用户名: 密码: 验证码:
激光诱导击穿光谱技术在电站运行诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国电力生产的快速发展和用电结构发生的重大变化,使电站锅炉面临来煤多变,煤质特性复杂多样,大范围的负荷变化等不利影响,导致运行中出现各种各样的问题,比如燃烧效率偏低、燃烧稳定性差、受热面积灰、结渣、磨损等,不利于机组的稳定控制,直接影响电站锅炉运行的安全性和经济性,也严重影响了电网运行安全。燃煤电站锅炉机组在线测量技术的缺乏已经成为制约火电机组优化运行技术发展的瓶颈问题之一。因此本文致力于探讨将激光诱导击穿光谱技术应用于电站锅炉的运行诊断中,以此作为论文的研究主题,针对粉煤灰未燃碳、燃煤结渣特性和灰分含量以及受热面失效趋势的快速分析和检测开展理论和实验研究。
     论文在粉煤灰未燃碳、燃煤结渣特性和灰分含量以及受热面失效分析的技术水平和研究现状基础上,阐述了本论文选题的背景和意义,并明确了本论文的研究内容。详细的介绍了激光诱导击穿光谱技术原理与搭建的实验系统,为实现激光器和光谱同步控制进行了触发信号控制系统改造。将多变量分析方法引入激光诱导击穿光谱技术的定性和定量分析中,在详细阐述各方法的数学原理和计算过程的基础上,结合实验研究验证了多元线性回归、主成分回归和偏最小二乘法回归方法在LIBS定量分析方面的潜力。
     对重要测量参数之一的激光能量对粉煤灰未燃碳分析的影响机制和规律进行了深入研究,探讨了在大气环境下利用深紫外区碳谱线定量分析未燃碳的可行性。针对基体效应影响定量分析的问题,引入了多元线性回归和多谱线强度和为内标的定量分析方法,对比了不同煤种的粉煤灰样品未燃碳含量的定量分析结果,验证了激光诱导击穿光谱技术分析粉煤灰未燃碳的煤种适应性能力。
     在深入研究样品形态和激光能量这两个重要参数对燃煤中主要的灰成分元素测量的影响机制和规律的基础上,对比分析了直接关系到现场应用的两种收光模式下的燃煤等离子体光谱信号,发展了一种基于单次光谱同时检测Si_2O和Al_2O_3的燃煤结渣特性评价方法。此外,针对传统方法由光谱数据先得到灰成分含量再计算灰分含量的测量精确度较差问题,引入了偏最小二乘法,发展了直接提取燃煤光谱数据分析得到灰分含量的新方法,并验证了其良好的灰分分析精确度。
     针对传统失效分析方法需要进行破坏性割管和无损检测方法只能分析裂纹等宏观缺陷的问题,提出了将激光诱导击穿光谱应用于受热面材料宏观缺陷出现前的失效趋势分析。在详细分析锅炉受热面材料失效特征的基础上,深入研究了不同金相组织和不同球化程度的受热面材料与激光相互作用的机制,揭示了谱线特征、等离子体温度和电子密度等激光等离子体特性随受热面材料不同状态的变化规律。并引入了主成分分析法,利用更多可以表征材料特性的光谱数据对不同组织的样品进行了归类。为发展受热面失效趋势分析的新方法和拓展激光诱导击穿光谱技术应用的新方向奠定了理论基础和实践依据。
In recent years, with the rapid development of electric power production and the major changes of power consumption structure, the boiler will be affected by many adverse factors (e.g. coal changes, complex and diverse quality characteristics of coal, a wide range of load variability, etc.). These adverse factors may lead to a series of problems, such as low combustion efficiency, poor combustion stability, fouling of heating surface, slagging, abrasion, etc. which are not conducive to the stability of the boiler control. There are not only direct impact on the safety of boiler operation and economy, but also seriously affect the power grid security. The lack of online measurement technology for coal-fired power plant boiler units' has become one of bottleneck problems that limite the development of optimal operation of thermal power technology. The purpose of this thesis is to investigate the potential of laser-induced breakdown spectroscopy technology used in power station for boiler diagnosis, of particular interest to the theoretical analysis and experimental research of unburned carbon of fly ash, slagging characteristics of coal and ash content and the failure trend of heat exchange surface.
     Firstly, the research status of the measurement technology of unburned carbon of fly ash, slagging characteristics of coal and ash content and the failure trend of heat exchange surface were reviewed. The research contents of this thesis were details based on the representation of backgroung and purpose. Moreover, the principles of laser induced breakdown spectroscopy and the structures of the experimental system were detailed. The transformation of trigger signal for achieving simultaneous control of lasers and spectroscopy was also introduced. Then multivariate analysis method was introduced to the qualitative and quantitative analysis of laser-induced breakdown spectroscopy, the mathematical theory and calculation process of these methods were described in detail. At last, the potential of linear regression, principal component regression and partial least squares regression method for simultaneously quantitative analysis of nutrients in fertilizer was demonstrated by experiment.
     Secondly, the impact of laser energy on the measurement of fly ash carbon content was investigated. The analysis of unburned carbon in coal fly ash using laser-induced breakdown spectroscopy in deep UV was also discussed. Besides, in order to correct the adverse effect of matrix effects, the multiple linear Regression and multi-line intensities as the internal standard method were employed to quantitative analyze the unburned carbon in fly ash. The analysis shows that traditionally used univariate calibration in LIBS does not qualify quantitative analysis of fly ashes from different kinds of coal due to the presence of matrix effects. Instead, multivariate calibration has a better performance as the matrix effects can be taken into account with the influence of the spectroscopic signals of other components in fly ash. It is indicated that laser-induced breakdown spectroscopy is suitable for rapidly detect unburned carbon in fly ash with receptible applicability.
     Then, the effect law and influence mechanism of the sample morphology and the pulse laser energy on the measurement of the major elements in coal ash were analyzed. On this basis, the quantitative analysis results of SiO_2 and Al_2O_3 in different placement of focus len that was directly related to the application of LIBS in field were compared. The indicator of slagging characteristics (SiO_2/Al_2O_3) calculated by the measurement of laser induced breakdown spectroscopy was compared with that of routine laboratory analysis. Furthermore, the multivariate analysis method was employed to extracte coal ash content from LIBS spectral. These analysis results were compared with that provided by elemental analysis.
     At last, in order to develop nondestructive examination technology for analysis the failure tendency of boiler heat exchange surface before the appearance of macrography craze, LIBS was employed as a potential analysis technology. On the basis of the detail of characteristics of boiler heat exchange surface, the interaction mechanisms between laser and boiler heat exchange surface materials with different microstructure and pearlite spheroidization were analyzed. The variations of line intensity, plasma temperature and ablated crater of the pearlitic/ferritic and martensitic phases were investigated. Alternatively, principal component analysis method was employed to discriminate the pearlitic/ferritic from martensitic phases. Furthermore, the lines intensities, the intensity ratio of atomic and ionic lines, plasma temperature and electron density of raw material and different pearlite spheroidization samples were also investigated. It should be noted that there are good corresponding relationship between the intensity radio of atomic and ionic lines, electron density and the hardness of these samples.
引文
[1] Barrette L., Turmel S.. On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection [J]. Spectrochimica Acta Part B, 2001, 56(6):715-723.
    [2] Gaft M., Sapir-Sofer I., Modiano H., et al. Laser induced breakdown spectroscopy for bulk minerals online analyses [J]. Spectrochimica Acta Part B, 2007, 62 (12): 1496-1503.
    [3] SturmV.,PeterL.,Noll R.. Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet [J]. Appl. Spectroscopy, 2000, 54(9):1275-1278.
    [4] Gruber J., Heitz J., Arnold N., et al. In Situ Analysis of Metal Melts in Metallurgic Vacuum Devices by Laser-Induced Breakdown Spectroscopy [J]. Applied Spectroscopy, 2004, 58(4): 57-462.
    [5] Gaft M., Dvir E., Modiano H., et al. Laser induced breakdown spectroscopy machine for online ash analyses in coal [J]. Spectrochimica Acta Part B, 2008, 63(10): 1177–1182.
    [6] DL/T 567.6-95,飞灰和炉渣可燃物测定方法[S].中国:电力行业标准, 1995.
    [7]于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用, 1996, 13(2): 137-144.
    [8]常建平.入炉煤元素分析和飞灰含碳量的软测量实时监测[D].华北电力大学硕士学位论文. 2007.
    [9]曲亚鑫,刘吉臻,田亮,等.基于数理统计的飞灰含碳量预测及异常原因分析[J].电站系统工程, 2009, 25(1):14-16.
    [10]周昊,朱洪波,曾庭华,等.基于人工神经网络大型电厂飞灰含碳量建模[J].中国电机工程学报, 2002, 22(6): 96-100.
    [11]方湘涛,叶念渝.基于BP神经网络的电厂锅炉飞灰含碳量预测[J].华中科技大学学报(自然科学版), 2003, 31(12): 75-77.
    [12]李智,蔡九菊,郭宏,等.基于神经网络的电站锅炉飞灰含碳量软测量系统[J].节能技术, 2004, 22 (4) : 6– 7.
    [13]赵新木,王承亮,吕俊复,岳光溪.基于BP神经网络的煤粉锅炉飞灰含碳量研究[J].热能与动力工程, 2005, 20(2):158-162.
    [14]陈强,王培红,李琳,等.电站锅炉飞灰含碳量在线软测量模型算法[J].电力系统自动化, 2005, 29(2): 45-49.
    [15]王春林,周昊,周樟华,等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报, 2005, 25(20): 72-76.
    [16]崔宇,薛美盛.局部LSSVM方法在飞灰含碳量软测量中的应用[J].仪表技术, 2009, 5: 62-64.
    [17] Trerice D.N.. Method and apparatus for measurement of carbon content in fly ash. US Patent No. 4,705,409; 1987.
    [18] Cutmore NG. Determination of carbon in fly ash from microwave attenuation and phase shift. US Patent No. 5,177,444; 1993.
    [19]骆宝全.锅炉飞灰含碳量在线监测仪的应用[J].华东电力, 2003, 3:37-38.
    [20]戈升欣,梅义忠,王晓军.微波谐振腔法测量锅炉飞灰含碳量[J].山东电力技术, 2001, 6: 65-67.
    [21] Ouazzane A. K., Castagner J. L., Jones A. R., et al. Design of an optical instrument to measure the carbon content of fly ash [J]. Fuel, 2002, 81(15): 1907-1911.
    [22] Go?a? J., Jankowski H., Niewczas B., et al. Optoelectronic system for on-line measurement of unburnt carbon in coal fly ash [J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers. Proceedings Series, 2001, 4516: 267.
    [23] Styszko-Grochowiaka K., Go?a?a J., Jankowski H.. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content [J]. Fuel, 2004, 83(13): 1847–1853.
    [24] David J. Waller, Robert C.Brown. Photoacoustic response of unburnt carbon in fly ash to infrared radiation [J]. Fuel, 1996, 75(13):1568-1574.
    [25]黄少鹗.运用连续飞灰含碳量监测系统优化锅炉燃烧[J].电站辅机, 2004, 88 (1) : 34239.
    [26] Burgher E. C., Hope T.. Increasing the Reliability and Accuracy of Automated [A], On-Line Carbon-in-Ash Measurements [C]. 2002 Conference on Unburned Carbon on Utility Fly Ash, Pittsburgh, May 2002.
    [27]马永和,李胜,徐秋静,等.火力发电厂飞灰含碳量的检测[J].黑龙江自动化技术与应用, 1999, 18(6): 51-54.
    [28]潘理黎,王佳莹,杨玉峰,等.火电厂飞灰含碳量在线监测设备现状[J].热力发电, 2008, 37(11): 10-14.
    [29] Cutmore N. G.. Determination of carbon fly from microwave attenuation and phase ash shift. 1993-O1-5 , GO1N-22100 ,US5177444-A.
    [30]李强,宣益民,冯长青,等. MCE-1型烟道式飞灰含碳量在线测量系统的研制[J].工程热物理学报, 2003, 24(3): 523-526.
    [31]戴莉,宋兆龙.锅炉烟道飞灰含碳量在线检测系统的研究[J].传感器技术, 2004, 23(12): 17-19.
    [32]张扬,马道林,陆明.微波在线飞灰含碳量测定技术及分析[J].发电设备, 2006,3: 180-183.
    [33] Noda M., Deguchi Y., Iwasaki S., et al. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2002, 57 (4): 701-709.
    [34] Kurihara M., Ikeda K., Izawa Y.. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy [J]. APPLIED OPTICS, 2003, 42(30): 6159-6165.
    [35] De Lucia F.C., Gottfried J.L., Miziolek A.W. Evaluation of femtosecond laser-inducedbreakdown spectroscopy for explosive residue detection [J]. Optics Express, 2009, 17(2): 419-425.
    [36] Ng C. W., Ho W. F., Cheung N. H.. Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength [J]. Applied spectroscopy, 1997, 51(1): 87-91.
    [37] C. W. Ng, W. F. Ho, N. H. Cheung. Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties [J]. Applied spectroscopy, 1997, 51(7): 976-983.
    [38] Sdorra W., Brust J., Niemax K.. Basic investigations for laser microanalysis: IV. The dependence on the laser wavelength in laser ablation [J]. Mikrochimica Acta, 1992, 108(1-2): 1-10
    [39] Brygo F., Dutouquet Ch., Guern F. Le., et al. Laser fluence, repetition rate and pulse duration effects on paint ablation [J]. Applied Surface Science, 2006,252(6): 2131-2138.
    [40] Huang J. S., Ke C. B., Huang L. S., et al. The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets [J]. Spectrochimica Acta Part B, 2002, 57(1): 35-48.
    [41]姚顺春,陆继东,谢承利,等.激光能量对粉煤灰未燃碳测量的影响[J].光谱学与光谱分析, 2009, 29 (8):2025-2028.
    [42] Kuzuya M., Murakami M., Maruyama N.. Quantitative analysis of ceramics by laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2003, 58(5):957-965.
    [43] Carranza J. E., Gibb E., Smith B. W., et al. Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy [J]. Applied Optics, 2003, 42(30): 6016-6021.
    [44] Fisher B. T., Johnsen H. A., Buckley S. G., et al. Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals [J]. Applied Spectroscopy, 2001, 55(10): 1312-1319.
    [45] Multari R. A., Foster L. E., Cremers D. A., et al. Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy [J]. Applied Spectroscopy, 1996, 50(12): 1483-1499.
    [46] Grant K. J., Paul G. L.. Electron temperature and density profiles of excimer laser-induced plasmas [J]. Applied spectroscopy, 1990, 44(8): 1349-1354.
    [47] Sdorra W., Niemax K.. Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes [J]. Mikrochimica Acta, 1992, 107(3-6): 319-327.
    [48] Aguilera J. A., Aragon C., Penalba F.. Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis [J]. Applied Surface Science, 1998, 127-129: 309-314.
    [49] Aguilera J.A., Bengoechea J., Aragón C.. Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances [J]. Spectrochimica Acta Part B, 2004,59(4): 461–469.
    [50] Belkov M.V., Burakov V.S., Giacomo A. D., et al. Comparison of two LIBS techniques for total carbon measurement in soils [J]. Spectrochimica Acta Part B, 2009, 64(9): 899-904.
    [51] Ebinger M. H., Norfleet M. L., Breshears D. D., et al. Extending the Applicability of Laser-Induced Breakdown Spectroscopy for Total Soil Carbon Measurement [J]. Soil Sci. Soc. Am. J., 2003, 67:1616-1619.
    [52] da Silva R. M., Milori Débora M.B.P., Ferreira E. C., et al. Total carbon measurement in whole tropical soil sample [J]. Spectrochimica Acta Part B, 2008,63(10): 1221-1224.
    [53] Burakov V.S., Tarasenko N.V., Nedelko M.I., et al. Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2009, 64 (2): 141-146.
    [54] Béatrice Salléa,T, Cremersb D. A., Mauricec S., et al. Influence of the ambient pressure on the calibration curves prepared from soil and clay samples [J]. Spectrochimica ActaPart B, 2005, 60(4): 479-490.
    [55] Barbini R., Colao F., Fantoni R., et al. Semi-quantitative time resolved LIBS measurements. Appl Phys B, 1997, 65(1): 101-07.
    [56] Bassiotis I., Diamantopoulou A., Giannoudakos A.. Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2001,56(6):671-683.
    [57] Body D., Chadwick B.L.. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system [J]. Spectrochimica Acta Part B, 2001,56(6): 725-736.
    [58] Chaléard C., Mauchien P., Andre N., et al. Correction of Matrix Effects in Quantitative Elemental Analysis with Laser Ablation Optical Emission Spectrometry [J]. Journal of Analytical Atomic Spectrometry, 1997, 12(2): 183-188.
    [59] Clegg S. M., Sklute E., Dyar M. D., et al. Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques [J]. Spectrochimica Acta Part B, 2009, 64 (1): 79-88.
    [60] Laville S., Sabsabi M., Doucet F. R.. Multi-elemental analysis of solidified mineral melt samples by Laser-Induced Breakdown Spectroscopy coupled with a linear multivariate calibration. Spectrochimica Acta Part B, 2007, 62 (12):1557-1566.
    [61] Palanco S., Laserna J. J.. Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities [J]. J. Anal. At. Spectrom., 2000, 15(5), 1321-1327.
    [62]修洪雨.燃煤灰渣主要成分的熔融特性研究[D].浙江大学硕士学位论文.2005.
    [63] Borio R. W., Narciso R. R.. The Use of Gravity Fraction Techniques For Assessing Slagging and Fouling Potentional of Coal Ash [A]. Winter Annual Meeting of The American Society of Mechanical Engineers [C], December, 1015, 1978.
    [64] V. Ganapathy. Nomogram Estimaters Melting Point of Ash. Power Engineering,1978 ,82 (3).
    [65]岑可法,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994.
    [66]雷俊智,马其良,潘卫国.电厂燃煤结渣性能预测方法研究[J].锅炉技术, 2001, 32(11): 7-11.
    [67]陈立军,文孝强,王强,等.火力发电机组锅炉结渣预测方法的新进展[J]..东北电力学院学报, 2008, 25(4):5-10.
    [68]陈立军,文孝强,王恭,等.燃煤锅炉结渣特性预测方法综述[J].热力发电, 2006, 6: 1-5.
    [69]李文彦,康志忠,宋之平.煤粉炉结渣预测技术的发展及新技术应用[J].中国电力, 2003, 36(2): 12-15.
    [70]崔震华.基于神经网络的煤灰结渣特性的研究[D].华北电力大学硕士学位论文.2007.
    [71]陈力哲,艾静,李争起,等.煤的结渣特性磁力分析的研究[J].热能动力工程, 2000, 15 (2): 110-111.
    [72]陈力哲,吴少华,孙绍增,等.煤燃烧结渣特性判定法及测量设备的研究[J].哈尔滨工业大学学报, 2001, 33 (2):197-199 .
    [73]龚德生.一种预测煤灰结渣特性的新方法[J].中国电力,1993, 12(2): 29-31.
    [74]鲁许鳌,谷俊杰,彭学志.锅炉受热面积灰结渣判别方法的应用分析[J].电力情报, 2002, 3: 16-20.
    [75]李永兴,陈春元.动力用煤结渣特性综合判别指数的研究.热力发电[J], 1994, 3: 36-39. .
    [76]赵显桥,曹欣玉,兰泽全,等.燃煤锅炉结渣倾向性模糊预测分析[J].电站系统工程, 2003, 19(5):9-11.
    [77]钱诗智,陆继东,宋锦海.基于模糊神经网络的煤灰结渣预报[J].自然科学进展, 1997, 7(2): 245-249.
    [78]王斌忠,吴占松.用模糊神经网络方法预测煤灰的结渣特性[J].清华大学学报(自然科学版),1999, 4: 104-107..
    [79]肖隽,吕震中.基于改进BP算法的煤灰结渣特性诊断模型[J].热能动力工程, 2002, 3: 271-274.
    [80] Wiled H.R., Herzog W.. On-Line Aanalysis of Coal by Neutron Induced Gamma Spectrometry [J]. Journal of Radioanalytical Chemistry, 1982, 71(1-2): 253-264.
    [81]宋兆龙,金键.煤质成分在线检测技术的最新进展[J].热能动力工程, 2002, 17: 458-461.
    [82]赵春祥.国内外在线煤质监测技术的发展[J].煤质技术, 2000, 5: 15-17.
    [83]崔国圣,李锦,徐军伟,等. MJA型煤质成份在线检测装置在电厂的应用[J].电站系统工程, 2005, 21(4): 45-46.
    [84]徐军伟,崔国圣,宋兆龙.煤质成分在线检测装置[J].江苏电机工程, 2005, 24(1):1-3.
    [85] Ottesen D. K., Baxter L. L., Radziemski L. J., et al. Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition [J]. Energy & Fuels, 1991, 5(2): 304-312.
    [86] Zhang H., Singh J. P., Yueh F., et al. Laser-induced breakdown spectra in a coal-fired MHD facility [J]. Applied Spectroscopy, 1995, 49(11): 1617-1623.
    [87] Wallis F. J., Chadwick B. L., Morrison R. J. S.. Analysis of lignite using laser-induced breakdown spectroscopy [J]. Applied Spectroscopy, 2000, 54(8): 1231-1235.
    [88] Body D., Chadwick B. L.. Simultaneous elemental analysis system using laser induced breakdown spectroscopy [J]. Review of scientific instruments, 2001, 72(3): 1625-1629.
    [89] Body D., Chadwick B. L.. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system [J]. Spectrochimica Acta Part B, 2001, 56(6): 725–736.
    [90] Chadwick B. L., Body D.. Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry [J]. Applied Spectroscopy, 2002, 56(1): 70–74.
    [91] Mateo M. P., Nicolas G., Yanez A.. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations [J]. Applied Surface Science, 2007, 254(4): 868–872
    [92] Yu L.Y.,Lu J.D.,Chen W., et al. Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy [J]. Plasma Science & Technology, 2005,7(5): 3041-3044.
    [93]谢承利,陆继东,李捷,等.激光诱导煤粉等离子体的特性研究[J].工程热物理学报, 2007, 28(S2): 133-136.
    [94]陆继东,刘彦,李娉.激光感生击穿光谱技术在燃烧诊断中的应用[J].华南理工大学学报(自然科学版), 2007, 35(10): 185-189.
    [95]姚顺春,陆继东,卢志民,等.样品形态对燃煤的激光烧蚀特性影响分析[J].光学学报. 2009, 4(4): 1126-1130.
    [96]谢承利,陆继东,李捷,等.基于激光感生击穿光谱的燃煤结渣特性评估[J].中国电机工程学报, 2007, 27(23): 24-27.
    [97]李兵.日本火电厂锅炉部件剩余寿命诊断技术[J].华北电力技术. 1997, 8: 5-10.
    [98]董泽.锅炉高温承压部件寿命预测及运行分析专家系统的研究[D].华北电力大学博士学位论文. 2001.
    [99]刘开敏.国外电力设备寿命管理技术动态[J].中国电力. 1997, 30(5): 50-52.
    [100] [100]赵秋艳.国外先进无损检测技术的发展及应用[J].宇航材料工艺. 1998,4:48-52.
    [101]丁守宝,刘富君.我国特种设备检测技术的现状与展望[J].中国计量学院学报, 2008, 19(4): 304-308.
    [102]李娜.国外管道焊缝缺陷超声波检测现状[J].机械工程师, 2008, 12: 148-149.
    [103]杨栋,王忠元.锅炉高温受热面管束寿命在线监测技术研究[J].中国电力, 2004, 37(4): 13-16.
    [104]柳光池,杨栋.过热器再热器壁温在线监测技术在寿命监测中的应用[J].华东电力, 2004, 32(7): 5-7.
    [105]王胜纯.锅炉高温过热器的失效和寿命评估[J].华北电力技术, 1998, 1: 50-53.
    [106]杨二鲁.高温锅炉管寿命管理技术在珠江电厂的应用[J].电力设备, 2008, 9(11): 77-79.
    [107]赵永宁,邱玉堂.火力发电厂金属监督[M].中国电力出版社,北京, 2007.
    [108] Ismail M.A., Imam H., Elhassan A., et al. LIBS limit of detection and plasma parameters of some elements in two different metallic matrices [J]. J.Anal.At.Spectrom, 2004,19(4): 489-49.
    [109] Bousquet B., Sirven J.B., Canioni L.. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples [J]. Spectrochimica Acta Part B, 2007, 62 (12): 1582-1589.
    [110] Eppler A. S., Cremers D. A., Hickmott D. D., et al. Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 1996, 50(9): 1175-1181.
    [111] Mohamed W. T. Y.. Study of the Matrix Effect on the Plasma Characterization of Six Elements in Aluminum Alloys using LIBS With a Portable Echelle Spectrometer. Progress in physics. 2007.2,42-49.
    [112] Abdel-Salam Z.A., Galmed A.H., Tognoni E., et al. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochimica Acta Part B: Atomic Spectroscopy. 2007, 62(12): 1343-1347.
    [113] Michaud D., Leclerc R., Proulxé.. Influence of particle size and mineral phase in the analysis of iron ore slurries by Laser-Induced Breakdown Spectroscopy. SpectrochimicaActa Part B, 2007,62(12): 1575-1581.
    [114] Nasrazadani S., Namduri H.. Study of phase transformation in iron oxides using Laser Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 2006, 61 (5): 565–571.
    [115]陆同兴,路轶群.激光光谱技术原理及应用[M].合肥:中国科学技术大学出版社, 2006.
    [116] Mohamad S., Paolo C.. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Applied Spectroscopy, 1995, 49(4): 499-507.
    [117] Stavropoulos P.,Palagas C.,Angelopoulos G.N., et al. Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers [J]. Spectrochimica Acta Part B, 2004, 59(12):1885-1892.
    [118] Bye C. A., Scheeline A.. Saha-Boltzmann Statistics for Determination of Electron Temperature and Density in Spark Discharges Using an Echelle/CCD System [J]. Applied Spectroscopy, 1993, 47(12): 2022-2030.
    [119] Yun Jong-II, Klenze R., Kim Jae-I. Laser-Induced Breakdown Spectroscopy for the On-Line Multielement Analysis of Highly Radioactive Glass Melt Part I: Characterization and Evaluation of the Method. Applied Spectroscopy. 2002, 56(4). 437-448.
    [120] Milan M., Laserna J. J.. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation. Spectrochimica Acta Part B, 2001, 56(3): 275-288.
    [121] H. R. Griem. Plasma Spectroscopy [M]. New York: McGraw-Hill, 1964.
    [122]何晓群,刘文卿编著.应用回归分析[M].中国人民大学出版社,北京,2007.
    [123]高惠璇编著.应用多元统计分析[M].北京大学出版社,北京, 2005.
    [124]赵颖.应用数理统计[M].北京理工大学出版社,北京, 2008.
    [125] NIST Atomic Spectra Database [DB] [cited 2010 Mar 25]; Available from : http://www.nist.gov/physlab/index.cfm.
    [126]杜一平,潘铁英,张玉兰编著.化学计量学应用[M].化学工业出版社,北京, 2008.
    [127]许禄.化学计量学方法[M].科学出版社.北京, 1995.
    [128] Tripathi M. M., Eseller K. E., Yueh Fang-Yu, et al. Multivariate calibration of spectra obtained by Laser Induced Breakdown Spectroscopy of plutonium oxide surrogate residues, Spectrochimica. Acta Part B, 2009, 64(11-12):1212-1218.
    [129]国家建筑材料工业局,硅酸盐建筑制品用粉煤灰[S],JC/T 409,2001.
    [130]刘鸿,周克毅.锅炉飞灰测碳仪的技术现状及发展趋势[J].锅炉技术, 2004, 35(2):65-68.
    [131]阎高伟,谢刚,谢克明,等。基于多传感器融合技术的飞灰含碳量测量[J].中国电机工程学报, 2006, 26(7): 35-39.
    [132] Hong M.H., Lu Y.F., Bong S.K.. Time-resolved plasma emission spectrum analyses at the early stage of laser ablation[J]. Applied Surface Science, 2000, 154-155: 196-200.
    [133]李澜,陈冠英,张树东,等.激光能量对激光诱导Cu等离子体特征辐射强度、电子温度的影响[J].原子与分子物理学报, 2003,20(3);343-346.
    [134]吴戈,陆继东,余亮英,等.激光感生击穿光谱技术测量飞灰含碳量[J].热能动力工程, 2005, 20(4): 365-368.
    [135]辛仁轩.等离子体发射光谱分析[M].北京:化学工业出版社, 2005.
    [136]陈金忠,赵书瑞,魏艳红,等.透镜与样品之间距离对激光等离子体辐射特性的影响[J].光谱学与光谱分析, 2005, 25(10): 1693-1696.
    [137] Keszler A. M., Nemes L.. Time averaged emission spectra of Nd:YAG laser induced carbon plasmas[J]. Journal of Molecular Structure, 2004, 695-696: 211-218.
    [138]章玉珠,王广安,沈中华,等.等离子体屏蔽和稀疏波对冲量耦合系数的影响[J].强激光与粒子束, 2007, 19(4): 585-588.
    [139] Pasquini C., Cortez J., Silva L. M. C., et. al. Laser Induced Breakdown Spectroscopy[J]. J. Braz. Chem. Soc, 2007, 18(3): 463-512.
    [140]林兆祥,常启海,程学武,等.激光击穿大气等离子体的光谱实验研究[J].原子核物理评论, 2002, 19(增刊): 88-90.
    [141] Linda G. Blevins, Christopher R. Shaddix, Shane M, et al. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces[J]. Applied Optics, 2003, 42(30): 6107-6118.
    [142]姚顺春,陆继东,谢承利,等。强度比定标法分析激光诱导击穿碳谱线[J]。强激光与粒子束, 2008, 20(7): 1089-1092.
    [143]郑建斌,刘辉. Fourier自去卷积及其在化学信号处理中的应用[J].西北大学学报(自然科学版), 2000, 30(6): 496-500.
    [144]董瑛. Fourier变换光谱分辨率增强技术研究[D],中国科学院博士学位研究生学位论文. 2000, 64.
    [145] Salle B., Lacour J.-L., Vors E., et al. Laser-induced breakdown spectroscopy for Mars surface analysis:capabilities at stand-off distances and detection of chlorine and sulfurelements [J]. Spectrochimica Acta Part B, 2004, 59(9): 1413-1422.
    [146] Wisbrun R.. Detector for Trace Elemental Analysis of Solid Environmental Samples by Laser Plasma Spectroscopy [J]. Analytical Chemistry, 1994, 66(18): 2964-2975.
    [147] Onge L.S, Kwong E., Sabsabi M., et al. Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2002,57 (7) :1131-1140.
    [148] Mohamed W. T. Y.. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera [J]. Optics & Laser Technology, 2008, 40(1): 30-38.
    [149] Yoon Y., Kim T., Yang M., et al. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy [J]. Microchemical Journal, 2001, 68(2-3): 251-256.
    [150]曹长武.火力发电厂燃料试验方法及应用[M].中国电力出版社,北京, 2004.
    [151] Kraushaar M., Noll R., Schmitz H.U.. Slag analysis with laser-induced breakdown spectroscopy [J], Appl. Spectrosc. 2003; 57: 1282-87.
    [152] Martin M.Z., LabbéN., Rials T.G., et al. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra [J]. Spectrochim. Acta Part B 2005;60(7-8): 1179-85.
    [153] Cremers DA, Radziemski LJ. Handbook of Laser-Induced Breakdown Spectroscopy [M]. John Wiley & Sons Ltd: Chichester; 2006.
    [154] Tripathi M. M., Eseller K. E., Yueh F.-Y., et al. Multivariate calibration of spectra obtained by Laser Induced Breakdown Spectroscopy of plutonium oxide surrogate residues [J]. Spectrochimica Acta Part B, 2009, 64(11-12):1212-18.
    [155] Jez Willian Batista Braga, L. C. Trevizan, L. C. Nunes, I. A. Rufini, Dário Santos Jr., F. JoséKrug. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry [J]. Spectrochimica Acta Part B 2010; 65(1): 66-74
    [156] V. Margetic, A. Pakulev1, A. Stockhaus et al. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples [J]. Spectrochimica Acta Part B, 2000, 55(11): 1771-1785.
    [157] Mao X.L., Chan W.-T., Caetano M., et al. Preferential vaporization and plasma shielding during nano-second laser ablation [J]. Applied Surface Science, 1996, 96-98(2): 126-130.
    [158]董全力,王军,于衍宏等.激光等离子体产生条件的实验研究[J].光电子.激光,1999, 10(5): 469-472.
    [159] Miziolek A. W., Palleschi V., Schechter I.. Laser-induced breakdown spectroscopy: Fundamentals and Application [M]. Cambridge University Press.Cambridge: 2006.
    [160]饶甦,曹欣玉,兰泽全,等.煤灰矿物质在炉内的迁徙分布规律及其对沾污结渣的影响[J].燃料化学学报, 2004, 32(4): 395-399.
    [161]周武,庄正宁,刘泰生,等.切向燃烧锅炉炉膛结渣问题的研究[J].中国电机工程学报, 2005, 25(4):131-135.
    [162]陈吟颖,阎维平,石惠芳.330MW燃煤机组锅炉炉膛结渣性能的研究[J].中国电机工程学报, 2005, 25(11): 79-85.
    [163]阎维平,陈吟颖,刑德山,等.电站煤粉锅炉掺烧强结渣煤的混煤结渣性能研究[J].中国电机工程学报, 2006, 26(14): 93-97.
    [164]兰泽全,曹欣玉,周俊虎,等.两种模糊数学方法在锅炉结渣特性判别上的应用[J].电站系统工程, 2003, 19(2): 7-10.
    [165]张忠孝.用模糊数学方法对电厂锅炉结渣特性的研究[J].中国电机工程学报, 2000, 20(10): 64-66.
    [166]舒红宁,黄镇宇,董一真,等.基于煤灰成分的非线性结渣模糊综合预测模型的研究[J].电站系统工程.2006, 22(4): 11-12.
    [167] Pronobis M.Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations [J].Biomass and Bioenergy, 2005, 28(4): 375-383.
    [168]兰泽全,曹欣玉,周俊虎,等.炉内灰渣沉积物中矿物元素分布的电子探针分析[J].中国电机工程学报. 2005. 25 (2): 114-119.
    [169] Aragón C., Aguilera J.A..Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods[J]. Spectrochimica Acta Part B, 2008, 63(9): 893-916.
    [170] Viskup R., Praher B., Stehrer T., et al. Plasma plume photography and spectroscopy of Fe-Oxide materials[J]. Applied Surface Science, 2009, 255(10):5215-5219.
    [171] Nakamura S., Wagatsuma K.. Emission characteristics of nickel ionic lines excited by reduced-pressure laser-induced plasmas using argon, krypton, nitrogen, and air as the plasma gas[J]. Spectrochimica Acta Part B. 2007, 62 (12):1303-1310.
    [172] Tong T., Li J.G., Longtin J. P.. Real-time control of ultrafast laser micromachining bylaser-induced breakdown spectroscopy[J]. Applied Optics, 43(9):1971-1980.
    [173]李静,林长贺,李胜利.激光等离子体光谱测量影响因素分析[J].光谱学与光谱分析, 25(12), 1905-1907.
    [174] Sirven J.-B., Bousquet B., Canioni L., et al. Laser-Induced Breakdown Spectroscopy of Composite Samples: Comparison of Advanced Chemometrics Methods [J]. Anal. Chem. 2006, 78(5), 1462-1469.
    [175] J.L. Luque-Garc?a, R. Soto-Ayala, M.D. Luque de Castro. Determination of the major elements in homogeneous and heterogeneous samples by tandem laser-induced breakdown spectroscopy–partial least square regression [J]. Microchemical Journal, 2002, 73 (3): 355-362.
    [176] Jurado-López A., Luque de Castro M.D.. Laser-induced breakdown spectrometry in jewellery industry Part II: quantitative characterisation of goldfilled interface [J]. Talanta, 2003,59(2): 409-415.
    [177]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].科学出版社, 1994.
    [178]李青,公维平编著.火力发电厂节能和指标管理技术[M].中国电力出版社. 2006,北京.
    [179]宏亮,林木松.煤质快速分析仪器应用现状[J].热力发电厂. 2002,4():7-9
    [180]胡祖忠.浅析γ辐射煤灰分仪的测量误差与改进[J].冶金标准化与质量. 43(5): 10-12.
    [181]尚玉琴,邓景珊,杨义波,等.燃煤灰分核分析方法.核电子学与探测技术[J]. 2007, 27(1): 30-34.
    [182]周顺深.火电厂高温部件剩余寿命评估[M].中国电力出版社.北京.2006.
    [183] Ctvrtnickova T., Cabalin L., J. Laserna, Kanicky V., et al. Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy [J]. Applied Surface Science, 2009, 255 (10): 5329-5333.
    [184] Nicolas G., Mateo M.P., Ya?ez A., The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes [J]. Applied Surface Science, 2007, 254(4) 873-878.
    [185] Fichet P., Mauchien P., Wagner J.-F., et al. Quantitative elemental determination in water and oil by laser induced breakdown spectroscop [J]. Analytica Chimica Acta. 2001,429 :269-278
    [186] Yaroshchyk P., Morrison R.J.S., Body D., et al. Quantitative determination of wearmetals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS [J]. Spectrochimica Acta Part B, 2005,60(11) 1482 -1485.
    [187] Noll R., Bette H., Brysch A., et al. Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry [J]. Spectrochimica Acta Part B, 2001, 56(6): 637-649.
    [188] Noll R., M?nch I., Klein O., et al, Concept and operating performance of inspection machines for industrial use based on laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2005, 60 (7-8) : 1070-1075.
    [189] Harmon R. S., DeLucia F. C., McManus C. E., et al. Laser-induced breakdown spectroscopy–An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications [J]. Applied Geochemistry, 2006, 21 (5): 730-747.
    [190] Noll R., Sturm V., Aydinü., et al. Laser-induced breakdown spectroscopy—From research to industry, new frontiers for process control [J]. Spectrochimica Acta Part B, 2008, 63(10):1159-1166.
    [191] Rauschenbach I., Lazic V., Pavlov S.G., et al. Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness [J]. Spectrochimica Acta Part B, 2008, 63(10): 1205-1215.
    [192] Krasniker R., Bulatov V., Schechter I.. Study of matrix effects in laser plasma spectroscopy by shock wave propagation [J]. Spectrochimica Acta Part B, 2001, 56(6): 609-618.
    [193] Vrenegor J., Noll R., Sturm V.. Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements [J]. Spectrochimica Acta Part B, 2005, 60 (7-8): 1083-1091.
    [194] Tsuyuki K., Miura S., Idris N., et al. Measurements of concrete strength using the emission intensity ratio between Ca II 396.8 nm and Ca I 422.6 nm in a Nd:YAG laser induced plasma [J]. Appl. Spectrosc., 2006, 60: 61-64.
    [195] Abdel-Salam Z., Abdelhamid M., Khalil S.M., et al. LIBS New Application: Determination of Metallic Alloys Surface Hardness [A]. The 7th International Conference on Laser Applications-ICLA 2009 [C]. AIP Conference Proceedings, 2009, 1172: 49-52.
    [196] Labutin T. A., Popov A. M., Lednev V. N., et al. Correlation between properties of a solid sample and laser-induced plasma parameters [J]. Spectrochimica Acta Part B, 2009, 64(10): 938-949.
    [197] Russo R. E., Mao X.L., Mao S. S.. Peer Reviewed: The Physics of Laser Ablation in Microchemical Analysis [J]. Anal. Chem, 2002,74 (3): 70-77.
    [198] Aydinü., Roth P., Gehlen C.h D., et al. Spectral line selection for time-resolved investigations of laser-induced plasmas by an iterative Boltzmann plot method [J]. Spectrochimica Acta Part B, 2008, 63(10): 1060-1065.
    [199]郑国经,计子华,余兴.原子发射光谱分析技术及应用[M].化学工业出版社,北京. 2009.
    [200] Judge E. J., Heck G., Cerkez E. B., et al. Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy [J], Anal. Chem., 2009, 81(7): 2658-2663.
    [201] Dawson J.B., Snook R.D., Price W.J.. Background and background correction in analytical atomic spectrometry. Part 1 Emission spectrometry—a tutorial review [J]. J. Anal. At. Spectrom. 1993, 8: 517-537.
    [202] Hilbk-Kortenbruck F., Noll R., Wintjens P., et al. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence [J]. Spectrochimica Acta Part B, 2001, 56(6): 933-945.
    [203] Munson C. A., De Lucia Jr. F. C., Piehler T., et al. Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants [J]. Spectrochimica Acta Part B, 2005, 60(7-8): 1217-1224.
    [204] Erdem A., ?lingiro?lu A., Giakoumaki A., et al. Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS) [J]. Journal of Archaeological Science. 2008, 35(9): 2486-2494.
    [205]吴非文.火力发电厂高温金属运行[M].北京:水利电力出版社, 1979.
    [206] Tsuyuki K., Miura S., Hendrik N. Idris, K., et al. Measurement of Concrete Strength Using the Emission Intensity Ratio Between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG Laser-Induced Plasma. Appl. Spectrosc., 2006,60(1): 61-64.
    [207] Abdel-Salam Z.A., Nanjing Z., Anglos D., et al. Effect of experimental conditions on surface hardness measurements of calcified tissues via LIBS [J]. Appl Phys B, 2009, 94: 141-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700