用户名: 密码: 验证码:
覆冰导线舞动非线性数值模拟方法及风洞模型试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线舞动是导线在风激励下产生的一种低频、大幅度自激振动。导线发生舞动时可能会造成相间闪络、断线和倒塔等事故,对整个供电系统的安全运行造成严重的危害。对覆冰导线舞动的研究具有极其重要的理论意义和工程实用价值。
     论文首先利用风洞试验获得了不同厚度新月形覆冰四分裂导线各子导线在不同风速下的阻力系数、升力系数和扭矩系数随攻角的变化曲线。结果表明,覆冰厚度对覆冰导线空气动力系数的影响明显;在测试的风速范围内风速对空气动力系数的变化规律影响较小;迎风侧子导线尾流对背风侧子导线空气动力系数的影响明显。在研究覆冰导线的舞动时有必要考虑不同子导线空气动力载荷的差异。
     覆冰导线的舞动是一非线性问题。论文研究了模拟覆冰导线舞动的非线性数值方法。基于覆冰导线所受空气动力载荷的非线性和导线大幅运动的几何非线性,利用虚功原理建立非线性运动方程,采用具有三个平动自由度和一个扭转自由度的三结点等参单元模拟覆冰导线,得到基于更新Lagrange格式的覆冰导线的非线性动力学有限元方程。采用Newmark时间积分和Newton-Raphson非线性迭代法求解有限元方程。编制了相应的计算程序,利用算例验证了方法和程序的正确性。进而对典型覆冰线路的舞动进行数值模拟,揭示了当覆冰导线的竖向和横向固有频率之间存在整数倍关系的情况下,可能出现的一种新的舞动模式。该舞动模式可理解为非线性动力系统的饱和现象,有待试验观测结果的验证。
     在获得覆冰单导线舞动数值模拟方法的基础上,考虑分裂导线舞动过程中间隔棒的几何非线性,采用欧拉梁单元模拟间隔棒,建立覆冰分裂导线的非线性有限元方程。编制了相应的计算程序,通过算例验证了方法和程序的正确性。利用由风洞实验获得的覆冰四分裂导线的空气动力系数,模拟研究了不同档距覆冰四分裂导线的舞动,并对其舞动特性进行了分析,结果表明,小档距情况下导线以低阶模态舞动模式为主,大档距导线则会出现高阶模态舞动模式,在研究舞动防治技术时应予以考虑。此外,通过数值模拟分析比较了考虑子导线尾流影响和不考虑子导线尾流影响情况下导线的舞动,结果表明,考虑尾流对气动载荷的影响得到的竖向振动幅值更大,并更容易激发舞动的产生,这一结果可对舞动防治技术的研究提供参考。
     基于空间风场的随机性,首次采用数值方法模拟研究覆冰四分裂导线在随机风场中的舞动。利用考虑风速沿高度变化的Kaimal风速谱和Davenport互相干函数,用谐波分解法数值模拟考虑沿线路方向和高度方向相关性的多点互相关风速时程样本,进而确定作用于覆冰导线上的空气动力载荷。数值模拟研究了不同档距覆冰导线在随机风场中的舞动,通过对导线的运动特性的分析表明,随机风作用下导线的振动包括稳定风成份引起的舞动和脉动风引起的强迫振动两部分,其舞动特性和稳定风作用下的特性差别不大。此外,小档距线路在随机风作用下导线的竖向振动幅值大于稳定风作用下的结果;而大档距线路在随机风作用下的竖向舞动幅值小于稳定风作用下的结果。
     为了验证舞动数值模拟方法的正确性,进行了新月形覆冰单导线和四分裂导线舞动风洞模型试验,获得了相应模型的舞动轨迹。建立了两个模型试验的有限元模型,利用本论文提出的舞动非线性有限元模拟方法,模拟了试验模型的舞动过程。比较模型试验和数值方法得到的舞动轨迹,两者吻合,从而验证了本论文提出的数值模拟方法和程序的正确性。
     本论文研究成果为覆冰分裂导线舞动研究提供了必要的试验数据和有效的数值方法,为研究覆冰导线的舞动防治技术奠定了重要的理论基础。
Galloping of an electrical transmission line is characterized by large amplitude, low frequency, self-excited oscillation under aerodynamic forces. It may deduce flashover between different phase conductors and cause damage to the conductors and even collapsing of transmission tower, which may in turn severely imperils the safe operation of the high voltage transmission line. Therefore, the study on galloping of iced transmission lines behaves great significance in power supply engineering.
     The curves of aerodynamic coefficients, including drag, lift and moment coefficients, of quad-bundled conductors accreted ices with typical cross-section shapes versus wind attck angle under different wind speeds were determined by wind tunnel test. It is shown that the ice thick has obvious effect on the aerodynamic characteristics of the ice conductors but the wind speed has a slightly effect. The wake of the upwind iced sub-conductor greatly affects the aerodynamic characteristics of the leeward iced sub-conductor. The difference of the aerodynamic loads on all the sub-conductors should be considered in the analysis of galloping of iced bundle conductors.
     Galloping of iced conductor is a typical nonlinear problem.In this thesis, the study on the nonlinear numerical simulation method for galloping of iced conductor is performed. Based on the principle of virtual work, an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line is developed. In the procedure of numerical simulation, a three-node isoparametric cable element with three translational and one torsional degrees-of-freedom at each node is, are employed to discretize the transmission line; and the nonlinear dynamic system equation is solved by the Newmark time integration method and the Newton-Raphson nonlinear iteration strategy. Numerical examples are employed to demonstrate the efficiency of the presented method and the developed finite element program. Furthermore, a new possible galloping mode, which may reflect the saturation phenomenon of nonlinear dynamic system, is discovered on the condition that the lowest order of vertical natural frequency of the transmission line is approximately two times of the horizontal one.
     Based on the obtained nonliear finite element formulation for galloping of iced single conductor, a numerical method, in which the spacers are simulated with Euler beam, for galloping of iced bundle conductors is obtained, and the corresponding computer program is also developed. A numerical example is used to demonstrate the efficiency of the presented method and the developed finite element program. Furthermore, the galloping of the quad-bundled conductors with different span lengths is numerically investigated. It is observed that the transmission lines with shorter length of span gallope mainly with lower vibraion modes, and higher modes may occure for the lines with larger span when galloping takes place, which provides some references for the development of anti-galloping technology. In addition, the galloping of iced quad-bundled conductors in the case of considering and without considering the inference of wake around the iced sub-conductors is compared. The results indicate that the galloping amplitude as the wake inference being considered is lager than that as the wake inference not being considered.
     Galloping of iced qua-bundled conductor in stochastic wind field is firstly investigated by the numerical method developed in this paper. The stochastic wind fields are simulated by the Kaimal spectrum, with which the variation of wind velocity fluctuation with height above ground is taken into account, and the Davenport mutual spectrum. The correlation simples of stochastic wind at the points along the line direction are numerically simulated by means of the WAWS, based on which the aerodynamic loads of iced conductor are calculated. The galloping of iced quad-bundled conductor in stochastic wind filed with different span length is then numerically investigated, and some meaningful conclusions are obtained.The results show that galloping characteristics of the iced transmission lines in stochastic wind field are similar to those of the line in steady wind field. Moreover, the vibration amplitudes of the lines with smaller span length in stochastic wind are bigger than those of the line in steady wind field, but the vibration amplitudes of the lines with larger span in stochastical wind are less than those of the lines in steady wind.
     To verify the numerical simulation method of nonlinear galoping of iced onductor, two wind tunnel tests of typical galloping models, one for siced single conductor and the other for quad-bundled conductor, were performed, in which the galloping tracks of iced single conductor and iced quad-bundled conductor were obtained. The finite element models of the two tests are set up by the nonlinear finite element simulation methods presented in this paper, and they are used to simulate galloping of the test conductor models. The concidence between the numerical simulation results and wind tunnel tests demonstrate the correctness and efficiency of the presented numerical methods.
     Research results in this paper provides necessary test data and effective numerical method for the study on galloping of iced bundle conductor, so as to found the theory bases for anti-galloping method of iced bundle conductor.
引文
[1]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.
    [2]刘连睿.我国高压架空线路导线舞动情况及分析[J].华北电力技术,1989,(9):40-43.
    [3]巫世晶,向农.神经网络在输电线导线舞动监测诊断系统中的应用[J].华北电力技术,1998,(9):1-4.
    [4]刘世新.导线舞动的起因分析与预防[J].东北电力技术,1996,(2):36-38.
    [5]黄志明.我国超高压输电线路的建设和发展[J].中国电力,1996,29(12):9-13.
    [6]黄志明.输电线路建设与展望[J].中国电力,1996,32(10):34-37.
    [7]中岛立生.输电技术的发展现状和展望[J].国际电力,1998,(3):38-44.
    [8] C.B.Rawlins.Research on vibration of overhead ground Wires [J].IEEE Transaction on Power Delivery,1988,3(2):769-775.
    [9] S.Gupta,, T.Wipf,et al.Structural failure analysis of 345 kV transmission line[J].IEEE Transaction on Power Delivery,1994,9(2):894-903.
    [10]杨勇.恶劣天气挑战电网安全[J].中国电力企业管理,2005,(4):30-33.
    [11] M.R.Burns, Distribution line hazards that affect reliability and the conductor repairs and solutions to avoid future damage[C].2003 IEEE Rural Electric Power Conference,May 4-6, 2003: C1/1-C1/13.
    [12] S.Tomita,M.Kawase,H.Shinohara,et al. Suppression of galloping oscillation for a self-supporting optical fiber cable[J].Journal of lightwave technology ,1988,6 (2): 186-190.
    [13] E.Robert1, Estimation of Maximum Amplitudes of Conduetor Galloping by Deseribing Function Analysis[J].IEEE Transaetions on Power Delivery,1986,l(l):251-257.
    [14] J.J.Ratkowski.Experiments with Galloping Spans[J].IEEE Transaetions on Power Apparatus and Systems,1963,82(68):661-669.
    [15] Jolm H.G. Maedonald, G.L. Larose.Two-degree-of-freedom inclined cable galloping-part 2:analysis and prevention for arbitrary frequeney ratio[J].Joumal of Wind Engineering and Industrial Aerodynamies,2008,96(3):308-326.
    [16] John H.G. Maedonald, L.L.Guy.Two-degree-of-freedom inclined cable galloping-part l : general formulation and solution for perfeetly tuned system[J]. Journal of Wind Engineering and Industrial Aerodynamies,2008,96(3):291-307.
    [17] R.Barbieri,N.Barbieri,Oswaldo Honorato de Souza Juniol. Dynamical analysis of transmission line cables.Part3-Nonlinear theory[J]. Mechanical Systems And Signal proeessing , 2007,22(4):992-007.
    [18]阎同喜.导线覆冰气象参数的分析研究[J].机械管理开发,2006,(05):51-52.
    [19] P.Fu,M.Farzaneh,G.Bouehard.Two-dimensional modeling of theiee Accretion process on transmission line wires and conductors[J].377-388,2006,46(2):132-146.
    [20]朱宽军,付东杰,王景朝,孙娜.架空输电线路的舞动及防治[J],电力设备.2008,9(6):9-12.
    [21]李文蕴,覆冰分裂导线舞动数值模拟方法研究[D],重庆大学硕士论文,2009.
    [22]黄经亚.架空送电线路导线舞动的分析研究[J].中国电力,1995,(2):21-26.
    [23] 2010年河南500kV线路冰雪灾害故障分析报告,河南省电力勘察设计院,2010.
    [24] EleetriePower Research Institute.Transmission line referenee book:Wind-indueed Conductor motion[M],EPRI Research Projeet792,PaloAlto,CA,USA,1979.
    [25] O.Nigol, P.G.Buchan. Conductor galloping .1.Den Hartog mechanism[J]. IEEE Transactions on Power Apparatus and systems,1981, 100(2):699-707.
    [26] O.Nigol, P.G.Buchan. Conductor galloping .2.Torsional mechanism[J]. IEEE Transactions on Power Apparatus and systems,1981, 100(2):708-720.
    [27] P.Yu,A.H.Shah,N.Popplewell. Inertially coupled galloping of iced conductors [J]. Journal of Applied Mechanics-transactions of the ASME, 1992,59(1):140-145.
    [28]蔡廷湘.输电线舞动新机理研究[J].中国电力,1998,31(10):62-66.
    [29] D.Hartog. Transmission line vibration due to sleet [J].AIEE Transmission,1932: 1074-1086.
    [30] D.Hartog. Mechanical vibration [J].in:McGraw-Hill.New York:1956:330-340.
    [31] M.I.Kazakevich,A.G.Vasilenko. Closed Analytical Solution for Galloping Aeroelastic Self-oscillations [J].Journal of Wind Engineering and industrial Aerodynamics,1996,65 (1-3): 353~360.
    [32]夏正春,特高压输电线的覆冰舞动及脱冰跳跃研究[D],华中科技大学博士论文,2008.
    [33] O.Nigol,G.J.Clarke. Conductor galloping and control based on torsional mechanism [J]. IEEE Paper,1974,16(2):31-41.
    [34] O.Nigol,G.J.Clarke,D.G.Havard. Torsional stability of bundle conductors [J].IEEE Transactions on Power Apparatus and Systems.1977,96(6):1666-1674.
    [35] P.Yu,N.Popplewell,A.H.Shah. Instability trends of inertially coupled galloping .2. periodic vibrations[J]. Journal of Sound and Vibration,1995,183(4):679-691.
    [36]蔡廷湘.输电线舞动新机理研究[J].中国电力,1998,31(10):62-66.
    [37] R.D.Blevins, Flow-induced vibration [M]. New York: Van Nosrrand Reinhold Co,1990.
    [38] R.D.Blevins,吴恕三,王觉等(译).流体诱发振动[M].北京:机械工业出版社,1982.
    [39] K.F.Jones. Coupled vertical and horizontal galloping [J]. J. Engrg. Mech, ASCE, 1992,118(1): 92-107.
    [40] Y.M.Desai, A.H.Shah, N.Popplewell, Galloping analysis for two-degree-of-freedom oscillator[J], J.Engrg.Mech,1990,116(12):2583-2620.
    [41] P.Yu,Y.M.Desai,A.H.Shah et al.3-degree-of-freedom Model for Galloping.1[J]. Formulation. Journal of Engineering Mechanics-ASCE, 1993,119(12):2404~2425.
    [42] P.Yu,Y.M.Desai,A.H.Shah et al.3-degree-of-freedom Model for Galloping.11 [J]. Formulation. Journal of Engineering Mechanics-ASCE, 1993,119(12):2426~2428.
    [43]陈晓明,大跨越输电线舞动及控制研究[D].同济大学博士论文,2002
    [44] Y.Momomura,H.Marukawa,T.Okamura. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area [J].Journal of Wind Engineering and Industrial Aerodynamics.1997,72: 241-252.
    [45] J.L. Lilien, D.G. Havard. Galloping Data Base on Single and Bundle Conductors Prediction on Maximum Amplitudes [J].IEEE Transactions on Power Delivery,2000,15(2):670-674.
    [46]马建国.湖北省电网导线舞动区域划分[J].电力建设,1999,(5):39-40.
    [47]张谦.输电线路导线舞动的防治及研究现状[J].山东电力技术,2010,2:26-30.
    [48]尤传永,卢明良等.架空输电线路舞动的防治措施[J].中国电力,1993,(8):41-43.
    [49]张明升.架空线路单导线舞动与分裂导线舞动的异同[J].河北电力技术,1990,(1):29-33.
    [50]卢明良,尤传永.架空输电线路分裂导线舞动的非线性分析[J].电力建设,1994,15(13):26-31.
    [51]尤传永.导线舞动的扭转机理与失谐摆[J].电力建设,1989,10(11):1-6.
    [52]张华彪,输电线路舞动的非线性动力学研究[D].硕士学位论文,河北工业大学.2008.11
    [53]赵高煜,大跨越高压输电线分裂导线覆冰舞动研究[D].华中科技大学博士论文,2008.
    [54]夏正春,特高压输电线的覆冰舞动及脱冰跳跃研究[D].华中科技大学博士论文,2008.
    [55]徐中年.输电线舞动的风洞试验研究[J ].电力技术,1992 , (4) :7211.
    [56] P.V. Dyke, A. Laneville. Galloping of a single conductor covered with a D-section on a high-voltage overhead test line [J].Journal of Wind Engineering, 2008, 96: 1141-1151.
    [57] C.B. Gurung, H. Yamaguchi, T. Yukino, Identification of large amplitude wind-induced vibration of iceaccreted transmission lines based on field observed data[J]. Engineering structures, 2002, 24:179-188.
    [58] C.B. Gurung, H. Yamaguchi,T. Yukino, Identification and characterization of galloping of Tsuruga test line based on multi-channel modal analysis of field data[J]. Wind engineering,2003,91:903-924.
    [59] G. Alonso, E. Valero, J. Meseguer. An analysis on the dependence on cross section geometry of galloping stability of two-dimensional bodies having either biconvex or rhomboidal cross sections [J].European Journal of Mechanics B/Fuids,2009,28:328-334.
    [60] G. Alonso, J. Meseguer, I.Perez-Grande. Galloping instabilities of two-dimensionaltriangular cross-section bodies[J].Experiments in Fuids,2005,38:789-795.
    [61]李万平,杨新祥,张立志.覆冰导线群的静气动力特性[J].空气动力学学报,1995,13(4):427-433.
    [62]李万平.覆冰导线群的动态气动力特性[J].空气动力学学报,2000,18(4):414-420.
    [63]李万平,黄河,何锃.特大覆冰导线气动特性测试[J].华中科技大学学报,2001,29(8):84-86.
    [64]肖正直,晏致涛,李正良等.八分裂输电导线结冰风洞及气动力特性试验[J].电网技术,2009,33(5):91-94.
    [65] O Chabart, J L Lilien. Galloping of electrical lines in wind tunnel facilities[J], Journal of Wind Engineering and Industrial Aerodynamics, 1998 (74-76): 967-976
    [66] R.Keutgen, J.L.Lilien.Benchmark cases for galloping with results obtained from wind tunnel facilities-validation of a finite element modle[J].IEEE TRANSACTIONS ON POWER DELIVERY.2000,15(0):367-373.
    [67] Y.M.Desai,P.Yu,N.Popplewell and A.H.Shah. Finite Element Modelling of Transmission Line Galloping[J].Computers&Structures,1995,57(3):407-420.
    [68] Y.M.Desai, A.H.Shan, N.Popplewell. Perturbation-based finite element analyses of transmission line galloping [J]. Journal of Sound and Vibration,1996, 191(4):469-489.
    [69] A.Luongo ,G..Piccardo. Linear instability mechanisms for coupled translational galloping [J]. Journal of Sound and Vibration,2005, 288:1027-1047.
    [70] A.luongo, D.Zulli, G.Piccardo. On the elect of twist angle on nonlinear galloping of suspended cables [J]. Computer and Structures, 2009,87:1003-1014.
    [71] A.Luongo,G.Piccardo. Non-linear Galloping of Sagged Cables in 1:2 Internal resonance [J]. 1998,214(5):915-940.
    [72] A.Luongo,D.Zulli,G.Piccardo. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J]. Journal of Sound and Vibration,2008,315:375-393.
    [73] A.Luongo,D.Zulli,G.Piccardo. A Linear Curved-beam model for the analysis of galloping in suspended cables [J].Journal of Mechanics of Materials and Structures.2007,2(4):675-694.
    [74]王丽新,杨文兵,杨新华等.输电线路舞动的有限元分析[J].华中科技大学学报(城市科学版),2004,21(1):76-80.
    [75] Q.Zhang, N.Popplewell and A.H.Shah. Galloping of Bundle Conductor [J]. Sound and Vibration, 2000, 234(1):115-134.
    [76]何锃,赵高煜,李上明.大跨越分裂导线的静力求解[J] .中国电机工程学报,2001,21(11):34-37.
    [77]何锃,钱天虹.覆冰三分裂导线扭控舞动的分析计算[J].华中理工大学学报,1998,26(10):16-18.
    [78]何锃,赵高煜.分裂导线扭转舞动分析的动力学建模[J].工程力学,2001,18(2):126-134.
    [79]赵高煜,何锃.安装失谐摆的大跨越分裂导线自由振动计算[J] .中国电机工程学报,2003,23(2):64-66.
    [80]何锃,赵高煜.安装防振锤的分裂导线自由振动的有限元计算[J].工程力学,2003,20(1):102-105.
    [81]胡杰,郭应龙,恽莉丽.三分裂导线舞动的有限元分析与计算[J].水利电力机械,1996,(4):9-12.
    [82]严波,李文蕴,张宏雁,周松.一种模拟覆冰双分裂导线舞动的数值方法[J].重庆大学学报,重庆大学学报(自然科学版), 2009, 32(7):787-792.
    [83]严波,李文蕴,张宏雁,周松.覆冰三分裂导线舞动的数值模拟方法[J].振动工程学报,2010.29(9):107-112
    [84] A.L.Braun,A.M.Awruch.Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation[J]. Journal of Sound and Vibration,2005:51-73.
    [85]黄河,刘建军,李万平,覆冰导线绕流的数值模拟[J].辽宁工程技术大学学报,2004,23(6):767-769
    [86]腾二甫,段忠东,张秀华,新月形覆冰导线气动特性的数值模拟[J].低温建筑技术,2008,1:86-88
    [87]吕翼,楼文娟,孙珍茂,李宏男.覆冰三分裂导线气动特性的数值模拟[J].浙江大学学报(工学版).2010,44(1):175-179.
    [88] .王勖成.有限单元法[M].北京:清华大学出版社,2003
    [89] X.Liu, B.Yan, H.Zhang. and S.Zhou. Nonlinear numerical simulation mehod for galloping of iced conductor, [J].Applied Mathematics and Mechanics, 30(4):489-501, 2009.
    [90]邵天晓,架空送电线路的电线力学计算[M].北京:中国电力出版社,2003,2:87-88.
    [91] A.S.Veletsos,G.R.Darbre.Dynamic stiffness of parabolic cables[J] .Int.J.Earthqu.Engng. Struct.Dyn.1983,11: 367-401.
    [92] R.K.Mathur,A.H.Shah,P.G.S.Trainor,N.Popplewell.Dynamics of a guyed transmission tower system[J].Trans IEEE Power deliv.1987,PWRD-2(3):908-916.
    [93] A.T.Edwards and A. Madeyski. Progress report on the investigation of galloping of transmission line conductors[C]. AIEE Trans. Distrib. Winter Meeting. New York, 1956, pp.666-686.
    [94] Gortemaker P C M.Galloping conductors and evaluation of the effectiveness of in-span damper[D].Kema.Sci,Report,1984.
    [95] S. Tokoro, H. Komatsu, M. Nakasu, K. Mizuguchi, A. Kasuga. A study on wake-galloping employing full aeroelastic twin cable model[J]. Journal of Wind Engineering and Industrial. 2000, 88: 247-261.
    [96] A. L. Braun, A. M. Awruch, Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation[J]. Journal of Sound and Vibration.2005, 284:51-73.
    [97]齐朝晖.多体系统动力学[M].科学出版社,2008:149-150.
    [98]熊平.空间梁单元在索膜结构中的应用[D].浙江大学硕士论文,2006.
    [99]周凌远,李乔.基于UL法的CR列式空间梁几何非线性分析[J].西南交通大学学报.2006,41(6);691-695.
    [100]刘小会,严波,张宏雁,周松,唐杰.分裂导线舞动非线性有限元分析方法[J].振动与冲击,2010,29(6):130-133.
    [101]林凤羽.送电线路风振问题的探讨[J].1995,7:17-20.
    [102]卢文生,陈亦.大跨越输电线体系风荷载模拟[J].特种结构.2004,21(3):12-14.
    [103]张相庭.结构风工程[M].北京:中国建筑工业出版社,2006.
    [104]张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985,5:60-69.
    [105]刘小会.架空高压输电线路风偏数值模拟研究[D].重庆大学硕士论文,2007.
    [106]丁泉顺,陈艾荣,项海帆.大跨度桥梁空间脉动风场的计算机模拟.力学季刊,2006,27(2):185-188.
    [107]王之宏.风荷载的模拟研究,建筑结构学报[J],1994,第15卷第1期:45-52.
    [108]刘小会,严波,林雪松等.500kV超高压输电线路风偏数值模拟研究[J],工程力学, 2009,26(1):244-249.
    [109]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟[J].空间结构,1996,2(2): 21- 25.
    [110]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006,1:29-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700