用户名: 密码: 验证码:
小兴安岭泥炭沼泽植物区系及土壤理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小兴安岭林区分布有大面积的沼泽湿地,有森林沼泽、灌丛沼泽、草丛沼泽、藓类沼泽等多种类型,这些沼泽湿地在调节洪峰、蓄存降水、保持水土、改善小气候等方面发挥着巨大的作用。湿地土壤是重要的有机碳储存库,湿地土壤有机碳的变化对全球气候变化有直接的影响。本文选择小兴安岭林区典型泥炭沼泽湿地为研究对象,对其植物区系、植被类型、土壤物理性质和化学性质进行系统研究,尤其对泥炭沼泽湿地土壤有机碳(SOC)含量进行深入研究,并进行相关性分析,为本地区湿地保护和科学管理提供科学依据。其主要研究结果如下:
     (1)小兴安岭泥炭沼泽湿地种子植物共有63科184属339种,其中裸子植物1科3属3种,被子植物有62科181属336种。本区沼泽湿地种子植物占我国东北部种子植物总科数的49.22%,总属数的24.83%,总种数的12.93%。种子植物科划分为4个分布区类型和4个分布区变型;属划分为12个分布区类型和9个变型;种划分为15个分布区类型和18个分布区亚型。研究区泥炭沼泽湿地种子植物科属种的地理成分以温带性质为主。
     (2)五类典型泥炭沼泽土壤平均容重变化在0.06 g·cm-3-0.74 g·cm-3之间,毛管孔隙变化范围为49.54%-59.95%,非毛管孔隙变化范围为31.69%~12.75%,其中漂筏苔草湿地土壤毛管孔隙最大,兴安落叶松—细叶杜香—泥炭藓湿地非毛管孔隙和总孔隙度均为最高。兴安落叶松—细叶杜香—泥炭藓湿地土壤饱和持水量、毛管持水量和田间持水量分别为1586.57%、1007.71%和882.70%。
     (3)五类泥炭湿地土壤pH值均低于6.0。兴安落叶松—细叶杜香—泥炭藓湿地土壤有机质含量最高,各土层有机质含量均在800 g·kg-1以上。平均全N含量变化在3.41g-kg-1~13.78g·kg-1之间,水解N含量变化范围为60~1100 mg·kg-1,全P含量变动在0.47~1.26g·kg-1之间,有效P含量均表现为表层高于下层,随着土层的加深呈下降趋势,且表层有效P含量均在30mg·kg-1以上
     (4)土壤SOC含量大小排序为:兴安落叶松—细叶杜香—泥炭藓湿地>漂筏苔草湿地>油桦—笃斯越桔—修氏苔草湿地>修氏苔草湿地>白桦—油桦—小叶章湿地>对照林地,兴安落叶松—细叶杜香—泥炭藓湿地土壤SOC含量高达477.69g·kg-1,是对照林地的17.06倍。平均碳密度大小排序为:漂筏苔草湿地>油桦—笃斯越桔—修氏苔草湿地>修氏苔草湿地>白桦—油桦—小叶章湿地>兴安落叶松—细叶杜香—泥炭藓湿地>对照林地,漂筏苔草湿地碳密度最高(83.19 kg·m-3),兴安落叶松—细叶杜香—泥炭藓湿地碳密度相对较低(48.03 kg·m-3),分别是对照林地的3.51和2.03倍。0-40cm碳储量大小排序为:漂筏苔草湿地>油桦—笃斯越桔—修氏苔草湿地>修氏苔草湿地>白桦—油桦—小叶章湿地>兴安落叶松—细叶杜香—泥炭藓湿地>对照林地,漂筏苔草湿地高达3.36万t.km-2,兴安落叶松—细叶杜香—泥炭藓湿地为1.27万t·km-2。
     (5)五类湿地土壤SOC含量与容重呈极显著负相关(r=-0.879,P=0.000),拟合方程呈指数函数关系(R2=0.851),与非毛管孔隙存在显著的正相关关系(r=0.628,P=0.011);土壤SOC含量与土壤全N、水解N和有效P呈极显著正相关关系(r=0.901,r=0.891,r=0.825),与全P呈显著正相关(r=0.690)。土壤SOC与全N之间拟合方程存在幂函数关系(R2=0.912),与土壤全P之间拟合方程呈指数函数关系(R2=0.772),与水解N和有效P之间均存在直线关系(R2=0.843,R2=0.68)
There are varieties of extensive swamps existing in Xiaoxing'an Mountains, including forest-swamp, shrub-swamp, marsh, moss-swamp and so on. These kinds of wetlands effect significantly on regulating peak, storing precipitation, conserving soil and water as well as improving microclimate. Peat swamp as the representative wetland of Xiaoxing'an Mountain was studied, in order to research on the flora, vegetation type, physical and chemical properties, especially on the content of organic carbon, and to analyze the relativity, so that the scientific foundation could be provided.
     The main results are as followed:
     (1)Seed plants of peat swamp in Xiaoxing'an Mountains contained 63 families,184 genera and 339 species, including 1 family,4 genera,4 species of gymnosperms and 67 families,193 genera,358 species of angiosperms, which account for 49.22% of total families, 24.83% of total genera and 12.93% of total species of Northeastern China. The families of seed plants could be divided into 4 distribution types and 4 forma; genera 12 distribution types and 9 forma; species 15 distribution types and 18 subtypes. The geographical elements of families, genera and species in this study area mainly belong to temperate zone.
     (2)The soil bulk density of the five typical swamp soil varied from 0.06 g-cm-3 to 0.74 g-cm-3. The capillary porosity changed between 49.54%-59.95%, non-capillary porosity 31.69%~12.75%, among which the capillary porosity of Pseudocuraica marsh was the largest, both the non-capillary porosity and general porosity of Larix gmelinii-Ledum-Sphagnum wetland were the largest. The soil maximum moisture capacity, capillary water capacity, and the minimum moisture capacity of Larix gmelinii-Ledum-Sphagnum wetland were 1586.57%,1007.71%and 882.70%, respectively.
     (3)The PH of these 5 swamps were completely lower than 6.0. Among which Larix gmelinii-Ledum-Sphagnum wetland had the largest organic matter content with each soil layer larger than 800 g.kg-1. The average total N content varied from 3.41 g.kg-1 to 13.78g.kg-1 the average hydrolysis N content changed between 60~1100 g.kg-1, the total P content changed between 0.47-1.26g.kg-1, the available P content represented that the one of surface was larger than the lower, and decreased with the layer deeper, in addition that the available P content was higher than 30mg.kg-1
     (4)The order of the average SOC content was:Larix gmelinii-Ledum-Sphagnum wetland> Pseudocuraica marsh> Betula ovalifolia-Vaccinium-Carex> Carex swamp>Betula platyphylla-Betula ovalifolia-Deyeuxia angustifolia> contrast area, with the SOC content of Larix gmelinii-Sphagnum wetland was 477.69g.kg-1, which was 16.06 times higher than the contrast area. The average carbon density was in a order of:Pseudocuraica marsh> Betula ovalifolia-Vaccinium-Carex> Carex swamp> Betula platyphylla-Betula ovalifolia-Deyeuxia angustifolia> Larix gmelinii-Ledum-Sphagnum wetland> the contrast area. The carbon density of the Pseudocuraica marsh was the highest (83.19kg.m-3), while that of Larix gmelinii-Ledum-Sphagnum wetland was relatively low (48.03kg.m-3), and they were 3.15 and 2.03 times that of the contrast area respectively. The carbon content of the 0-40cm soil layer was ranked as follow. Pseudocuraica marsh> Betula ovalifolia-Vaccinium-Carex> Carex swamp> Betula platyphylla-Betula ovalifolia-Deyeuxia angustifolia> Larix gmelinii-Ledum-Sphagnum wetland> the contrast area. While that of the Pseudocuraica marsh was up to 33.6 thousand t.km'2, and that of the Larix gmelinii-Ledum-Sphagnum wetland was 12.7 t.km-2 thousand.
     (5) The SOC content of these 5 swamp were in a significant negative correlation with soil bulk density(r=-0.879, P=0.0000), and the fitting results were exponential relationship (R2=0.851). It is in a significant positive correlation with non-capillary porosity(r=0.628, P=0.011). Besides, the SOC were highly significantly related with total N, hydrolysis N content and available P (r=0.901, r=0.891, r=0.825), and were significantly correlated with full P (r=0.690). The SOC content of these 5 kinds of wetland soil were in a power function relationship with soil total N (R2=0.912), and in a linear relationship with both the hydrolysis N and available P (R2=0.843, R2=0.68).
引文
[1]郎惠卿,赵魁义,陈克林,等.中国湿地植被,北京:科学出版社,1999
    [2]孟宪民,崔保山,邓伟,等.松嫩流域特大洪灾的醒示:湿地功能的再认识.自然资源学,1999,14(1):14~21;
    [3]汤国平,刘小青.湿地功能及保护措施探讨.黄河水利职业技术学院学报,2001,13(2):4-6;
    [4]翟金良,何岩,邓伟.向海国家级自然保护区湿地功能研究.水土保持通报,2002,22(3):5-9
    [5]赵魁义.地球之肾——湿地.北京:化学工业出版社,2002:3-5.
    [6]林业部野生动物和森林植物保护司.湿地保护与合理利用指南.北京:中国林业出版社,1994:147-161
    [7]赵魁义.中国沼泽志.北京:科学出版社,1999
    [8]程岭,孔祥伟,付松华,等.黑龙江省湿地保护与生态旅游开发.国土与自然资源研究,2003,3:57-58.
    [9]马广礼.鄂西亚高山泥炭藓沼泽湿地的植物多样性.武汉:华中师范大学.2008.11-14
    [10]Mcneil P, Waddington J M. Moisture Controls on Sphagnum Growth and CO2 Exchange on a Cutover Bog. Journal of Applied Ecology,2003,40(2):354~367.
    [11]Gajewski K, Viau A, Sawada M, Atkinson D, Wilson S. Sphagnum P eatland Distribution in North America and Eurasia During the Past21,000 Years.Global Biogeochemical Cycles,2001,15(2):297~310.
    [12]严承高,张明祥.中国湿地植被及其保护对策.湿地科学,2005,3(3):210~215
    [13]张永泽,王烜.自然湿地生态恢复研究综述.生态学报,2001.21(2):309~314
    [14]周以良,倪红伟,周瑞昌.大兴安岭森林植物多样性特征.国土与自然资源研究,1998,3:66~68.
    [15]张元明,曹同,潘伯荣.新疆博格达山地面生苔藓植物物种多样性研究.应用生态学报,2003,14:887-889.
    [16]叶万辉,马克平,马克明等.北京东灵山地区植物群落多样性研究Ⅸ.尺度变化对a多样性的影响.生态学报,1998,18(1):10-14.
    [17]周红章.物种与物种多样性.生物多样性,2000,8(2):215~226.
    [18]陈灵芝,钱迎倩.生物多样性科学前沿.生态学报.1997,17(6):555~572.
    [19]宋祥云,土壤胡敏素组成与结构特征研究(硕士学位论文)2007,12
    [20]Pallo F J P.Evolution of organic matter in some soil sunder shifting cultivation practices in Burkina Faso.In:Mulongoy K and M erckx Reds.Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture. Awiley-SayceCo-Publication.1993,109~120
    [21]杨继松,于君宝,刘景双,王金达,三江平原典型湿地土壤腐殖质的剖面分布及其 组成特征,土壤通报,2006,37(5):865~868
    [22]石福臣,李瑞利,王绍强.三江平原典型湿地土壤剖面有机碳及全氮分布与积累特征.2007,18(7):1425~1431
    [23]童成立,张文菊,王洪庆,等.三江平原湿地沉积物有机碳与水分的关系.环境科学,2005,26(6):38~42
    [24]宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态.环境科学,2004,25(3):168~172
    [25]刘子刚.湿地生态系统碳储存和温室气体排放研究.地理科学,2004,24(5):634-639
    [26]龚子同,陈志诚,史学正,等.中国土壤系统分类—理论·方法·实践.北京:科学出版社,1999:1-903
    [27]张电学,韩志卿,王秋兵,等.不同施肥制度下褐土结合态腐殖质动态变化.沈阳农业大学学报,2006,37(4):597-601
    [28]张春霞,郝明德,谢佰承.不同化肥用量对土壤碳库的影响.土壤通报,2006,37(5):861~864
    [29]关松,窦森,张大军,等.土壤腐殖质组成对大气二氧化碳浓度升高的响应.水土保持学报,2006,20(5):186-188
    [30]蔡燕飞,章家恩,张杨珠,等.稻作制度对红壤性水稻土有机质特征的影响.土壤,2006,38(4):396~399
    [31]张文菊,吴金水,肖和艾,等.三江平原典型湿地剖面有机碳分布特征与积累现状.地球科学进展,2004,19(4):558-563
    [32]杨钙仁,张文菊,童成立,等.温度对湿地沉积物有机碳矿化的影响.生态学报,2005,25(2):243-248
    [33]Gorham E. Northern peatlands:Role in the carbon cycle andprobable responses to climatic warming. Ecological Applications,1991,1:182-195.
    [34]潘根兴.中国土壤有机碳、无机碳库量研究.科技通报,1999,15(5):330~332.
    [35]Euliss N H Jr, Olness A, Gleason R A. Organic Carbon in Soils of Prairie Wetlands in the United States. Paper presented at The Carbon Sequestration Workshop, Oak Hammock Marsh, Manitoba,1999. April 19-20,1999.
    [36]田应兵,熊明彪,熊晓山,等.若尔盖高原湿地土壤—植物系统有机碳的分布与流动.植物生态学报,2003,27(4):490-495
    [37]田昆.云南纳帕海高原湿地土壤退化过程及驱动机制.长春:中国科学院长春地理研究所,2004:30~48
    [38]Turner BLII, Meyer W B. Land use and land cover in global envirmental change: considerations for study. International Social Science J,1991,130:669~679
    [39]Gornilz V. A surece of anthropogenic vegetation changes in the west Africa during the last century-climatic implications. Climatic Change,1985,7:285~325
    [40]Henderson-Sellers A, Wilson M F. Surface albedo data for climatic modeling. Review of Geophysics and Space Physics,1983,21:1743-1778
    [41]Dalal R C, Mayer R J. Long-term trends in fertility of soils under continous cultivation and cerceal cropping in Southern Qeensland Ⅱ. toal organic carbon and its rate of loss from the soil profile.Aust.J.Soil Res,1986,24:281-292
    [42]Kennede A C, Papendick R I. Microbial characterislics of soil quality. Soil water Conserv, 1995,50:243~247
    [43]杨永兴,王世岩.人类活动干扰对若尔盖高沼泽土,泥炭土资源影响的研究.资源科学,2001,23(2):37-41
    [44]常凤来,田昆,莫剑锋,等.不同利用方式对纳帕海高原湿地土壤质量的影响.湿地科学,2005,13(2):132-135
    [45]张金波,宋长春,杨文燕.三江平原土壤氮矿化势和硝化势的影响.土壤通报,2005,36(1):137-139
    [46]Palumbo B,etal.Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily,Italy.Geogerma,2002,95:247~266.
    [47]Yong Sik Ok, et al.Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Journal of Hazardous Materials,2007,147(1-2):91~96.
    [48]4W.H.Patrick, et al.Distribution of soluble heavy metals between ionic and complexed forms in a saturated sediment as affected by pH and redox conditions. Water Science and Technology,1998,37(6-7):165~171.
    [49]Gwenaelle Olivie-Lauquet,et al.Release of trace elements in wetlands:role of seasonal variability. Water Research,2001,35(4):943~952.
    [50]于君宝,王金达,刘景双.三江平原泥炭中营养元素垂直分布特征.应用生态学报,.2004,15(2):265~268
    [51]白军红,邓伟,张玉霞.内蒙古乌兰泡湿地环带状植被区土壤有机质及全氮空间分异规律.湖泊科学,2002,14(2):145~151
    [52]王义弘,李俊清,王政权.森林生态学实验实习方法.哈尔滨:东北林业大学出版社,1990
    [53]张万儒,许本彤.森林土壤定位研究方法.北京:中国林业出版社,1986
    [54]国家林业局.中华人民共和国林业行业标准:森林土壤分析方法(LY/T 1210-1275—-1999)
    [55]马克平.生物多样性的测度方法.钱迎春.马克平主编.生物多样性研究的原理与方法.北京:中国科学出版社,1994,141-165
    [56]吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统.云南植物研究,2003,25(3):245-257.
    [57]吴征镒.中国种子植物属的分布区类型.云南植物研究(增刊),1991.Ⅳ:1~139
    [58]傅沛云,曹伟,李冀云,等.中国东北部种子植物种的分布区类型.沈阳:东北大学出版 社,2003.
    [59]Kitagawa M. Neo-Lineamenta Florae Man-shurucae. Verlag Kommandit gesellschati,Vaduz,1979,46~689
    [60]周以良,李景文,高中信,等.中国小兴安岭植被.北京:科学出版社,1994.
    [61]侯学煜等.中国植被.北京:科学出版社,1960.
    [62]林鹏.中国红树林生态系统.北京:科学出版社,1997.
    [63]陆健健.中国湿地.上海:华东师范大学出版社,1990.
    [64]马学慧,牛焕光.中国的沼泽.北京:科学出版社,1991.
    [65]倪红伟,唐树本.黑龙江省植被的区系组成特征.国土与自然资源研究,1995,(3):57-61.
    [66]倪志英,毛子军,孙龙,等.黑龙江省东部山地湿地主要植被类型及其演替规律的研究.植物研究,2003,23(3):356-362.
    [67]唐小平,黄桂林.中国湿地分类系统的研究.林业科学研究,2003,16(5):531-539.
    [68]陈伟烈.中国的湿地植被类型、分布及其保护.中国湿地研究(陈宜瑜主编).长春:吉林科学出版社,1995,55-62.
    [69]高凤歧.小兴安岭北端地貌特征及其成因.吉林师大学报,1964,(1):119-132.
    [70]葛继稳,蔡庆华,刘建康,等.梁子湖湿地植物多样性现状与评价.中国环境科学,2003,23(5):451~456
    [71]韩态,温瑞勇,迟占颖.浅谈大小兴安岭森林植被分布.内蒙古科技与经济,2004,16:111-113.
    [72]侯学煜.中国植被地理及优势植物化学成分.北京:科学出版社,1982.
    [73]黄锡畴.沼泽生态系统的性质.地理科学,1989,9(2):97-104.
    [74]李自珍,惠苍.玛曲高寒草甸湿地植物构成及其集合种群群落的多样性维持机理.西北植物学报,2004,24(3):397-403.
    [75]李自珍,韩晓卓,李文龙,等.高寒湿地植物群落的物种多样性保护及生态恢复对策.西北植物学
    [76]吕宪国.湿地生态系统保护与管理.北京:化学工业出社,2004.
    [77]倪晋仁,殷康前,赵智杰.湿地综合分类研究(Ⅰ):分类.自然资源学报,1998,13(3):214-221
    [78]倪志英,毛子军.黑龙江省森工林区湿地的植物区系.东北林业大学学报,2002,30(2):18~20.
    [79]宋朝枢,张清华.中国湿地主要植被类型,湿地保护与合理利用.北京:中国林业出版社,1995.
    [80]王荷生.植物区系地理.北京:科学出版社,1992.
    [81]王铁娟,刘淑润,杨持.大兴安岭北部草本沼泽的基本特征.中国草地,2003,25(6):12-16.
    [82]张友民,刘兴土,肖洪兴,等.三江平原芦苇湿地植物多样性的初步研究.吉林农业大学学报,2003,25(1):58~61.
    [83]赵一宇,杜沦聪.大小安岭林区森林沼泽成因、类型及其分布规律的研究.东北林学院学报,1980,(1):27-35.
    [84]Pielou EC. Ecological Diversity. New York:John Wiley& Sonsinc,1975,178~208.
    [85]Magurran AE. Ecological Diversity and Its Measurement. Princeton University Press, 1988,108~121.
    [86]Simpson EH. Measurement of diversity. Nature,1949,163:688.
    [87]Peet RK. The measurement of species diversity. Annual Review of Ecology and Systematics,1974, (5):285-307.
    [88]白光润,王升忠,冷雪天,等.草本泥炭形成的生物环境机制.地理学报,1999,54(3):247~254.
    [89]冷雪天,?.?.别林格.高位沼泽的形成环境与机制.东北师大学报自然科学版,1997,(2):90-97.
    [90]郎惠卿.兴安岭和长白山地森林沼泽类型及其演替.植物学报,1981,23(6):470-477.
    [91]白燕,赵红艳,祖文辰,等.中国东北与白俄罗斯泥炭藓泥炭特性的对比研究.东北师大学报自然科学版1997,(2):98-103.
    [92]刘述彬.黑龙江省伊春地区泥炭资源现状遥感评价.国土与自然资源研究.2000,(2):60~63.
    [93]彭格林,刘光华,伍大茂,等.泥炭沼泽化类型、控制因素及聚炭水文模式.地学前缘1999,6(增刊):125~132.
    [94]卜兆君,杨允菲,郎惠卿.小兴安岭泥炭沼泽甸杜种群分株的年龄结构与生长分析.东北师大学报自然科学版,2004,36(4):98-104.
    [95]王杰,王升忠.长白山区泥炭沼泽植物多样性研究.湿地科学2005,3(2):121~126.
    [96]贾琳,王国平,刘景双.长白山锦北雨养泥炭剖面元素富集规律分析.湿地科学,2006,4(3):187~192.
    [97]刘汝海,王起超,吕宪国,等.小兴安岭泥炭藓沼泽生态系统中的汞.环境科学,2002,23(4):102~106.
    [98]张桂荣,白燕.东北地区泥炭微量元素的研究.东北师大学报自然科学版,1997,(4):99~102.
    [99]马雪华.森林水文学.北京:中国林业出版社,1993:92~100.
    [100]田大伦,陈书军.樟树人工林土壤水文-物理性质特征分析.中南林学院学报,2005,25(2):1-6.
    [101]胡海清,刘洋,孙龙,等.火烧对不同林型下森林土壤水分物理性质的影响.水土保持学报,2008,22(2):162~165
    [102]Mitsch W J, Gosselin K.J. Wetlands. New York:John Wiley & Sons,2000.155-204.
    [103]Reddy K R.Biogeochemistry of phosphorus:Wetland biogeo-chemistry lecture narrative.SOS 6448 Modul 4,2002.
    [104]于君宝,王金达,刘景双,等.典型黑土pH值变化对微量元素有效态含量的影响研究.水土保持学报,2002,16(2):93-95
    [105]刘银良,阎敏华,孟宪民.大兴安岭森林火灾对沼泽土壤的影响.地理科学,1995,15(4):378-384
    [106]田应兵,熊明彪,宋光煜.若尔盖高原湿地生态恢复过程中土壤有机质的变化研究.湿地科学2004,2(2):88~93
    [107]Moore TR, Roulet NT, Waddington JM. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peat-lands. Climatic Change,1998,40:229-245
    [108]常凤来,田昆,莫剑锋,等.不同利用方式对纳帕海高原湿地土壤质量的影响.湿地科学,2005,13(2):132~135
    [109]侯龙鱼,刘艳,马风云,等.典型相关分析在湿地土壤特征研究中的应用——以黄河三角洲冲积平原湿地土壤为例.中国水土保持科学,2007,5(6):47-52
    [110]白军红,邓伟,张玉霞,等.洪泛区天然湿地土壤有机质及氮素空间分布特征.环境科学,2002,232):77~81
    [111]Mitsch W J, Gosselin K J. Wetlands.New York:John Wiley & Sons,2000:155~204.
    [112]白军红,邓伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究—以月亮泡水陆交错带为例.环境科学学报,2002,22(3):343~348.
    [113]彭佩钦,张文菊,童成立,等.庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布.水土保持学报,2005,19(1):49-51
    [114]孙志高,刘景双,于君宝.三江平原小叶章湿地土壤中碱解氮和全氮含量的季节变化特征.干旱区资源与环境.2009,23(8):145~149
    [115]赵如金,李潜,吴春笃,等.北固山湿地土壤氮磷的空间分布特征.生态环境2008,17(1):273~277
    [116]白军红,邓伟,张玉霞.莫莫格湿地土壤氮磷空间分布规律研究.水土保持学报,2001,15(4):79~81
    [117]Bai J, Deng W, Zhu Y, et al. Spatial variability of nitrogen in soils from land/inland water ecotones. Comun. Soil Sci. Plant Analy.,2004,35(5~6):735~750
    [118]刘艳,马风云,宋玉民,等.黄河三角洲冲积平原湿地土壤酶活性与养分相关性研究.水土保持研究,2008,15(1):59-61
    [119]陆文龙,张福锁,曹一平.磷土壤化学行为研究进展.天津农业科学,1998,4(4):1-7.
    [120]孙向阳.土壤学.北京:中国林业出版社,2005
    [121]熊礼明.土壤圈及全球磷素循环.南京:江苏科技出版社,1992.
    [122]赵如金,李潜,吴春笃,等.北固山湿地土壤氮磷的空间分布特征.生态环境2008,17(1):273-277
    [123]向万胜,黄敏,李学坦.土壤磷素的化学组分及其植物有效性.植物营养与肥料学报,2004,10(6):663-670
    [124]秦胜金,刘景双,王国平.影响土壤磷有效性变化作用机理.土壤通报,2006,37(5):1012-1016
    [125]李寿田,周健民,王火焰,等.不同土壤磷的固定特征及磷的释放量和释放速率研究.土壤学报,2003,40(6):908~914
    [126]曾从盛,钟春棋,仝川,等.闽江口湿地不同土地利用方式下表层土壤N,P,K含量研究.水土保持学报,2009,23(3):87-91
    [127]郝建朝,吴沿友,连宾,等.不同植物下湿地土壤磷状况与植物脱磷效应.地球与环境,2006,34(1):44-48
    [128]邱扬,傅伯杰,王军,等.黄土高原小流域土壤养分的时空变异及其影响因子.自然科学进展,2004,14(3):294~299
    [129]沈任芳.潮土无机磷的形态及其分布特点.河南农业科学,1992(12):24~25
    [130]王艳芬,陈佐忠,Tieszen L T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545~551.
    [131]卢妍,宋长春,王毅勇,等.植物对沼泽湿地生态系统CO2和CH4排放的影响.西北植物学报,2007,27(11):2306~2313
    [132]IPCC (International Panel of Climate Change). Land use,Land-use Change, and Forestry. Cambridge and New York:Cambridge University Press,2000.
    [133]Trettin C C, JURGENSEN M F.Carbon cycling in wetland forest soils.In J.Kimble,R.Birdsie,and R.Lal.The potential of U.S.forest soils to sequester carbon and mitigate the greenhous effect.CRC Press,Boca Raton,Florida.2003,311-331.
    [134]Smith L C,Macdonald G M,Velichko A A,et al. Siberian peatlands a net carbon sink and global methane source since the Early Holocene.Science,2004(303):353~356.
    [135]肖辉林.气候变化与土壤有机质的关系.土壤与环境1999,8(4):300~304
    [136]高俊琴,欧阳华,张锋,等.若尔盖高寒湿地表层土壤有机碳空间分布特征.生态环境,2007,16(6):1723~1727
    [137]张文菊,吴金水,童成立,等.三江平原湿地沉积有机碳密度和碳储量变异分析.自然资源学报,2005,20(4):537~544
    [138]白军红,邓伟,朱颜明,等.霍林河流域湿地土壤碳氮空间分布特征及生态效应.应用生态学报,2003,14(9):1494-1498
    [139]刘兴土,吕宪国,赵魁义.东北地区有关水土资源配制、生态与环境保护和可持续发展的若干战略问题研究-林业卷:东北地区森林与湿地保育及林业发展战略研究:李文华.湿地资源与保护.北京:科学出版社,2007,409~449.
    [140]严金龙,丁成,韩香云,等.全球气候变化中的滩涂湿地土壤有机碳研究.盐城工学院报(自然科学版),2009,22(1):1~5
    [141]Parish F, Looi C C. Wetlands, biodiversity and climate change. Opinions and needs fro enhanced linkage between the Ramsar conventions on wetland. Convention on biological diversity and UN framework convention on climate change.Tokio,1999.
    [142]MauquoyD, Engelkes T, Groot M H M, et al. High-resolution records of late Holocene climate change and carbon accu-mulation in two north-west European ombrotrophic peat bogs Palaeogeography, Palaeoclimatology, Palaeoecology,2002,186:275-310.
    [143]Arrouays D,Pelissier P.Modeling carbon storage profiles in temperate forest humic loamy soils of France.Soil Science,1994,(157):185~192.
    [144]Groffman PM, Patriek W H. Denitrifieation hysteresis during wetting and drying cycles in soil.Soil Sci Soc Am J,1988,52:1626-1629
    [145]Smth C M, Tiedje J M. Phases of dentrifieation following oxygen depletion in soil. Biol Biochem,1979,11:261~267
    [146]Fang C, Moncrieff J B.2001. The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry,33:155~165.
    [147]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响.应用生态学报,2002,13(6):709~714.
    [148]杨钙仁,张文菊,童成立,等.温度对湿地沉积物有机碳矿化的影响.生态学报,2005,25(2):243~248.
    [149]IPCC (International Panel of Climate Change). Land use,Land-use Change, and Forestry. Cambridge and New York:Cambridge University Press,2000.
    [150]刘子刚,张坤民.黑龙江省三江平原湿地土壤碳储量变化.清华大学学报(自然科学版),2005,45(6):788-791
    [151]曾从盛,钟春棋,仝川,等.土地利用变化对闽江河口湿地表层土壤有机碳含量及其活性的影响.水土保持学报,2008,22(5):125~129
    [152]李忠佩,程励励,林心雄.红壤腐殖质组成变化特点.土壤,2002,1:9~15.
    [153]陈立新,杨承栋.兴安落叶松人工林土壤腐殖物质组分及其对酸度的影响.林业科学,2007,43(2):8-14
    [154]孙向阳.土壤学.北京:中国林业出版社,2008,102~106
    [155]杨继松,于君宝,刘景双,王金达.三江平原典型湿地土壤腐殖质的剖面分布及其组成特征.土壤通报,2006,37(5):865-868
    [156]窦森,张继宏,须湘成,等.棕壤不同粒级微团聚体中有机质特性的研究.土壤通报,1992,23(2):26~28
    [157]李学垣.土壤化学.北京:高等教育出版社,2001,46~48
    [158]马学慧,吕宪国,杨青,等.三江平原湿地碳循环.地理科学,1996,16(4):323-330
    [159]沈永明,曾华,王辉,等.江苏典型淤长岸段潮滩盐生植被及其土壤肥力特征.生态学报,2005,25(1):1-6
    [160]白军红,邓伟,王庆改,等.内陆盐沼湿地土壤碳氮磷剖面分布的季节动态特征.湖泊科学,2007,19(5):599-603千万不要删除行尾的分节符,此行不会被打印。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700