra of two novel 1,3,4-oxadiazole derivatives. Chinese. Physics,2005,14:1770-1773.
    [131]Linke K, Periasamy N, Ehrmann M, et al. Influence of High Pressure on the Dimerization of ToxR, a Protein Involved in Bacterial Signal Transduction..Applied and Environmental Microbiology,2008,74: 7821-7823.
    [132]Eisenberg D, and Kauzmann W. The Structure and Properties of Water[M], Clarendon Press, Oxford.1969,189-191.
    [133]Bakera A, and Spencer R G M. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance. spectroscopy. Science of the Total Environment,2004,333(1-3): 217-232.
    [134]季乃云,赵卫红.海洋荧光溶解有机物研究进展.海洋环境科学,2007,26(1): 95-100.
    [135]王江涛,关哈斯高娃,赵卫红.海洋荧光溶解有机物质的研究.中国海洋大学学报,2007,37(5):801-806.
    [136]Rishpon J, O'Hara PJ, Lahav N; et al. Interaction Between ATP, Metal Ions, Glycine, and Several Minerals. Journal of Molecular Evolution, 1982,18:179-184.
    [137]Kankia B I. Interaction of alkaline-earth metal ions with calf thymus DNA. Volume and compressibility effects in diluted aqueous solutions. Biophysical Chemistry,2000,84(3):227-237.
    [138]Phillips R S, Miles E W, Holtermann G, et al. Hydrostatic pressure affects the conformational equilibrium of Salmonella typhimurium tryptophan synthase. Biochemistry,2005,44(21):7921-7928.
    [139]Periasamy N, and Winter R. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures-a laurdan fluorescence spectroscopy study. Biochimica et Biophysica Acta Proteins & Proteomics,2006,1764(3):398-404.
    [140]Chura-Chambi R M, Genova L A, Affonso R, et al. Refolding of endostatin from inclusion bodies using high hydrostatic pressure. Analytical Biochemistry.2008,379(1):32-39.
    [141]Lopes D H J, Smirnovas V, and Winter R. Islet amyloid polypeptide and high hydrostatic pressure:Towards an understanding of the fibrillization process. Journal of Physics:Conference. Series,2008, 121(11):112002.
    [142]Southward A J, and Southward E C. The role of dissolved organic matter in the nutrition of deep-sea benthos. American Zoologist,1982, 22(3):647-659.
    [143]Holden J F, and Adams M W W. Microbe-metal interactions in marine hydrothermal environments. Current Opinion in Chemical Biology,2003, 7(2):160-165.
    [144]Powalska E, Janosch S, Kinne-Saffran E, et al. Fluorescence spectroscopic studies of pressure effects on Na+, K+-ATPase reconstituted into phospholipid bilayers and model raft mixtures. Biochemistry,2007,46 (6):1672-1683.
    [145]Sander S G., Koschinsky A, Hunter K A, et al. Evidence for organic complexation of copper in deep-sea hydrothermal vent systems. Geochimica et Cosmochimica Acta,2006,70(18):A544.
    [146]Bennett S A, Achterberg E P, Connelly D P, et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters,2008,270 (3-4):157-167.
    [147]Kitayaki M, Tada T, Matsumoto T, et al. Calorimetric and high pressure fluorescence studies of the salt effects on thermolysin. Polymer Journal,2007,39(2):147-154.
    [148]陶丽梅,胡皆汉,张玉新.不同金属离子与色氨酸作用的荧光光谱研究.光谱学与光谱分析.1994,14(3):45-48.
    [149]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [150]Mataga N, Kaifu Y, and Koizumi M. Solvent effect upon fluorescence spectra and the dipole moment of the excited molecules. Bulletin of the Chemical Society Japan,1956,29(3):465-470.
    [151]Baldlshiev N G. Optics and Spectroscopy,1961,10:379-384.
    [152]Bakhshiev N G. Optics and Spectroscopy,1962,12:309-313.
    [153]Bakhshiev N G. Optics and Spectroscopy,1962,13:24-29.
    [154]Lippert E. Z. Electrochem,1957,61:962-975.
    [155]Eisenberg D, and Kauzmann W. The Structure and Properties of Water[M], Clarendon Press, Oxford.1969:189-191.
    [156]Ruan K C, Tian S M, Lange R, et al. Pressure effects on tryptophan and its derivatives. Biochemical. and Biophysical. Research Communications,2000,269 (3):681-686.
    [157]Louzada P R F, Scaramello M E, Maya-Monteiro C, et al. Effect of hydrostatic pressure on the fluorescence of indole derivatives. Journal of Fluorescence,1996,6(4):231-236.
    [158]Alain M, and Michel M. How to illustrate ligand-protein binding in a class experiment:An elementary fluorescent assay. Journal of Chemical Education,1986,63 (4):365.
    [159]Cui F L, Fan J, and Li J P. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorganic & Medicinal Chemistry,2004,12:151-157.
    [160]Wang C X, Yan F F, and Zhang Y X. Spectroscopic investigation of the interaction between rifabutin and bovine serum albumin. Journal of Photochemistry and Photobiology A:Chemistry,2007,192(1):23-28.
    [161]Koyama S. Cell biology of deep-sea multicellular organisms. Cytotechnology,2007,55(2-3):125-133.
    [162]Thornburg C C, Zabriskie T M, and McPhail K L. Deep-sea hydrothermal vents:potential hot spots for natural products discovery?. Journal of Natural Products,2010,73(3):489-499.
    [163]Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research,1977,24:857-863.
    [164]Sakiyama T, and Ohwada K. Effect of hydrostatic pressure on the growth of deep-sea bacterial communities. Proceedings of the NIPR Symposium on Polar Biology,1998,11:1-7.
    [165]Kaye J Z, and Baross J A. Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four halomonas Species isolated from deep-sea hydrothermal-vent and sea surface environments. Applied Environmental Microbiology,2004,70(10):6220-6229.
    [166]Partridge J C, White E M, and Douglas R. H. The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments. Journal of Experimental Biology,2006,209: 314-319.
    [167]Campanaro S, Treu L, and Valle G. Protein evolution in deep sea bacteria:an analysis of amino acids substitution rates. BMC Evolutionary Biology,2008,8:313.
    [168]Gross M, and Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein compLexes. European Journal of Biochemistry, 1994,221(2):617-630.
    [169]Paradillon F, Shillito B, Chervin J C, et al. Pressure vessels for in vivo studies of deep-sea fauna. High Pressure Research,2004,24(2): 237-246.
    [170]Paradillon F, and Gaill F. Pressure and life:some biological strategies. Reviews in Environmental Science and Biotechnology,2007, 6(1-3):181-195.
    [171]Castillo L A, Meszaros L, and Kiss I F. Effect of high hydrostatic pressure and nisin on micro-organisms in minced meats. Acta Aliment Hung,2004,33(2):.183-190.
    [172]Black E P, Kelly A L, and Fitzgerald G F. The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innovative Food Science & Emerging Technologies,2005,6(3):286-292.
    [173]Fumiyoshi A B E. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival:perspectives from piezophysiology. Bioscience Biotechnology and Biochemistry, 2007,71 (10):2347-2357.
    [174]Horikawa D D, Iwata K, Kawai K, et al. High hydrostatic pressure tolerance of four different anhydrobiotic animal species. Zoological Science,2009,26(3):238-242.
    [175]A Malahoff, T Gregory, A Bossuyt, et al. A Seamless System for the Collection and Cultivation of Extremophiles From Deep-Ocean Hydrothermal Vents. Ieee Journal of Oceanic Engineering,2002,27(4): 862-869.
    [176]Park C B, and Clark D S. Rupture of the Cell Envelope by Decompression of the Deep-Sea Methanogen Methanococcus jannaschii. Applied and Environmental Micrrobiology,2002,68 (3):1458-1463.
    [177]Bruce S, Didier J, Pierre-Marie S, et al. Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls. Marine Ecology Progress Series,2001,216:141-149.
    [178]Shillito B, Le Bris Nadine, Hourdez S, et al. Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata. The Journal of Experimental Biology,2006,209(5):945-955.
    [179]Pradillon F, Shillito B, Chervin J C, et al. Pressure vessels for in vivo studies of deep-sea fauna. High Pressure Research,2004, 24(2):237-246.
    [180]Salmon E D, and Ellis G W. A new miniature hydrostatic pressure chamber for microbiology. The Journal of Cell Biology,1975,65: 587-602.
    [181]Yoshiki T, Yamanoha B, Kikuchi T, et al. Hydrostatic pressure-induced apoptosis on nauplii of Calanus sinicus. Marine Biology,2008,156(2):97-106.
    [182]Fraser P J, and Shelmerdine R L. Dogfish hair cells sense hydrostatic pressure. Nature,2002,415(6871):495-496.
    [183]Shillito B, Balis N Le, Gaill F, et al. First access to live alvinellas. High Pressure Research,2004,24(1):169-172.
    [184]Marsh A G, Mullineauz L S, Young C M, et al. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature,2001,411:77-80.
    [185]Grasset O. Calibration of the R ruby fluorescence lines in the pressure range 0-1 GPa and the temperature range 250-300K. High Pressure Research,2001,21(3-4):139-157.
    [186]Gregg C J, Stein F P, Morgan C K, et al. A variable volume optical pressure volume temperature cell for high-pressure cloud points, densities, and infrared spectra, applicable to supercritical-fluid solutions of polymers up to 2 Kbar. Journal of Chemical & Engineering Data,1994,39(2):219-224.
    [187]Koyama S, Miwa T, Sato T, et al. Optical chamber system designed for microscopic observation of living cells under extremely high hydrostatic pressure. Extremophiles,2001,5(2):409-415.
    [188]Raber E C, Dudley J A, Salerno M, et al. Capillary-based, high-pressure chamber for fluorescence microscopy imaging. Review of Scientific Instruments,2006,77:096106.
    [189]Oger P M, Daniel I, and Picard A. Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T. Biochimica et Biophysica Acta-Proteins & Proteomics,2006,1764(3):434-442.
    [190]Frey B, Hartmann M, Herrmann M, et al. Microscopy under pressure: An optical chamber system for fluorescence microscopic analysis of living cells under high hydrostatic pressure. Microscopy Research and technique,2006,69(2):65-72.
    [191]Hopkin R S, Qari S, Bowler K, et al. Seasonal thermal tolerance-in marine Crustacea. Journal of Experimental Marine Biology and Ecology, 2006,331(1):74-81
    [192]Aquino-Souza R, Hawkinsi S J, and Tyler P A. Early development and larval survival of Psammechinus mi liar is under deep-sea temperature and pressure conditions. Journal of the Marine Biological Association of the United Kingdom,2008,88(3):453-461
    [193]Chausson F, Sanglier S, Leize E, et al. Respiratory adaptations of a deep-sea hydrothermalvent crab. Micron,2004,35(1-2):27-29.
    [194]Schander C, Rapp H T, and Kongsrud J A. The fauna of hydrothermal vents on the Mohn Ridge (North Atlantic). Marine Biology Research, 2010,6(2):155-171
    [195]Yoshiki T, Toda T, Yoshida T, et al. A new hydrostatic pressure apparatus for studies of marine zooplankton. Journal of Plankton Research,2006,28(6):563-570.
    [196]Childress J J, and Thuesen E V. Effects of hydrostatic pressure on metabolic rates of six species of deep-sea gelatinous zooplankton. Limnology and Oceanography,1993,38:665-670.
    [197]Bailey T G, Torres J J, Youngbluth M J, et al. Effect of decompression on mesopelagic gelatinous zooplankton:a comparison of in situ and shipboard measurements of metabolism. Marine Ecology Progress Series, 1994,113:13-27.
    [198]Yoshiki T, Yamanoha B, Kikuchi T, et al. Hydrostatic pressure-induced apoptosis on nauplii of Calanus sinicus. Mar Biol. 2008,156(2):97-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700