用户名: 密码: 验证码:
新型高分子信息存储材料的设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于有机/高分子材料所的制备的存储器具有成本低、易加工、柔韧性好、可大面积制作、响应快、功耗低、高密度存储等优点,在信息存储以及高速度计算领域有着非常广泛的应用前景。虽然近年来在有机/高分子存储材料研究方面取得了一些较为突出的进展,但是与无机硅器件相比,在响应速度、开关比、读写循环次数、器件维持时间等方面还存在很大的差距,离实际应用还有很长的路要走。在这样的背景下,设计和制备具有良好电双稳态性质的新型有机高分子信息存储材料(即,在相同电压下具有两种不同导电态的高分子材料)以及探索材料存储机理逐渐成为超高密度电信息存储乃至分子电子器件领域里的热点课题。目前在该领域里亟待解决的工作主要集中于研究和开发具有更好电学特性及工艺兼容性的有机高分子功能材料和薄膜,进一步推进其器件化。这就要求对有机/高分子分子结构设计与合成技术、组装技术、器件制备工艺、材料功能机理等有更深的理解、研究和掌握,同时也依赖于物理学、化学、材料学及器件加工等领域研究人员的紧密合作。基于此,本论文开展了新型电活性功能高分子材料的设计、制备及信息存储性能的研究工作,取得了一些原创性的研究成果,本论文共分六章:
     第一章综述了有机/聚合物存储器件的结构类型、电双稳态器件的简单工作原理、国内外新材料(包括有机无机杂化材料)的设计与合成研究进展、探讨了存在的问题和拟开展工作的重点方向。
     第二章设计合成了一种新型A-D-A型聚合物材料DR1-PDPAF-DR1和C60-PDPAF-C60,进而对这两个材料进行光诱导电荷转移和记忆性能研究。这两个聚合物均具有很好的溶解性和热稳定性。基于ab intio B3LYP/6-31G计算得到的几何和电子结构显示聚芴主链作为载荷子传输的共轭通道,三苯胺作为电子给体,DR1/C60作为电子受体。分子轨道计算表明空穴沿着PDPAF主链迁移。通过皮秒、纳秒和毫秒级的时间分辨吸收和发射光谱技术研究发现,在极性苯腈溶液中DR1-PDPAF-DR1的电荷分离态寿命长达2.3毫秒,这一结果说明聚合物主链对于延长电荷分离态具有显著作用。基于这两个聚合物,制备了简单三层存储器件。然而只有DR1-PDPAF-DR1材料表现出电双稳的Ⅰ-Ⅴ曲线,可以应用于可反复擦写型存储。这一器件表现有两,ON/OFF电流比达到103,ON和OFF态在恒定电压下和连续读出脉冲下均表现稳定。存储保持力测试表明,以铜作顶电极的时候,器件的ON和OFF态均可以在大气环境里150℃下持续稳定工作至少1小时。
     第三章分散红1侧链取代的聚乙烯基咔唑PVDR的DMF溶液加入到二氯甲烷后,通过聚合物中咔唑基团之间π-π堆砌的作用进行自组装。自组装后,纳米聚集态的PVDR薄膜表现出大粒度的螺旋柱状堆砌,而非聚集态的PVDR薄膜表现出无定形的较小粒度。通过将预组装过的PVDR溶液旋涂制膜作为存储器件功能材料层,Al和ITO分别作顶电极和底电极,器件均表现为一次写入多次读出(WORM)型存储。器件均表现出良好的存储特性,ON/OFF电流比达到105,这可以保证较低的误读率。基于纳米聚集PVDR器件的稳定性比非纳米聚集PVDR器件要好一些。恒定电压下的器件稳定性测试差异可以认为是源于薄膜的结晶性和表面形貌的差异。ON和OFF态电流密度在经过108次的读出循环后没有出现衰减,这表明ON和OFF态均对读出脉冲不敏感。这些结果均表明,纳米聚集态的PVDR在高性能聚合物记忆器件领域有很好的应用前景。
     第四章利用Yamamoto合成了一种基于聚芴的高度可溶的共聚物,其中以芴的C9位取代三苯胺作为电子给体,芴的C-9位取代9,9’-二(3,4-二(3,4-二氰基苯氧基)苯基作为电子受体。以306 nm的波长光进行激发,聚合物氯仿溶液表现出很强的荧光发射,峰位置为413nm和433nm(肩峰)。计算得到的HOMO、LUMO、能隙、离子化势以及电子亲和势分别为-5.66,-3.44,2.22,5.92和3.70 eV。所制备的聚合物薄膜表现出WORM型存储特性,这是超低成本数字图像存储所青睐的一项技术。ON和OFF态电流在测试期间没有发生衰减,表明器件具有良好稳定性。ON/OFF电流比在Ⅰ-Ⅴ扫描表征中+1V时为6.1×103。
     第五章:我们合成了一种新型的共轭聚合物接枝的氧化石墨烯(TPAPAM-GO),基于这一材料我们制备了简单的三明治型器件,发现这一材料具有非常稳定的可多次执行“读-写-擦”的非易失型存储特性。此器件开启电压约为-1V, ON/OFF电流比超过103,连续电压稳定性测试表明ON和OFF态均表现稳定,而且ON和OFF态在-1V连续读出脉冲下可达到读出108次。
     第六章:总结了本论文从第二章到第五章的主要研究成果。
Advantages of polymer/organic memories include simplicity in device structure, good scalability, low cost potential, low power operation, multiple state accessibility, three dimensional (3D) stacking capability and large capacity for data storage. There is increasing interest in polymer memories during the last few years, however, the response time, ON/OFF ratio, read cycles and retention time are far beyond practical requirements comparing with inorganic, and especailly silicon based memory devices. Up on this, design and preparation of novel organic/polymeric data starage materials and probe into the mechanisms become the extremely interesting topics in the field of ultra-high density information storage. There are a few emerging area required to study, such as (1) new polymeric functional materials and device films process better electric properties and technic compatibility and (2) further preparation devices based on the materials and/or films. Thus, we need to comprehend, study and develop many technologies, such as molecular design, materials preparation technology, self-assembly technology, device preparation and the mechanism of memory device etc. In order to carry out all of these, it depends on the close cooperation among the scientists who are studying in the field of physics, chemistry, materials and device processes, etc. Base on these, several novel electrical active functional polymeric materials were successfully prepared. Besides, the electrical memory properties of the materials were also studied and some positive and original results were obtained.
     Chapter 1:The kinds of organic/polymeric memory devices, the mechanisms of the memory effect, the progress of polymeric memory applications using organic/polymeric/hybrid materials as active materials were reviewed and the problems which are still under studying were also discussed in this chapter.
     Chapter 2:The photoinduced intramolecular processes of a novel polymer, namely bis Dispersed Red 1(DR1) and C6o end-capped poly[9,9-bis(4-diphenylaminophenyl)-2,7-fluorene] (abbreviated as DR1-PDPAF-DR1 and C60-PDPAF-C60) are reported. The polymers are soluble in organic solvents and possesses high thermal stability. The geometric and electronic structures using ab intio B3LYP/6-31G methods show that the fluorene backbone acts as conjugated channel for charge carriers, the lateral triphenylamine groups serve as the electron-donors, and the DR1/C60 terminals serve as electron acceptors. The molecular orbital calculations show the sequential hole-migration along the PDPAF units. The charge-separated configuration of DR1-PDPAF-DR1 was found to be long lived up to 2.3 ms in the polar benzonitrile, as inferred from the studies of the time-resolved emission and absorption techniques in the picosecond, nanosecond and millisecond region, reflecting the significant effect of the charge carrying of the polymer chain on prolonging the charge-separated states. Polymer memory devices based on these two polymers were fabricated. While, only the devices of DR1-PDPAF-DR1 exhibit electrical bistability in the I-V characteristics and can be used to perform read-write-erase memory functions. The memory devices exhibit good performance with an on/off current ratio up to 103 and stable on and off states under a constant voltage stress and read pulses. Furthermore, memory retention tests show that it is possible to preserve both states at 150℃under ambient atmosphere for about 1 h when using Cu as the top electrode.
     Chapter 3:A nanoaggregated DR1-grafted poly(N-vinylcarbazole) (abbreviated PVDR) is self-assembled viaπ-πstacking interactions of the carbazole groups in the polymer system after adding a solution of PVDR in N,N'-dimethylformamide to dichloromethane. Upon self-assembly, the nanoaggregated PVDR film displays helical columnar stacks with large grain sizes, whereas a non-aggregated PVDR film exhibits an amorphous morphology with smaller grain size. A write-once read-many-times (WORM) memory device is shown whereby a pre-assembled solution of PVDR is spin-coated as the active layer and is sandwiched between an aluminum electrode and an indium-tin-oxide (ITO) electrode. This device shows very good memory performance, with an ON/OFF current ratio of more than 105 and a low misreading rate through the precise control of the ON and OFF states. The stability of the nanoaggregated PVDR device is much higher than that of the non-nanoaggregated PVDR device. This difference in device stability under constant voltage stress can be mainly attributed to the difference in the film crystallinity and surface morphology. No degradation in current density was observed for the ON- and OFF-states after more than one hundred million (108) continuous read cycles indicating that both states were insensitive to the read cycles. These results render the nanoaggregated PVDR polymer as promising components for high-performance polymer memory devices.
     Chapter 4:A highly soluble polyfluorene-based copolymer containing electron-rich triphenylamine (TPA) and electron-poor 9,9'-bis(3,4-bis(3,4-dicyanophenoxy)phenyl side chains in the C-9 position of the fluorene unit was synthesized under Yamamoto conditions. By applying 306 nm as excitation wavelength, the resultant polymer exhibits strong photoluminescence with maximum emission peaks centered at 413 and 433(sh) nm in chloroform. The calculated highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy bandgap, ionization potential, and electron affinity are-5.66,-3.44,2.22,5.92, and 3.70 eV, respectively. The as-fabricated polymer film exhibited typical stable write-once-read-many times (WORM) memory characteristics, which are desirable for ultra low-cost permanent storage of digital images. The currents in both ON and OFF states did not show any degradation, suggesting good device stability. The ON/OFF current ratio observed in the sweep I-V characteristics at+1.0 V is 6.1×103. The conduction mechanism through ITO/polymer/Al device is discussed.
     Chapter 5:A novel conjugated-polymer-modified graphene oxide (TPAPAM-GO) was, for the first time, synthesized and was successfully used to fabricate a TPAPAM-GO based nonvolatile memory device. This device exhibited a typical bistable electrical switching and nonvolatile rewritable memory effect, with a turn-on voltage of about-1V and an ON/OFF current ratio of more than 103. Both the ON and OFF states are stable under a constant voltage stress and survived up to 108 read cycles at a read voltage of-1.0 V.
     Chapter 6:The results from chapter 2 to chapter 5 were summerized.
引文
[1]. Miller, J. S., Bistable electrical, optical, and magnetic behavior in a molecule-based material. Angewandte Chemie-International Edition 2003,42(1):27-29.
    [2]. Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P., Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Advanced Materials 2006,18(19): 2535-2540.
    [3]. Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; De Leeuw, D. M., High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Materials 2005,4(3):243-248.
    [4]. Wuttig, M.; Yamada, N., Phase-change materials for rewriteable data storage. Nature Materials 2007,6,824-832.
    [5]. Ling, Q. D.; Liaw, D. J.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Polymer memories:Bistable electrical switching and device performance. Polymer 2007,48(18):5182-5201.
    [6]. Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R., A [2]catenane-based solid state electronically reconfigurable switch. Science 2000,289(5482):1172-1175.
    [7]. Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008,33(10):917-978.
    [8]. Yang, Y.; Ma, L. P.; Wu, J. H., Organic thin-film memory. Mrs Bulletin 2004,29(11): 833-837.
    [9]. Yang, Y.; Ouyang, J.; Ma, L. P.; Tseng, R. J. H.; Chu, C. W., Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials 2006,16(8):1001-1014.
    [10].Scott, J. C.; Bozano, L. D., Nonvolatile memory elements based on organic materials. Advanced Materials 2007,19(11):1452-1463.
    [11]. Liu, J.; Lin, Z.; Liu, T.; Yin, Z.; Zhou, X.; Chen, S.; Xie, L.; Boey, F.; Zhang, H.; Huang, W., Multilayer Stacked Low-Temperature-Reduced Graphene Oxide Films:Preparation, Characterization, and Application in Polymer Memory Devices. Small 2010,6(14): 1536-1542.
    [12].Asadi, K.; De Leeuw, D. M.; De Boer, B.; Blom, P. W. M., Organic non-volatile memories from ferroelectric phase-separated blends. Nature Materials 2008,7(7): 547-550.
    [13].Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H. C.; Bauer, S.; Thomas, E. L.; Park, C., Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory. Advanced Functional Materials 2009,19(17): 2812-2818.
    [14].Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y., Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret. Advanced Materials 2006,18(23):3179-3183.
    [15].Yildirim, F. A.; Ucurum, C.; Schliewe, R. R.; Bauhofer, W.; Meixner, R. M.; Goebel, H.; Krautschneider, W., Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors. Applied Physics Letters 2007,90(8): 083501.
    [16]. Ling, Q. D.; Chang, F. C.; Song, Y.; Zhu, C. X.; Liaw, D. J.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Synthesis and dynamic random access memory behavior of a functional polyimide. Journal of the American Chemical Society 2006,128(27):8732-8733.
    [17].Colle, M.; Buchel, M.; de Leeuw, D. M., Switching and filamentary conduction in non-volatile organic memories. Organic Electronics 2006,7(5):305-312.
    [18].Joo, W. J.; Choi, T. L.; Lee, J.; Lee, S. K.; Jung, M. S.; Kim, N.; Kim, J. M., Metal filament growth in electrically conductive polymers for nonvolatile memory application. Journal of Physical Chemistry B 2006,110(47):23812-23816.
    [19].Kitn, J.; Cho, S.; Choi, S.; Baek, S.; Lee, D.; Kim, O.; Park, S. M.; Ree, M., Novel electrical properties of nanoscale thin films of a semiconducting polymer:Quantitative current-sensing AFM analysis. Langmuir 2007,23(17):9024-9030.
    [20].Xu, X.; Register, R. A.; Forrest, S. R., Mechanisms for current-induced conductivity changes in a conducting polymer. Applied Physics Letters 2006,89(14):142109.
    [21].Majee, S. K.; Majumdar, H. S.; Bolognesi, A.; Pal, A. J., Electrical bistability and memory applications of poly(p-phenylenevinylene) films. Synthetic Metals 2006, 156(11-13):828-832.
    [22].Hueso, L. E.; Bergenti, I.; Riminucci, A.; Zhan, Y. Q.; Dediu, V., Multipurpose magnetic organic hybrid devices. Advanced Materials 2007,19(18):2639-2642.
    [23]. Liang, Y. C.; Dvornikov, A. S.; Rentzepis, P. M., Synthesis and photochemistry of photochromic fluorescing indol-2-ylfulgimides. Journal of Materials Chemistry 2000, 10(11):2477-2482.
    [24]. Jin, J. J.; Haramoto, Y.; Nanasawa, M., Synthesis and photoinduced coloration of ferric bipyridine complex linked viologen units in a polymer matrix. Macromolecular Rapid Communications 1999,20(3):135-138.
    [25].Perelman, L. A.; Moore, T.; Singelyn, J.; Sailor, M. J.; Segal, E., Preparation and Characterization of a pH- and Thermally Responsive Poly(N-isopropylacrylamide -co-acrylic acid)/Porous SiO2 Hybrid. Advanced Functional Materials 2010,20(5): 826-833.
    [26].Park, J.; Kim, I.; Shin, H.; Lee, M. J.; Kim, Y. S.; Bang, J.; Caruso, F.; Cho, J., Integrated catalytic activity of patterned multilayer films based on pH-induced electrostatic properties of enzymes. Advanced Materials 2008,20(10):1843-1848.
    [27].Gherab, K. N.; Gatri, R.; Hank, Z.; Dick, B.; Kutta, R. J.; Winter, R.; Luc, J.; Sahraoui, B.; Fillaut, J. L., Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides. Journal of Materials Chemistry 2010,20(14):2858-2864.
    [28].Guo, Z. G.; Cao, R.; Wang, X.; Li, H. F.; Yuan, W. B.; Wang, G. J.; Wu, H. H.; Li, J., A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework. Journal of the American Chemical Society 2009,131(20):6894-6895.
    [29].Manohara, H. M.; Morikawa, E.; Choi, J.; Sprunger, P. T., Pattern transfer by direct photo etching of poly(vinylidene fluoride) using X rays. Journal of Microelectromechanical Systems 1999,8(4):417-422.
    [30].Kutner, W.; Noworyta, K.; Deviprasad, G. R.; D'Souza, F., Electrochemistry of solutions as well as simultaneous cyclic voltammetry and piezoelectric microgravimetry of conducting films of 2-(n-alkyl)fulleropyrrolidines. Journal of The Electrochemical Society 2000,147(7):2647-2652.
    [31].Hundal, J. S.; Nath, R., Piezoelectricity and polarization studies in unstretched san copolymer films. Journal of Materials Science 1999,34(21):5397-5401.
    [32].Aprahamian, I.; Yasuda, T.; Ikeda, T.; Saha, S.; Dichtel, W. R.; Isoda, K.; Kato, T.; Stoddart, J. F., A liquid-crystalline bistable [2]Rotaxane. Angewandte Chemie-International Edition 2007,46(25):4675-4679.
    [33].Ikuma, N.; Tamura, R.; Shimono, S.; Uchida, Y.; Masaki, K.; Yamauchi, J.; Aoki, Y.; Nohira, H., Ferroelectric properties of paramagnetic, all-organic, chiral nitroxyl radical liquid crystals. Advanced Materials 2006,18(4):477-480.
    [34].Kim, J. H.; Yoneya, M.; Yokoyama, H., Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 2002,420(6912):159-162.
    [35].Heintz, R. A.; Zhao, H. H.; Xiang, O. Y.; Grandinetti, G.; Cowen, J.; Dunbar, K. R., New insight into the nature of Cu(TCNQ):Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorganic Chemistry 1999,38(1):144-156.
    [36].Meunier, V.; Kalinin, S. V.; Sumpter, B. G., Nonvolatile memory elements based on the intercalation of organic molecules inside carbon nanotubes. Physical Review Letters 2007,98(5):056401.
    [37].Muller, R.; Genoe, J.; Heremans, P., Nonvolatile Cu/CuTCNQ/Al memory prepared by current controlled oxidation of a Cu anode in LiTCNQ saturated acetonitrile. Applied Physics Letters 2006,88(24):242105.
    [38].Naka, K.; Uemura, T.; Chujo, Y., Linearly extended pi-conjugated dithiafulvene polymer formed soluble charge-transfer complex with 7,7,8,8-tetracyanoquinodimethane. Polymer Journal 2000,32(5):435-439.
    [39].Potember, R. S.; Poehler, T. O.; Cowan, D. O., Electrical switching and memory phenomena in Cu-TCNQ thin films Applied Physics Letters 1979,34(6):405-407.
    [40]. Sato, C.; Wakamatsu, S.; Tadokoro, K.; Ishii, K., Polarized memory effect in the device including the organic charge- transfer complex, copper-tetracyanoquinodimethane. Journal of Applied Physics 1990,68(12):6535-6537.
    [41].Godehardt, R.; Heydenreich, J., Detection and evaluation of current filaments in MIS sandwich systems by applying mirror electron microscopy (MEM) and scanning electron microscopy (SEM) International Journal of Electronics 1992,73(5):1093-1094.
    [42]. Osakai, Y., Thin Solid Films 1983,104,71.
    [43].Tseng, R. J.; Ouyang, J.; Chu, C. W.; Huang, J. S.; Yang, Y., Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device. Applied Physics Letters 2006,88(12):123506.
    [44]. 朱道本;王佛松,有机固体.上海科学技术出版社:上海,1999;p 316.
    [45]. 薛增泉,分子电子学.北京大学出版社:北京,2003;p 223.
    [46].Lee, C. T.; Yu, L. Z.; Chen, H. C., Memory bistable mechanisms of organic memory devices. Applied Physics Letters 2010,97(4):043301.
    [47].Caironi, M.; Natali, D.; Sampietro, M.; Bertarelli, C.; Bianco, A.; Dundulachi, A.; Canesi, E.; Zerbi, G., Organic memory device based on 3,3'-bis-(3,5-di-tert-butyl-4-methoxyphenyl)-2,2'-bithiophene with high endurance and robustness to ambient air operation. Applied Physics Letters 2006,89(24):243519.
    [48].Mukherjee, B.; Ray, A. K.; Sharma, A. K.; Cook, M. J.; Chambrier, I., A simply constructed lead phthalocyanine memory diode. Journal of Applied Physics 2008,103(7): 074507.
    [49]. Ma, Y.; Cao, X.; Li, G.; Wen, Y.; Yang, Y.; Wang, J.; Du, S.; Yang, L.; Gao, H.; Song, Y., Improving the ON/OFF Ratio and Reversibility of Recording by Rational Structural Arrangement of Donor-Acceptor Molecules. Advanced Functional Materials 2010, 20(5):803-810.
    [50].Chu, C. W.; Ouyang, J.; Tseng, H. H.; Yang, Y., Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Advanced Materials 2005, 17(11):1440-1443.
    [51].Mukherjee, B.; Pal, A. J., Write-once-read-many-times (WORM) memory applications in a monolayer of donor/acceptor supramolecule. Chemistry of Materials 2007,19(6): 1382-1387.
    [52].Lin, J.; Zheng, M.; Chen, J. S.; Gao, X. A.; Ma, D. G., Negative differential resistance and memory effect in diodes based on 1,4-dibenzyl C60 and zinc phthalocyanine doped polystyrene hybrid material. Inorganic Chemistry 2007,46(1):341-344.
    [53].Ma, L. P.; Liu, J.; Yang, Y., Organic electrical bistable devices and rewritable memory cells. Applied Physics Letters 2002,80(16):2997-2999.
    [54]. Ma, L. P.; Liu, J.; Pyo, S. M.; Yang, Y., Organic bistable light-emitting devices. Applied Physics Letters 2002,80(3):362-364.
    [55].Tu, D. Y.; Shang, L. W.; Liu, M.; Wang, C. S.; Jiang, G. Y.; Song, Y. L., Electrical bistable behavior of an organic thin film through proton transfer. Applied Physics Letters 2007,90(5):052111.
    [56].Tal, S.; Blumer-Ganon, B.; Kapon, M.; Eichen, Y., Reversible and persistent electrical bistability in single crystals of a self-assembled pi-conjugated tetraaryl system:A submicrometer scale electrical characterization. Journal of the American Chemical Society 2005,127(27):9848-9854.
    [57].Wang, B.; Fang, J.; Lia, B.; You, H.; Ma, D.; Hong, Z.; Li, W.; Su, Z., Soluble dendrimers europium(III) beta-diketonate complex for organic memory devices. Thin Solid Films 2008,516(10):3123-3127.
    [58].Joo, W. J.; Choi, T. L.; Lee, S. K.; Chung, Y.; Jung, M. S.; Kim, J. M., Electronically controlled nonvolatile memory device using PAMAM dendrimer. Organic Electronics 2006,7(6):600-606.
    [59].Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R., Switching Devices Based on Interlocked Molecules. Accounts of Chemical Research 2001,34(6):433-444.
    [60].Ashton, P. R.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J., Pseudorotaxanes Formed Between Secondary Dialkylammonium Salts and Crown Ethers. Chemistry-A European Journal 1996,2(6):709-728.
    [61].Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R., A polymer/semiconductor write-once read-many-times memory. Nature 2003,426(6963):166-169.
    [62].Lauters, M.; McCarthy, B.; Sarid, D.; Jabbour, G. E., Multilevel conductance switching in polymer films. Applied Physics Letters 2006,89(1):013507.
    [63].Freire, J. A.; Dal Moro, G. A.; Toniolo, R.; Hummelgen, I. A.; Ferreira, C. A., Polymeric electronic oscillators based on bistable conductance devices. Organic Electronics 2006, 7(5):397-402.
    [64].Lim, S. L.; Ling, Q. D.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chemistry of Materials 2007,19(21):5148-5157.
    [65].Xie, L.-H.; Ling, Q.-D.; Hou, X.-Y.; Huang, W., An Effective Friedel-Crafts Postfunctionalization of Poly(N-vinylcarbazole) to Tune Carrier Transportation of Supramolecular Organic Semiconductors Based on π-Stacked Polymers for Nonvolatile Flash Memory Cell. Journal of the American Chemical Society 2008,130(7):2120-2121.
    [66].Tian, G.; Wu, D.; Qi, S.; Wu, Z.; Wang, X., Dynamic Random Access Memory Effect and Memory Device Derived from a Functional Polyimide Containing Electron Donor-Acceptor Pairs in the Main Chain. Macromolecular Rapid Communications 2010,32(4):384-389.
    [67].Wang, K.-L.; Liu, Y.-L.; Lee, J.-W.; Neoh, K.-G.; Kang, E.-T., Nonvolatile Electrical Switching and Write-Once Read-Many-Times Memory Effects in Functional Polyimides Containing Triphenylamine and 1,3,4-Oxadiazole Moieties. Macromolecules 2010, 43(17):7159-7163.
    [68]. Liu, Y. L.; Wang, K. L.; Huang, G. S.; Zhu, C. X.; Tok, E. S.; Neoh, K. G.; Kang, E. T., Volatile Electrical Switching and Static Random Access Memory Effect in a Functional Polyimide Containing Oxadiazole Moieties. Chemistry of Materials 2009,21(14): 3391-3399.
    [69].Ling, Q. D.; Song, Y.; Lim, S. L.; Teo, E. Y. H.; Tan, Y. P.; Zhu, C. X.; Chan, D. S. H.; Kwong, D. L.; Kang, E. T.; Neoh, K. G., A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angewandte Chemie-International Edition 2006,45(18):2947-2951.
    [70].Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C., High Performance Volatile Polymeric Memory Devices Based on Novel Triphenylamine-based Polyimides Containing Mono- or Dual-Mediated Phenoxy Linkages. Macromolecules 2010,43(3):1236-1244.
    [71].Kim, D. M.; Park, S.; Lee, T. J.; Hahm, S. G.; Kim, K.; Kim, J. C.; Kwon, W.; Ree, M., Programmable Permanent Data Storage Characteristics of Nanoscale Thin Films of a Thermally Stable Aromatic Polyimide. Langmuir 2009,25(19):11713-11719.
    [72].Kim, K.; Park, S.; Hahm, S. G.; Lee, T. J.; Kim, D. M.; Kim, J. C.; Kwon, W.; Ko, Y. G.; Ree, M., Nonvolatile Unipolar and Bipolar Bistable Memory Characteristics of a High Temperature Polyimide Bearing Diphenylaminobenzylidenylimine Moieties. Journal of Physical Chemistry B 2009,113(27):9143-9150.
    [73].Hahm, S. G.; Choi, S.; Hong, S. H.; Lee, T. J.; Park, S.; Kim, D. M.; Kim, J. C.; Kwon, W.; Kim, K.; Kim, M. J.; Kim, O.; Ree, M., Electrically bistable nonvolatile switching devices fabricated with a high performance polyimide bearing diphenylcarbamyl moieties. Journal of Materials Chemistry 2009,19(15):2207-2214.
    [74].Li, Y.; Xu, H.; Tao, X.; Qian, K.; Fu, S.; Shen, Y.; Ding, S., Synthesis and Memory Characteristics of Highly Organo-soluble Polyimides Bearing a Noncoplanar Twisted Biphenyl Unit Containing Aromatic Side-chain Groups. Journal of Materials Chemistry 2011,21(6):1810-1821.
    [75]. Wang, K.-L.; Tseng, T.-Y.; Tsai, H.-L.; Wu, S.-C., Resistive Switching Polymer Materials Based on Poly(aryl ether)s Containing Triphenylamine and 1,2,4-Triazole Moieties. Journal of Polymer Science Part A:Polymer Chemistry 2010,46,6861-6871.
    [76]. Wang, K.-L.; Liu, Y.-L.; Shih, I.-H.; Neoh, K.-G.; Kang, E.-T., Synthesis of polyimides containing triphenylamine-substituted triazole moieties for polymer memory applications. Journal of Polymer Science Part A:Polymer Chemistry 2010,48(24):5790-5800.
    [77].Park, S.; Lee, T. J.; Kim, D. M.; Kim, J. C.; Kim, K.; Kwon, W.; Ko, Y.-G.; Choi, H.; Chang, T.; Ree, M., Electrical Memory Characteristics of a Nondoped π-Conjugated Polymer Bearing Carbazole Moieties. The Journal of Physical Chemistry B 2010, 114(32):10294-10301.
    [78].Karakawa, M.; Chikamatsu, M.; Yoshida, Y.; Azumi, R.; Yase, K.; Nakamoto, C., Organic memory device based on carbazole-substituted cellulose. Macromolecular Rapid Communications 2007,28(14):1479-1484.
    [79].Yonekuta, Y.; Honda, K.; Nishide, H., A non-volatile, bistable, and rewritable memory device fabricated with poly(nitroxide radical) and silver salt layers. Polymers for Advanced Technologies 2008,19(4):281-284.
    [80].Attianese, D.; Petrosino, M.; Vacca, P.; Concilio, S.; Iannelli, P.; Rubino, A.; Bellone, S., Switching Device Based on a Thin Film of an Azo-Containing Polymer for Application in Memory Cells. IEEE Electron Device Letters 2008,29(1):44-46.
    [81].Lim, S. L.; Li, N. J.; Lu, J. M.; Ling, Q. D.; Zhu, C. X.; Kang, E. T.; Neoh, K. G., Conductivity Switching and Electronic Memory Effect in Polymers with Pendant Azobenzene Chromophores. Acs Applied Materials & Interfaces 2009,1(1):60-71.
    [82].Liu, C. L.; Hsu, J. C.; Chen, W. C.; Sugiyama, K.; Hirao, A., Non-volatile Memory Devices Based on Polystyrene Derivatives with Electron-Donating Oligofluorene Pendent Moieties. Acs Applied Materials & Interfaces 2009,1(9):1974-1979.
    [83]. Fang, Y.-K.; Liu, C.-L.; Li, C.; Lin, C.-J.; Mezzeng, R.; Chen, W.-C., Synthesis, Morphology, and Properties of Poly(3-hexylthiophene)-block-Poly(vinylphenyl oxadiazole) Donor-Acceptor Rod-Coil Block Copolymers and Their Memory Device Applications. Advanced Functional Materials 2010,20(18):3012-3024.
    [84].Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J., Electronic Memory Effects in a Sexithiophene-Poly(ethylene oxide) Block Copolymer Doped with NaCl. Combined Diode and Resistive Switching Behavior. Chemistry of Materials 2006,18(11): 2707-2712.
    [85].Choi, T. L.; Lee, K. H.; Joo, W. J.; Lee, S.; Lee, T. W.; Chae, M. Y., Synthesis and nonvolatile memory behavior of redox-active conjugated polymer-containing ferrocene. Journal of the American Chemical Society 2007,129(32):9842-9843.
    [86].Kim, T.-W.; Oh, S.-H.; Lee, J.; Choi, H.; Wang, G.; Park, J.; Kim, D.-Y.; Hwang, H.; Lee, T., Effect of metal ions on the switching performance of polyfluorene-based organic non-volatile memory devices. Organic Electronics 2010,11(1):109-114.
    [87]. Kim, T.-W.; Choi, H.; Oh, S.-H.; Wang, G.; Kim, D.-Y.; Hwang, H.; Lee, T., One Transistor-One Resistor Devices for Polymer Non-Volatile Memory Applications. Advanced Materials 2009,21(24):2497-2500.
    [88].Ling, Q. D.; Song, Y.; Ding, S. J.; Zhu, C. X.; Chan, D. S. H.; Kwong, D. L.; Kang, E. T.; Neoh, K. G., Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Advanced Materials 2005,17(4): 455-459.
    [89]. Ling, Q. D.; Wang, W.; Song, Y.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Bistable electrical switching and memory effects in a thin film of copolymer containing electron donor-acceptor moieties and europium complexes. Journal of Physical Chemistry B 2006,110(47):23995-24001.
    [90].Li, L.; Ling, Q. D.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Bilayer memory device based on a conjugated copolymer and a carbon nanotube/polyaniline composite. Journal of The Electrochemical Society 2008,155(4):H205-H209.
    [91].Liu, S.-J.; Lin, Z.-H.; Zhao, Q.; Ma, Y.; Shi, H.-F.; Yi, M.-D.; Ling, Q.-D.; Fan, Q.-L.; Zhu, C.-X.; Kang, E.-T.; Huang, W., Flash-Memory Effect for Polyfl uorenes with On-Chain Iridium(Ⅲ) Complexes. Advanced Functional Materials 2011,21(5): 979-985.
    [92].Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J., Electronic memory effects in a sexithiophene-poly(ethylene oxide) block copolymer doped with NaCl. Combined diode and resistive switching behavior. Chemistry of Materials 2006,18(11):2707-2712.
    [93].Pearson, C.; Ahn, J. H.; Mabrook, M. F.; Zeze, D. A.; Petty, M. C.; Kamtekar, K. T.; Wang, C. S.; Bryce, M. R.; Dimitrakis, P.; Tsoukalas, D., Electronic memory device based on a single-layer fluorene-containing organic thin film. Applied Physics Letters 2007,91 (12):123506.
    [94].Choi, J. S.; Kim, J. H.; Kim, S. H.; Suh, D. H., Nonvolatile memory device based on the switching by the all-organic charge transfer complex. Applied Physics Letters 2006, 89(15):152111.
    [95]. Tseng, R. J.; Huang, J. X.; Ouyang, J.; Kaner, R. B.; Yang, Y., Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Letters 2005,5(6):1077-1080.
    [96].Prakash, A.; Ouyang, J.; Lin, J. L.; Yang, Y., Polymer memory device based on conjugated polymer and gold nanoparticles. Journal of Applied Physics 2006,100(5): 054309.
    [97]. Lin, H.-T.; Pei, Z.; Chen, J.-R.; Hwang, G.-W.; Fan, J.-F.; Chan, Y.-J., A New Nonvolatile Bistable Polymer-Nanoparticle Memory Device. IEEE Electron Device Letters 2007, 28(11):951-953.
    [98].Kim, C. K.; Joo, W.-J.; Kim, H. J.; Song, E. S.; Kim, J.; Lee, S.; Park, C.; Kim, C., Gold nanoparticles passivated with π-conjugated dendrons and their electrical bistability Synthetic Metals 2008,158(8-9):359-363.
    [99].Jeong, D. S.; Schroeder, H.; Waser, R., Impedance spectroscopy of TiO2 thin films showing resistive switching. Applied Physics Letters 2006,89(8):082909.
    [100]. Noh, S. H.; Choi, W.; Oh, M. S.; Hwang, D. K.; Lee, K.; Im, S.; Jang, S.; Kim, E., ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators. Applied Physics Letters 2007,90(25):253504.
    [101]. Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J., Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material. Applied Physics Letters 2006,89(10):102103.
    [102]. Yun, D. Y.; Kwak, J. K.; Jung, J. H.; Kim, T. W.; Son, D. I., Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer. Applied Physics Letters 2009,95(14):143301.
    [103]. Li, F.; Son, D. I.; Seo, S. M.; Cha, H. M.; Kim, H. J.; Kim, B. J.; Jung, J. H.; Kim, T. W., Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Applied Physics Letters 2007,91(12): 122111.
    [104]. Li, F. S.; Son, D. I.; Cha, H. M.; Seo, S. M.; Kim, B. J.; Kim, H. J.; Jung, J. H.; Kim, T. W., Memory effect of CdSe/ZnS nanoparticles embedded in a conducting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] polymer layer. Applied Physics Letters 2007,90(22):222109.
    [105]. Nayak, S. K.; Jena, P., Equilibrium geometry, stability, and magnetic properties of small MnO clusters. Journal of the American Chemical Society 1999,121(4):644-652.
    [106]. Tang, A. W.; Teng, F.; Qian, L.; Hou, Y. B.; Wang, Y. S., Electrical bistability of copper (I) sulfide nanocrystals blending with a semiconducting polymer. Applied Physics Letters 2009,95(14):143115.
    [107]. Jung, J. H.; Kim, J. H.; Kim, T. W.; Song, M. S.; Kim, Y. H.; Jin, S., Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer. Applied Physics Letters 2006,89(12):122110.
    [108]. Ling, Q. D.; Lim, S. L.; Song, Y.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C-60. Langmuir 2007,23(1): 312-319.
    [109]. Liu, G.; Ling, Q. D.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Neoh, K. G.; Kang, E. T., Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. Acs Nano 2009,3(7): 1929-1937.
    [110]. Son, D. I.; Kim, T. W.; Shim, J. H.; Jung, J. H.; Lee, D. U.; Lee, J. M.; II Park, W.; Choi, W. K., Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(methyl methacrylate) Polymer Layer. Nano Letters 2010,10(7): 2441-2447.
    [111]. Li, G. L.; Liu, G.; Li, M.; Wan, D.; Neoh, K. G.; Kang, E. T., Organo- and Water-Dispersible Graphene Oxide-Polymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites. Journal of Physical Chemistry C 2010,114(29): 12742-12748.
    [112]. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M., Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000,289(5476):94-97.
    [113]. Kumar, A.; Murugesan, S.; Pushparaj, V.; Xie, J.; Soldano, C.; John, G.; Nalamasu, O.; Ajayan, P. M.; Linhardt, R. J., Conducting organic-metallic composite submicrometer rods based on ionic liquids. Small 2007,3(3):429-433.
    [114]. Portney, N. G.; Tseng, R. J.; Destito, G.; Strable, E.; Yang, Y.; Manchester, M.; Finn, M. G.; Ozkan, M., Microscale memory characteristics of virus-quantum dot hybrids. Applied Physics Letters 2007,90(21):214104.
    [115]. Adler, D., Amorphous Semiconductor CRC Press:Cleveland,1971.
    [116]. Sze, S. M.; Ng, K. K., Physics of Semiconductor Devices,3rd Edition. Wiley-Interscience:Hoboken,2007.
    [117]. Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers, 2nd ed. Oxford University Press New York,1999.
    [118]. Jiang, G. Y.; Yuan, W. F.; Wen, Y. Q.; Gao, H. J.; Song, Y. L., SPM-based high density data storage. Progress in Chemistry 2007,19(6):1034-1040.
    [119]. 姜桂元;温永强;吴惠荫;元文芳;商艳丽;高鸿钧;宋延林,超高密度电学信息存储研究进展.物理2006,35(9):773-778.
    [120].石胜伟;彭俊彪,有机电双稳态器件.化学进展2007,19(9):1371-1380.
    [121].郭鹏;徐伟,有机电双稳材料与器件的研究进展.材料科学与工程学报2005,23(6):990-914.
    [1]. Heeger, A. J., Symposium proceedings of 5th InternationalSymposium on Functional p-Electron Systems. In Ulm/Neu-Ulm (Germany),2002; pp SL-A 3.6.
    [2]. Segura, J. L.; Martin, N.; Guldi, D. M., Materials for organic solar cells:the C-60/pi-conjugated oligomer approach. Chemical Society Reviews 2005,34(1),31-47.
    [3]. Fujitsuka, M.; Ito, O., Encyclopedia of Nanoscience and Nanotechnology.2004; Vol.8.
    [4]. Guldi, D. M.; Luo, C. P.; Swartz, A.; Gomez, R.; Segura, J. L.; Martin, N., pi-Conjugated electroactive oligomers:Energy and electron transducing systems. Journal of Physical Chemistry A 2004,108(3),455-467.
    [5]. Beckers, E. H. A.; van Hal, P. A.; Dhanabalan, A.; Meskers, S. C. J.; Knol, J.; Hummelen, J. C.; Janssen, R. A. J., Charge transfer kinetics in fullerene-oligomer- fullerene triads containing alkylpyrrole units. Journal of Physical Chemistry A 2003,107(32), 6218-6224.
    [6]. Martineau, C.; Blanchard, P.; Rondeau, D.; Delaunay, J.; Roncali, J., Synthesis and electronic properties of adducts of oligothienylenevinylenes and fullerene C60. Advanced Materials 2002,14(4),283-289.
    [7]. Eckert, J. F.; Nicoud, J. F.; Nierengarten, J. F.; Liu, S. G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G., Fullerene-oligophenylenevinylene hybrids:Synthesis, electronic properties, and incorporation in photovoltaic devices. Journal of the American Chemical Society 2000, 122(31),7467-7479.
    [8]. Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Mullen, K., Triphenylamine-substituted polyfluorene-A stable blue-emitter with improved charge injection for light-emitting diodes. Advanced Materials 2002,14(11),809-811.
    [9]. Guldi, D. M., Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chemical Society Reviews 2002,31(1),22-36.
    [10].E1-Khouly, M. E.; Ito, O.; Smith, P. M.; D'Souza, F., Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2004,5(1), 79-104.
    [11].Chen, Y.; EI-Khouly, M. E.; Doyle, J. J.;Notaras, E. G. A.; Blau, W. J.; O'Flaherty, S. M., Handbook of Organic Electronics and Photonics. In Nalwa, H. S., Ed. American Scientific, Stevenson Ranch:California, USA,2008.
    [12].Ling, Q. D.; Kang, E. T.; Neoh, K. G.; Chen, Y.; Zhuang, X. D.; Zhu, C. X.; Chan, D. S. H., Thermally stable polymer memory devices based on a pi-conjugated triad. Applied Physics Letters 2008,92(14),143302.
    [13].Kido, J.; Kimura, M.; Nagai, K., Multilayer White Light-Emitting Organic Electroluminescent Device. Science 1995,267,1332-1334.
    [14].Bulovic, V.; Gu, G.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E., Transparent Light-Emitting Devices. Nature 1996,380,29-30.
    [15].Mikroyannidis, J. A.; Gibbons, K. M.; Kulkarni, A. P.; Jenekhe, S. A., Poly(fluorenevinylene) copolymers containing bis(phenyl)oxadiazole and triphenylamine moieties:Synthesis, photophysics, and redox and electroluminescent properties. Macromolecules 2008,41(3),663-674.
    [16]. Liu, Z. F.; Hashimoto, K.; Fujishima, A., Photoelectrochemical information storage using an azobenzene derivative. Nature 1990,347,658-660.
    [17].Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992,258(5087),1474 1476.
    [18].Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995,5243,1789-1791.
    [19].Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Laminated fabrication of polymeric photovoltaic diodes. Nature 1998,395,257-260
    [20].Giacalone, F.; Martin, N., Fullerene polymers:Synthesis and properties. Chemical Reviews 2006,106(12),5136-5190.
    [21].Luzzati, S.; Scharber, M.; Catellani, M.; Giacalone, F.; Segura, J. L.; Martin, N.; Neugebauer, H.; Sariciftci, N. S., Long-lived photoinduced charges in donor-acceptor anthraquinone-substituted thiophene copolymers. Journal of Physical Chemistry B 2006, 110(11),5351-5358.
    [22].Gomez, R.; Blanco, R.; Veldman, D.; Segura, J. L.; Janssen, R. A. J., Synthesis and photophysical properties of conjugated polymers with pendant 9,10-anthraquinone units. Journal of Physical Chemistry B 2008,112(16),4953-4960.
    [23]. Johansson, E. M. J.; Karlsson, P. G.; Hedlund, M.; Ryan, D.; Siegbahn, H.; Rensmo, H., Photovoltaic and interfacial properties of heterojunctions containing dye-sensitized dense TiO2 and tri-arylamine derivatives. Chemistry of Materials 2007,19(8),2071-2078.
    [24].Shida, T., Electronic Absorption Spectra of Radical Ions Elsevier Science Publishers: Amsterdam and. New York,1988.
    [25].Bonvoisin, J.; Launay, J.-P.; Verbouwe, W.; Auweraer, M. V. d.; Schryver, F. C. D., Organic Mixed Valence Systems. Ⅱ. Two-Centers and Three-Centers Compounds with Meta Connections around a Central Phenylene Ring. The Journal of Physical Chemistry 1994,100(42),17079-17082.
    [26].Lambert, C.; Noll, G., The Class Ⅱ/Ⅲ Transition in Triarylamine Redox Systems. Journal of the American Chemical Society 1999,121(37),8434-8442.
    [27].Hauck, S. I.; Lakshmi, K. V.; Hartwig, J. F., Tetraazacyclophanes by Palladium-Catalyzed Aromatic Amination. Geometrically Defined, Stable, High-Spin Diradicals. Organic Letters 1999,1(13),2057-2060.
    [28].Yan, X. Z.; Pawlas, J.; Goodson, T.; Hartwig, J. F., Polaron delocalization in ladder macromolecular systems. Journal of the American Chemical Society 2005,127(25), 9105-9116.
    [29].Hirao, Y.; Ito, A.; Tanaka, K., Intramolecular charge transfer in a star-shaped oligoarylamine. Journal of Physical Chemistry A 2007,111 (15),2951-2956.
    [30].Sreenath, K.; Suneesh, C. V.; Kumar, V. K. R.; Gopidas, K. R., Cu(Ⅱ)-mediated generation of triarylamine radical cations and their dimerization. An easy route to tetraarylbenzidines. Journal of Organic Chemistry 2008,73(8),3245-3251.
    [31].Kotani, S.; Miyasaka, H.; Itaya, A., Mechanisms of Formation and Deactivation of Extremely Long-Lived Charge-Separated State following Photoinduced Electron. Transfer in Carbazolyl Polymers Coadsorbed with 1,2,4,5-Tetracyanobenzene on Macroreticular Resins. The Journal of Physical Chemistry 1996,100(51),19898-19903.
    [32].Scott, J. C.; Bozano, L. D., Nonvolatile memory elements based on organic materials. Advanced Materials 2007,19(11),1452-1463.
    [33].Hirsch, A.; Brettreich, M., Fullerenes:chemistry and reactions. Wiley-VCH:2005.
    [34].Prassides, K.; Alloul, H., Fullerene-based materials:structures and properties. Springer: Berlin,2004.
    [35].Qian, Y.; Wang, G.; Xiao, G.; Lin, B.; Cui, Y., The first-order molecular hyperpolarizability and thermal stability of charge-transfer azo diol and azo aldimine. Dyes and Pigments 2007,75(2),460-465.
    [36].Schmidt, J.; Werner, M.; Thomas, A., Conjugated Microporous Polymer Networks via Yamamoto Polymerization. Macromolecules 2009,42(13),4426-4429.
    [37].Bondarev, D.; Zednik, J.; Vohlidal, J.; Podhajecka, K.; Sedlacek, J., New Fluorene-Based Copolymers Containing Oxadiazole Pendant Groups:Synthesis, Characterization, and Polymer Stability. Journal of Polymer Science Part A-Polymer Chemistry 2009,47(18), 4532-4546.
    [38].Wu, T. Y.; Sheu, R. B.; Chen, Y., Synthesis and optically acid-sensory and electrochemical properties of novel polyoxadiazole derivatives. Macromolecules 2004, 37(3),725-733.
    [1]. Whitesides, G.; Mathias, J.; Seto, C., Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures. Science 1991,254(5036), 1312-1319.
    [2]. Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295(5564),2418-2421.
    [3]. Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F., A Chemically and Electrochemically Switchable Molecular Shuttle. Nature 1994,369,133-137.
    [4]. Moon, S. I.; McCarthy, T. J., Template Synthesis and Self-Assembly of Nanoscopic Polymer "Pencils". Macromolecules 2003,36,4253-4255.
    [5]. Zubarev, E. R.Pralle, M. U.; Sone, E. D.; Stupp, S. I., Self-assembly of dendron rodcoil molecules into nanoribbons. Journal of the American Chemical Society 2001,123(17), 4105-4106.
    [6]. Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H., DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 2003,301, 1882-1884.
    [7]. Berry, V.; Saraf, R. F., Self-assembly of nanoparticles on live bacterium:An avenue to fabricate electronic devices. Angewandte Chemie International Edition 2005,44(41), 6668-6673.
    [8]. Hulvat, J. F.; Stupp, S. I., Liquid-Crystal Templating of Conducting Polymers. Angewandte Chemie International Edition 2003,42(7),778-781.
    [9]. Tadokoro, M.; Kanno, H.; Kitajima, T.; Shimada-Umemoto, H.; Nakanishi, N.; Isobe, K.; Nakasuji, K., Self-organizing super-structures formed from hydrogen-bonded biimidazolate metal complexes. Proceedings of the National Academy of Sciences USA 2002,99(8),4950-4955.
    [10].Radzilowski, L. H.; Stupp, S. I., Nanophase separation in monodisperse rodcoil diblock polymers. Macromolecules 1994,27(26),7747-7753.
    [11].Messmore, B. W.; Hulvat, J. F.; Sone, E. D.; Stupp, S. I., Synthesis, Self-Assembly, and Characterization of Supramolecular Polymers from Electroactive Dendron Rodcoil Molecules. Journal of the American Chemical Society 2004,126,14452-14458.
    [12].Stupp, S. I.; Son, S.; Lin, H. C.; Li, L. S., Synthesis of two-dimensional polymers. Science 1993,259(1),59-63.
    [13].Hof, F.; Julius Rebek, J., Molecules within molecules:Recognition through self-assembly. Proceedings of the National Academy of Sciences U. S. A.2002,99(8), 4775-4777.
    [14].Zeng, F.; Zimmerman, S. C., Dendrimers in Supramolecular Chemistry:From Molecular Recognition to Self-Assembly. Chemical Reviews 1997,97,1681-1712.
    [15].Balakrishnan, K.; Datar, A.; Naddo, T.; Jialing Huang; Oitker, R.; Yen, M.; Zhao, J.; Zang, L., Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. Journal of the American Chemical Society 2006, 128(22),7390-7398.
    [16].Kaneko, T.; Higashi, M.; Matsusaki, M.; Akagi, T.; Akashi, M., Self-assembled Soft Nanofibrils of Amphipathic Polypeptides and Their Morphological Transformation. Chemistry of Materials 2005,17(10),2484-2486.
    [17].Choucair, A.; Eisenberg, A., Control of amphiphilic block copolymer morphologies using solution conditions. The European Physical Journal E 2003,10,37-44.
    [18].Zhang, L.; Eisenberg, A., Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution. Macromolecules 1999,32(7),2239-2249.
    [19].Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295(5564).
    [20].Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I., Self-assembly of dendron rodcoil molecules into nanoribbons. Journal of the American Chemical Society 2001,123(17), 4105-4106.
    [21]. Lee, M.; Jang, C.-J.; Ryu, J.-H., Supramolecular Reactor from Self-Assembly of Rod-Coil Molecule in Aqueous Environment. Journal of the American Chemical Society 2004,126,8082-8083.
    [22]. Jin, L. Y.; Bae, J.; Ryn, J.-H.; Lee, M., Ordered Nanostructures from the Self-Assembly of Reactive Coil-Rod-Coil Moleculars. Angewandte Chemie International Edition 2006, 45,650-653.
    [23].Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Jeroen J. L. M. Cornelissen; Rowan, A. E.; Nolte, R. J. M., Self-Assembled Nanoreactors. Chemical Reviews 2005, 105,1445-1489.
    [24].江浪;黄桂芳;李洪祥等,自组装分子电子器件.化学进展2005,17(1),172-179.
    [25].Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F., A chemical and electrochemically switchable molecular shuttle. Nature 1994,369,133-137.
    [26].Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M., Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device Science 1999,286,1550-1552.
    [27]. Mao, C.; Sun, W.; Shen, Z.; Seeman, N. C., A nanomechanical device based on the B-Z transition of DNA. Nature 1999,397,144-146.
    [28].Yurke, B.; Turberfield, A. J.; Allen P. Mills, J.; Simmel, F. C.; Neumann, J. L., A DNA-fuelled molecular machine made of DNA. Nature 2000,406,605-608.
    [29].Hamad-Schifferli, K.; Schwartz, J. J.; Santos, A. T.; Zhang, S.; Jacobson, J. M., Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna Nature 2002,415,152-159.
    [30].Sauve, G.; McCullough, R. D., High field-effect mobilities for diblock copolymers of poly(3-hexylthiophene) and poly(methyl acrylate). Advanced Materials 2007,19(14), 1822-1825.
    [31].Niu, Q. L.; Zhou, Y.; Wang, L.; Peng, J.; Wang, J.; Pei, J.; Cao, Y., Enhancing the performance of polymer light-emitting diodes by integrating self-assembled organic nanowires. Advanced Materials 2008,20(5),964-969.
    [32].Imahori, H.; Fukuzumi, S., Porphyrin- and fullerene-based molecular photovoltaic devices. Advanced Functional Materials 2004,14(6),525-536.
    [33].Szacilowski, K., Digital information processing in molecular systems. Chemical Reviews 2008,108(9),3481-3548.
    [34]. Lu, Y.; Yin, Y. D.; Xia, Y. N., A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers. Advanced Materials 2001, 13(1),34-37.
    [35].Higgins, A. M.; Jones, R. A. L., Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 2000,404(6777),476-478.
    [36].Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P., Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000,290(5499), 2126-2129.
    [37].Heriot, S. Y.; Jones, R. A. L., An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nature Materials 2005, 4(10),782-786.
    [38].Lindner, S. M.; Huttner, S.; Chiche, A.; Thelakkat, M.; Krausch, G., Charge separation at self-assembled nanostructured bulk interface in block copolymers. Angewandte Chemie-International Edition 2006,45(20),3364-3368.
    [39].Zang, L.; Che, Y. K.; Moore, J. S., One-Dimensional Self-Assembly of Planar pi-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices. Accounts of Chemical Research 2008,41 (12),1596-1608.
    [40].Stikeman, A., Molecular bloodhounds-Artificial antibodies could sniff out viruses and toxins. Technology Review 2002,105(9),31-31.
    [41].Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008,33(10),917-978.
    [42].Liu, G.; Zhuang, X. D.; Chen, Y.; Zhang, B.; Zhu, J. H.; Zhu, C. X.; Neoh, K. G.; Kang, E. T., Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters 2009,95(25),253301.
    [43].Ling, Q. D.; Liaw, D. J.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Polymer memories:Bistable electrical switching and device performance. Polymer 2007,48(18),5182-5201.
    [44].Yang, Y.; Ouyang, J.; Ma, L. P.; Tseng, R. J. H.; Chu, C. W., Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials 2006,16(8),1001-1014.
    [45].Hahm, S. G.; Choi, S.; Hong, S. H.; Lee, T. J.; Park, S.; Kim, D. M.; Kwon, W. S.; Kim, K.; Kim, O.; Ree, M., Novel Rewritable, Non-volatile Memory Devices Based on Thermally and Dimensionally Stable Polyimide Thin Films. Advanced Functional Materials 2008,18(20),3276-3282.
    [46].Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Neoh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22(15), 1731-1735.
    [47].Zhang, B.; Chen, Y.; Zhuang, X. D.; Liu, G.; Yu, B.; Kang, E. T.; Zhu, J. H.; Li, Y. X., Poly(N-Vinylcarbazole) Chemically Modified Graphene Oxide. Journal of Polymer Science Part A:Polymer Chemistry 2010,48(12),2642-2649.
    [48].Mukherjee, B.; Pal, A. J., Write-once-read-many-times (WORM) memory applications in a monolayer of donor/acceptor supramolecule. Chemistry of Materials 2007,19(6), 1382-1387.
    [49].Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R., A polymer/semiconductor write-once read-many-times memory. Nature 2003,426(6963),166-169.
    [50].Choi, S.; Hong, S. H.; Cho, S. H.; Park, S.; Park, S. M.; Kim, O.; Ree, M., High-performance programmable memory devices based on hyperbranched copper phthalocyanine polymer thin films. Advanced Materials 2008,20(9),1766-1771.
    [51].Liu, G.; Ling, Q. D.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Neoh, K. G.; Kang, E. T., Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. Acs Nano 2009,3(7), 1929-1937.
    [52].Kim, D. M.; Park, S.; Lee, T. J.; Hahm, S. G.; Kim, K.; Kim, J. C.; Kwon, W.; Ree, M., Programmable Permanent Data Storage Characteristics of Nanoscale Thin Films of a Thermally Stable Aromatic Polyimide. Langmuir 2009,25(19),11713-11719.
    [53].Moller, S.; Forrest, S. R.; Perlov, C.; Jackson, W.; Taussig, C., Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories. Journal of Applied Physics 2003,94(12),7811-7819.
    [54]. Smith, S.; Forrest, S. R., A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate. Applied Physics Letters 2004,84(24),5019-5021.
    [55].Xu, X.; Register, R. A.; Forrest, S. R., Mechanisms for current-induced conductivity changes in a conducting polymer. Applied Physics Letters 2006,89(14),142109.
    [56].Li, L.; Ling, Q. D.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Bilayer memory device based on a conjugated copolymer and a carbon nanotube/polyaniline composite. Journal of The Electrochemical Society 2008,155(4), H205-H209.
    [57].Luo, J. D.; Qin, J. G.; Kang, H.; Ye, C., A postfunctionalization strategy to develop PVK-based nonlinear optical polymers with a high density of chromophores and improved processibility. Chemistry of Materials 2001,13(3),927-931.
    [58].Lim, S. L.; Li, N. J.; Lu, J. M.; Ling, Q. D.; Zhu, C. X.; Kang, E. T.; Neoh, K. G., Conductivity Switching and Electronic Memory Effect in Polymers with Pendant Azobenzene Chromophores. Acs Applied Materials & Interfaces 2009,1(1),60-71.
    [59].El-Khouly, M. E.; Chen, Y.; Zhuang, X. D.; Fukuzumi, S., Long-Lived Charge-Separated Configuration of a Push-Pull Archetype of Disperse Red 1 End-Capped Poly 9,9-Bis(4-diphenylaminophenyl)fluorene. Journal of the American Chemical Society 2009,131(18),6370-6371.
    [60].Hattemer, E.; Zentel, R.; Mecher, E.; Meerholz, K., Synthesis and characterization of novel multifunctional high-T-g photorefractive materials obtained via reactive precursor polymers. Macromolecules 2000,33(6),1972-1977.
    [61].Liu, Z. F.; Hashimoto, K.; Fujishima, A., Photoelectrochemical information storage using an azobenzene derivative. Nature 1990,347,658-660.
    [62]. Sun, Y. M.; Liu, Y. Q.; Zhu, D. B., Advances in organic field-effect transistors. Journal of Materials Chemistry 2005,15(1),53-65.
    [63].Facchetti, A., Semiconductors for organic transistors. Materials Today 2007,10(3), 28-37.
    [64].Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H. W.; Hudson, S. D.; Duan, H., Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 2002,419(6905),384-387.
    [65].Zhang, X.; Li, Z. C.; Li, K. B.; Lin, S.; Du, F. S.; Li, F. M., Donor/acceptor vinyl monomers and their polymers:Synthesis, photochemical and photophysical behavior. Progress in Polymer Science 2006,31(10),893-948.
    [66].Yabuuchi, K.; Tochigi, Y.; Mizoshita, N.; Hanabusa, K.; Kato, T., Self-assembly of carbazole-containing gelators:alignment of the chromophore in fibrous aggregates. Tetrahedron 2007,63(31),7358-7365.
    [67]. Liu, Y. L.; Wang, K. L.; Huang, G. S.; Zhu, C. X.; Tok, E. S.; Neoh, K. G.; Kang, E. T., Volatile Electrical Switching and Static Random Access Memory Effect in a Functional Polyimide Containing Oxadiazole Moieties. Chemistry of Materials 2009,21(14), 3391-3399.
    [1]. Ajayaghosh, A., Donor-acceptor type low band gap polymers:polysquaraines and related systems. Chemical Society Reviews 2003,32(4),181-191.
    [2]. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992,258(5087),1474-1476.
    [3]. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995,5243,1789-1791.
    [4]. Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Laminated fabrication of polymeric photovoltaic diodes. Nature 1998,395,257-260
    [5]. Giacalone, F.; Martin, N., Fullerene polymers:Synthesis and properties. Chemical Reviews 2006,106(12),5136-5190.
    [6]. Luzzati, S.; Scharber, M.; Catellani, M.; Giacalone, F.; Segura, J. L.; Martin, N.; Neugebauer, H.; Sariciftci, N. S., Long-lived photoinduced charges in donor-acceptor anthraquinone-substituted thiophene copolymers. Journal of Physical Chemistry B 2006, 110(11),5351-5358.
    [7]. Gomez, R.; Blanco, R.; Veldman, D.; Segura, J. L.; Janssen, R. A. J., Synthesis and photophysical properties of conjugated polymers with pendant 9,10-anthraquinone units. Journal of Physical Chemistry B 2008,112(16),4953-4960.
    [8]. El-Khouly, M. E.; Chen, Y.; Zhuang, X. D.; Fukuzumi, S., Long-Lived Charge-Separated Configuration of a Push-Pull Archetype of Disperse Red 1 End-Capped Poly 9,9-Bis(4-diphenylaminophenyl)fluorene. Journal of the American Chemical Society 2009,131(18),6370-6371.
    [9]. Chen, Y.; El-Khouly, M. E.; Zhuang, X. D.; He, N.; Araki, Y.; Lin, Y.; Ito, O., Synthesis and photoinduced electron-transfer process of a novel triphenylamine-substituted polyfluorene-C60 triad. Chemistry-a European Journal 2007,13(6),1709-1714.
    [10].Chen, Y.; El-Khouly, M. E.; Sasaki, M.; Araki, Y.; Ito, O., Synthesis of the axially substituted titanium PC-C-60 dyad with a convenient method. Organic Letters 2005,7(8), 1613-1616.
    [11].Zhao, H.; Yuan, W. Z.; Mei, J.; Tang, L.; Liu, X. Q.; Yan, M.; Shen, X. Y.; Sun, J. Z.; Qin, A. J.; Tang, B. Z., Enhanced Dispersion of Nanotubes in Organic Solvents by Donor-Acceptor Interaction between Functionalized Poly(phenylacetylene) Chains and Carbon Nanotube Walls. Journal of Polymer Science Part A:Polymer Chemistry 2009, 47(19),4995-5005.
    [12].Lin, Y.; El-Khouly, M. E.; Chen, Y.; Supur, M.; Gu, L. L.; Li, Y. X.; Fukuzumi, S., A New Cyanofluorene-Triphenylamine Copolymer:Synthesis and Photoinduced Intramolecular Electron Transfer Processes. Chemistry-a European Journal 2009,15(41), 10818-10824.
    [13].Ling, Q. D.; Kang, E. T.; Neoh, K. G.; Chen, Y.; Zhuang, X. D.; Zhu, C. X.; Chan, D. S. H., Thermally stable polymer memory devices based on a pi-conjugated triad. Applied Physics Letters 2008,92(14),143302.
    [14].Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Neoh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22(15), 1731-1735.
    [15].Liu, G.; Zhuang, X. D.; Chen, Y.; Zhang, B.; Zhu, J. H.; Zhu, C. X.; Neoh, K. G.; Kang, E. T., Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters 2009,95(25),253301.
    [16].Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008,33(10),917-978.
    [17].Mukherjee, B.; Pal, A. J., Write-once-read-many-times (WORM) memory applications in a monolayer of donor/acceptor supramolecule. Chemistry of Materials 2007,19(6), 1382-1387.
    [18].Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R., A polymer/semiconductor write-once read-many-times memory. Nature 2003,426(6963),166-169.
    [19].Choi, S.; Hong, S. H.; Cho, S. H.; Park, S.; Park, S. M.; Kim, O.; Ree, M., High-performance programmable memory devices based on hyperbranched copper phthalocyanine polymer thin films. Advanced Materials 2008,20(9),1766-1771.
    [20]. Liu, G.; Ling, Q. D.; Teo, E. Y. H.; Zhu, C. X.; Chan, D. S. H.; Neoh, K. G.; Kang, E. T., Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. Acs Nano 2009,3(7), 1929-1937.
    [21].Kim, D. M.; Park, S.; Lee, T. J.; Hahm, S. G.; Kim, K.; Kim, J. C.; Kwon, W.; Ree, M., Programmable Permanent Data Storage Characteristics of Nanoscale Thin Films of a Thermally Stable Aromatic Polyimide. Langmuir 2009,25(19),11713-11719.
    [22].Zhuang, X. D.; Chen, Y.; Liu, G.; Zhang, B.; Neoh, K. G.; Kang, E. T.; Zhu, C. X.; Li, Y. X.; Niu, L. J., Preparation and Memory Performance of a Nanoaggregated Dispersed Red 1-Functionalized Poly (N-vinylcarbazole) Film via Solution-Phase Self-Assembly. Advanced Functional Materials 2010,20(17),2916-2922.
    [23].Scherf, U.; List, E. J. W., Semiconducting polyfluorenes-Towards reliable structure-property relationships. Advanced Materials 2002,14(7),477-487.
    [24].Geng, Y. H.; Culligan, S. W.; Trajkovska, A.; Wallace, J. U.; Chen, S. H., Monodisperse oligofluorenes forming glassy-nematic films for polarized blue emission. Chemistry of Materials 2003,15(2),542-549.
    [25],Li, A. Y.; Ziegler, A.; Wegner, G., Substituent effect to prevent autoxidation and improve spectral stability in blue light-emitting polyfluorenes. Chemistry-a European Journal 2005,11(15),4450-4457.
    [26].Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K., Multi-colour organic light-emitting displays by solution processing. Nature 2003,421(6925),829-833.
    [27]. Wang, X. J.; Perzon, E.; Oswald, F.; Langa, F.; Admassie, S.; Andersson, M. R.; Inganas, O., Enhanced photocurrent spectral response in low-bandgap polyfluorene and C-70-derivative-based solar cells. Advanced Functional Materials 2005,15(10), 1665-1670.
    [28].Ashraf, R. S.; Hoppe, H.; Shahid, M.; Gobsch, G.; Sensfuss, S.; Klemm, E., Synthesis and properties of fluorene-based polyheteroarylenes for photovoltaic devices. Journal of Polymer Science Part A:Polymer Chemistry 2006,44(24),6952-6961.
    [29].McNeill, C. R.; Halls, J. J. M.; Wilson, R.; Whiting, G. L.; Berkebile, S.; Ramsey, M. G.; Friend, R. H.; Greenham, N. C., Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices:Device physics and annealing effects. Advanced Functional Materials 2008,18(16),2309-2321.
    [30].Tang, W. H.; Chellappan, V.; Liu, M. H.; Chen, Z. K.; Ke, L., Hole Transport in Poly 2,7-(9,9-dihexylfluorene)-alt-bithiophene and High-Efficiency Polymer Solar Cells from Its Blends with PCBM. Acs Applied Materials & Interfaces 2009,1(7),1467-1473.
    [31].Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S., Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32(18),5810-5817.
    [32].Lim, E.; Kim, Y. M.; Lee, J. I.; Jung, B. J.; Cho, N. S.; Lee, J.; Do, L. M.; Shim, H. K., Relationship between the liquid crystallinity and field-effect-transistor behavior of fluorene-thiophene-based conjugated copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2006,44(16),4709-4721.
    [33].Jenekhe, S. A.; Osaheni, J. A., Excimers and Exciplexes of Conjugated Polymers Science 1994,265(5173),765-768.
    [34]. Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Mullen, K., Triphenylamine-substituted polyfluorene-A stable blue-emitter with improved charge injection for light-emitting diodes. Advanced Materials 2002,14(11),809-811.
    [35].Yoon, K. J.; Park, J. S.; Lee, S. J.; Song, M.; Shin, I. A.; Lee, J. W.; Gal, Y. S.; Jin, S. H., Synthesis and Characterization of Fluorene-Based Conolvmers Containinp Benzothiadiazole Derivative for Light-Emitting Diodes Applications. Journal of Polymer Science Part A:Polymer Chemistry 2008,46(20),6762-6769.
    [36].Klarner, G.; Lee, J. I.; Lee, V. Y.; Chan, E.; Chen, J. P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D., Cross-linkable polymers based on dialkylfluorenes. Chemistry of Materials 1999,11(7),1800-1805.
    [37].Bondarev, D.; Zednik, J.; Vohlidal, J.; Podhajecka, K.; Sedlacek, J., New Fluorene-Based Copolymers Containing Oxadiazole Pendant Groups:Synthesis, Characterization, and Polymer Stability. Journal of Polymer Science Part A:Polymer Chemistry 2009,47(18), 4532-4546.
    [38].Horst, S.; Evans, N. R.; Bronstein, H. A.; Williams, C. K., Synthesis of Fluoro-Substituted Silole-Containing Conjugated Materials. Journal of Polymer Science Part A:Polymer Chemistry 2009,47(19),5116-5125.
    [39].Chen, R. T.; Chen, S. H.; Hsieh, B. Y.; Chen, Y., Synthesis, Photophysics, and Electroluminescent Performance of Stable Blue-Light-Emitting Copoly(9,9-diarylfluorene)s. Journal of Polymer Science Part A:Polymer Chemistry 2009,47(11),2821-2834.
    [40].Chen, Y.; Araki, Y.; Doyle, J.; Strevens, A.; Ito, O.; Blau, W. J., Synthesis, characterization, and optoelectronic properties of a novel polyfluorene/poly(p-phenylenevinylene) copolymer. Chemistry of Materials 2005,17(7), 1661-1666.
    [41]. Lin, H. Y.; Liou, G. S.; Lee, W. Y.; Chen, W. C., Poly(triarylamine):Its synthesis, properties, and blend with polyfluorene for white-light electroluminescence. Journal of Polymer Science Part A:Polymer Chemistry 2007,45(9),1727-1736.
    [42]. Miller, C. A.; Long, L. M., Anticonvulsants. I. An Investigation of N-R-α-R1-α-Phenylsuccinimides. J. Am. Chem. Soc.1951,73(10),4895-4898.
    [43].Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry 1997, 62(21).7512-7515.
    [44].Chen, Y.; Lin, Y.; Ei-Khouly, M. E.; He, N.; Yan, A. X.; Liu, Y.; Cai, L. Z.; Ito, O., A new blue-light emitting polymer:Synthesis and photoinduced electron transfer process. Journal of Polymer Science Part A:Polymer Chemistry 2008,46(12),4249-4253.
    [45].Bolognesi, A.; Betti, P.; Botta, C.; Destri, S.; Giovanella, U.; Moreau, J.; Pasini, M.; Porzio, W., From Block Copolymers to End-Capped Polymers:A Suitable Method To Control the Electro-Optical Properties of Polymeric Materials. Macromolecules 2009, 42(4),1107-1113.
    [46].Lu, J. J.; Shen, P.; Zhao, B.; Yao, B.; Xie, Z. Y.; Liu, E. H.; Tan, S. T., Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives:synthesis, photo- and electroluminescent properties. European Polymer Journal 2008,44(7),2348-2355.
    [47]. Wang, B. C.; Liao, H. R.; Yeh, H. C.; Wu, W. C.; Chen, C. T., Theoretical investigation of stokes shift of 3,4-diaryl-substituted maleimide fluorophores. Journal of Luminescence 2005,113(3-4),321-328.
    [48].Mann, C. K.; Barnes, K. K., Electrochemical Reactions in Nonaqueous Systems. Marcel Dekker:New York,1990.
    [49].Wu, T. Y.; Sheu, R. B.; Chen, Y., Synthesis and optically acid-sensory and electrochemical properties of novel polyoxadiazole derivatives. Macromolecules 2004, 37(3),725-733.
    [50].Kutner, W.; Noworyta, K.; Deviprasad, G. R.; D'Souza, F., Electrochemistry of solutions as well as simultaneous cyclic voltammetry and piezoelectric microgravimetry of conducting films of 2-(n-alkyl)fulleropyrrolidines. Journal of The Electrochemical Society2000,147(7),2647-2652.
    [51].Pei, J.; Ni, J.; Zhou, X. H.; Cao, X. Y.; Lai, Y. H., Regioregular head-to-tail oligothiophene-functionalized 9,9'-spirobifluorene derivatives.2. NMR characterization, thermal behaviors, and electrochemical properties. Journal of Organic Chemistry 2002, 67(23),8104-8113.
    [52].Kumaresan, D.; Thummel, R. P.; Bura, T.; Ulrich, G.; Ziessel, R., Color Tuning in New Metal-Free Organic Sensitizers (Bodipys) for Dye-Sensitized Solar Cells. Chemistry-a European Journal 2009,15(26),6335-6339.
    [53].Chen, Z. K.; Huang, W.; Wang, L. H.; Kang, E. T.; Chen, B. J.; Lee, C. S.; Lee, S. T., A family of electroluminescent silyl-substituted poly(p-phenylenevinylene)s:Synthesis, characterization, and structure-property relationships. Macromolecules 2000,33(24), 9015-9025.
    [54].Yang, C.-J.; Jenekhe, S. A., Conjugated Aromatic Polyimines.2. Synthesis, Structure, and Properties of New Aromatic Polyazomethines. Macromolecules 1995,28(4), 1180-1196.
    [55].Iosip, M. D.; Destri, S.; Pasini, M.; Porzio, W.; Pernstich, K. P.; Batlogg, B., New dithieno 3,2-b:2',3'-d thiophene oligomers as promising materials for organic field-effect transistor applications. Synthetic Metals 2004,146(3),251-257.
    [56].Miller, L. L.; Nordblom, G. D.; Mayeda, E. A., Simple, comprehensive correlation of organic oxidation and ionization potentials. The Journal of Organic Chemistry 1972, 37(6),916-918.
    [57].Formmer, J. E.; Chance, R. R., Encyclopedia of Polymer Science and Engineering.2nd ed.; John Wiley & Sons, Inc.:New York,1986; Vol.5, p 462-507.
    [58].Chu, C. W.; Ouyang, J.; Tseng, H. H.; Yang, Y., Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Advanced Materials 2005, 17(11),1440-1443.
    [59].Ling, Q. D.; Chang, F. C.; Song, Y.; Zhu, C. X.; Liaw, D. J.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Synthesis and dynamic random access memory behavior of a functional polyimide. Journal of the American Chemical Society 2006,128(27),8732-8733.
    [60]. Lin, J.; Zheng, M.; Chen, J. S.; Gao, X. A.; Ma, D. G., Negative differential resistance and memory effect in diodes based on 1,4-dibenzyl C60 and zinc phthalocyanine doped polystyrene hybrid material. Inorganic Chemistry 2007,46(1),341-344.
    [61].Ling, Q. D.; Song, Y.; Lim, S. L.; Teo, E. Y. H.; Tan, Y P.; Zhu, C. X.; Chan, D. S. H.; Kwong, D. L.; Kang, E. T.; Neoh, K. G., A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angewandte Chemie-International Edition 2006,45(18),2947-2951.
    [62].Prakash, A.; Ouyang, J.; Lin, J. L.; Yang, Y., Polymer memory device based on conjugated polymer and gold nanoparticles. Journal of Applied Physics 2006,100(5), 054309.
    [63]. Yang, Y.; Ouyang, J.; Ma, L. P.; Tseng, R. J. H.; Chu, C. W., Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials 2006,16(8),1001-1014.
    [64].Choi, J. S.; Kim, J. H.; Kim, S. H.; Suh, D. H., Nonvolatile memory device based on the switching by the all-organic charge transfer complex. Applied Physics Letters 2006, 89(15),152111.
    [65].Ouyang, J. Y.; Chu, C. W.; Szmanda, C. R.; Ma, L. P.; Yang, Y., Programmable polymer thin film and non-volatile memory device. Nature Materials 2004,3(12),918-922.
    [66]. Lin, J.; Ma, D. G., Origin of negative differential resistance and memory characteristics in organic devices based on tris(8-hydroxyquinoline) aluminum. Journal of Applied Physics 2008,103(12),124505.
    [67].Teo, E. Y. H.; Ling, Q. D.; Song, Y.; Tan, Y. P.; Wang, W.; Kang, E. T.; Chan, D. S. H.; Zhu, C. X., Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups. Organic Electronics 2006,7(3),173-180.
    [68].Lampert, M. A.; Mark, P., Current Injection in Solids Academic Press:New York,1970.
    [69]. Lee, T. J.; Chang, C. W.; Hahm, S. G.; Kim, K.; Park, S.; Kim, D. M.; Kim, J.; Kwon, W. S.; Liou, G. S.; Ree, M., Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 2009,20(13).
    [70].Yun, D. Y.; Kwak, J. K.; Jung, J. H.; Kim, T. W.; Son, D. I., Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer. Applied Physics Letters 2009,95(14),143301.
    [71].Naka, K.; Uemura, T.; Chujo, Y., Linearly extended pi-conjugated dithiafulvene polymer formed soluble charge-transfer complex with 7,7,8,8-tetracyanoquinodimethane. Polymer Journal 2000,32(5),435-439.
    [72]. Benson-Smith, J. J.; Goris, L.; Vandewal, K.; Haenen, K.; Manca, J. V.; Vanderzande, D.; Bradley, D. D. C.; Nelson, J., Formation of a ground-state charge-transfer complex in polyfluorene/ 6,6 -phenyl-C-61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells. Advanced Functional Materials 2007, 17(3),451-457.
    [73].Maitani, M. M.; Allara, D. L.; Ohlberg, D. A. A.; Li, Z. Y.; Williams, R. S.; Stewart, D. R., High integrity metal/organic device interfaces via low temperature buffer layer assisted metal atom nucleation. Applied Physics Letters 2010,96(17),173109.
    [74].Lau, C. N.; Stewart, D. R.; Williams, R. S.; Bockrath, M., Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Letters 2004,4(4), 569-572.
    [75].Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S., 'Memristive' switches enable 'stateful' logic operations via material implication. Nature 2010,464(7290),873-876.
    [76].Yang, J. J.; Borghetti, J.; Murphy, D.; Stewart, D. R.; Williams, R. S., A Family of Electronically Reconfiguiable Nanodevices. Advanced Materials 2009,21(37), 3754-3758.
    [77]. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S., Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology 2008,3(7),429-433.
    [78]. Borghetti, J.; Li, Z. Y.; Straznicky, J.; Li, X. M.; Ohlberg, D. A. A.; Wu, W.; Stewart, D. R.; Williams, R. S., A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of the National Academy of Sciences of the United States of America 2009,106(6),1699-1703.
    [79].Strukov, D. B.; Williams, R. S., Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proceedings of the National Academy of Sciences of the United States ofAmerica 2009,106(48),20155-20158.
    [1]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004,306(5696),666-669.
    [2]. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007,6,183-191.
    [3]. Li, D.; Kaner, R. B., Graphene-Based Materials. Science 2008,320(5880),1170-1171.
    [4]. Katsnelson, M. I., Graphene:carbon in two dimensions. Materials Today 2007,10(1-2), 20-27.
    [5]. Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene- the new nanocarbon. Journal of Materials Chemistry 2009,19(17),2457-2469.
    [6]. Rao, C. N.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene:the new two dimensional nanomaterial Angewandte Chemie-International Edition 2009,48(42), 7752-7777.
    [7]. Dreyer, D. R.; Park, S.; W, C.; Bielawski; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010,39(1),228-240.
    [8]. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. Journal of Materials Chemistry 2010,20(12),2277-2289.
    [9]. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007,446(7131),60-63.
    [10].Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A., On the roughness of single- and bi-layer graphene membranes. Solid State Communications 2007,143(1-2),101-109.
    [11].http://www.physics.gatech.edu/npeg/publications/BergerJPhysChemCondMat04.pdf
    [12].Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; Heer, W. A. d., Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006,312(5777),1191-1196.
    [13].de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G., Epitaxial graphene. Solid State Communications 2007,143(1-2),92-100.
    [14].Hass, J.; Heer, W. A. d.; Conrad, E. H., The growth and morphology of epitaxial multilayer graphene. Journal of Physics:Condensed Matter 2008,20(32), 323202-323229.
    [15].Brodie, B. C., Sur le poids atomique du graphite. Ann. Chim. Phys 1860,59,466-472.
    [16].Staudenmaier, L., Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges. 1898,31,1481-1499.
    [17]. Jr., W. S. H.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80(6),1339.
    [18].Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry 2006,16(2),155-158.
    [19].Stankovicha, S.; Pinera, R. D.; Nguyenb, S. T.; Ruoff, R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets Carbon 2006,44(15),3342-3347.
    [20].Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006,442,282-286.
    [21].Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M., Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society 2008,130(48),16202-16206.
    [22]. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008,3(2),101-105.
    [23]. Liu, P.; Gong, K., Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction. Carbon 1999,37(4),706-707.
    [24].McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 2007,19(18),4396-4404.
    [25].Tyutyulkov, N.; Madjarova, G.; Dietz, F.; Mullen, K., Is 2-D Graphite an Ultimate Large Hydrocarbon? 1. Energy Spectra of Giant Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry B 1998,102(50),10183-10189.
    [26].Muller, M.; Kubel, C.; Mullen, K., Giant Polycyclic Aromatic Hydrocarbons. Chemistry-A European Journal 1998,4(11),2099-2109.
    [27].Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Mc Williams, J. L.; Hamon, M. A.; Haddon, R. C., Solution Properties of Graphite and Graphene. Journal of the American Chemical Society 2006,128 (24),7720-7721.
    [28].Worsleya, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C., Soluble graphene derived from graphite fluoride Chemical Physics Letters 2007, 445(1-3),51-56.
    [29].Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; Heer, W. A. d.; Haddon, R. C., Chemical Modification of Epitaxial Graphene:Spontaneous Grafting of Aryl Groups. Journal of the American Chemical Society 2009,131 (4),1336-1337.
    [30].Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S., A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Advanced Materials 2009,21(12),1275-1279.
    [31].Zhang, X.; Huang, Y.; Wang, Y.; Ma, Y.; Liu, Z.; Chen, Y., Synthesis and characterization of a graphene-C6o hybrid material Carbon 2009,47(1),334-337.
    [32]. Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry 2009,19(38),7098-7105.
    [33]. Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L., Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-1-lysine. Langmuir 2009,25(20), 12030-12033.
    [34].Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M., Synthesis of Amphiphilic Graphene Nanoplatelets. Small 2008,5(1),82-85.
    [35]. Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Muellen, K., Composites of Graphene with Large Aromatic Molecules. Advanced Materials 2009,21 (31),3191-3195.
    [36]. Zhang, X.; Feng, Y.; Tang, S.; Feng, W., Preparation of a graphene oxide-phthalocyanine hybrid through strong π-π interactions Carbon 2009,48(1),211-216.
    [37].Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G., Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications 2009(13),1667-1669.
    [38].Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y., A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials. Advanced Materials 2010,22(1),103-106.
    [39].Nethravathi, C.; Nisha, T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M., Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 2009,47(8),2054-2059.
    [40]. Feng, M.; Sun, R.; Zhan, H.; Chen, Y., Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology 2010,21(7),075601.
    [41].Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007,6(9),652-655.
    [42].Rangel, N. L.; Seminario, J. M., Graphene Terahertz Generators for Molecular Circuits and Sensors. Journal ofPhysical Chemistry A 2008,112(51),13699-13705.
    [43].Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Neoh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X., Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Advanced Materials 2010,22(15), 1731-1735.
    [44].Zhang, B.; Chen, Y.; Zhuang, X. D.; Liu, G.; Yu, B.; Kang, E. T.; Zhu, J. H.; Li, Y. X., Poly(N-Vinylcarbazole) Chemically Modified Graphene Oxide. Journal of Polymer Science Part A:Polymer Chemistry 2010,48(12),2642-2649.
    [45].Liu, G.; Zhuang, X. D.; Chen, Y.; Zhang, B.; Zhu, J. H.; Zhu, C. X.; Neoh, K. G.; Kang, E. T., Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Applied Physics Letters 2009,95(25),253301.
    [46].Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E., Reduced Graphene Oxide Molecular Sensors. Nano Letters 2008,8(10),3137-3140.
    [47].Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C., Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials. Journal of physical Chemistry C 2007,111(21),7565-7569.
    [48]. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon:A Review of Graphene. Chemical Reviews 2010,110(1),132-145.
    [49].Wu, J. S.; Pisula, W.; Mullen, K., Graphenes as potential material for electronics. Chemical Reviews 2007,107(3),718-747.
    [50].Liu, L.; Ryu, S. M.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W., Graphene oxidation:Thickness-dependent etching and strong chemical doping. Nano Letters 2008,8(7),1965-1970.
    [51].Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B., A chemical route to graphene for device applications. Nano Letters 2007,7(11),3394-3398.
    [52].Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Electromechanical resonators from graphene sheets. Science 2007,315(5811),490-493.
    [53].Staley, N.; Wang, H.; Puls, C.; Forster, J.; Jackson, T. N.; McCarthy, K.; Clouser, B.; Liu, Y., Lithography-free fabrication of graphene devices. Applied Physics Letters 2007, 90(14),143518.
    [54].Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.; Sun, W.; Chen, Y. S., Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene. Advanced Materials 2008,20(20),3924-3930.
    [55].Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006,442(7100),282-286.
    [56].Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45(7),1558-1565.
    [57].Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S., Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at "Low" Temperatures. Nano Letters 2008, 8(12),4283-4287.
    [58].Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009,47(1),145-152.
    [59]. Liu, Z. B.; Xu, Y. F.; Zhang, X. Y.; Zhang, X. L.; Chen, Y. S.; Tian, J. G., Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties. Journal of Physical Chemistry B 2009,113(29),9681-9686.
    [60].Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G., Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science 2008,33(10),917-978.
    [61].Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R., A polymer/semiconductor write-once read-many-times memory. Nature 2003,426(6963),166-169.
    [62]. Yang, Y.; Ouyang, J.; Ma, L. P.; Tseng, R. J. H.; Chu, C. W., Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials 2006,16(8),1001-1014.
    [63].Hahm, S. G.; Choi, S.; Hong, S. H.; Lee, T. J.; Park, S.; Kim, D. M.; Kwon, W. S.; Kim, K.; Kim, O.; Ree, M., Novel Rewritable, Non-volatile Memory Devices Based on Thermally and Dimensionally Stable Polyimide Thin Films. Advanced Functional Materials 2008,18(20),3276-3282.
    [64].Sek, D.; Iwan, A.; Jarzabek, B.; Kaczmarczyk, B.; Kasperczyk, J.; Mazurak, Z.; Domanski, M.; Karon, K.; Lapkowski, M., Hole transport triphenylamine-azomethine conjugated system:Synthesis and optical, photoluminescence, and electrochemical properties. Macromolecules 2008,41(18),6653-6663.
    [65].Jeong, H. K.; Lee, Y. P.; Lahaye, R.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C. W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H., Evidence of graphitic AB stacking order of graphite oxides. Journal of the American Chemical Society 2008,130(4),1362-1366.
    [66].Hirata, M.; Gotou, T.; Ohba, M., Thin-film particles of graphite oxide.2:Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 2005,43(3),503-510.
    [67]. Wang, Y. J.; Sheu, H. S.; Lai, C. K., New star-shaped triarylamines:synthesis, mesomorphic behavior, and photophysical properties. Tetrahedron 2007,63(7), 1695-1705.
    [68].Liou, G.-S.; Lin, H.-Y.; Hsieh, Y.-L.; Yang, Y.-L., Synthesis and characterization of wholly aromatic poly(azomethine)s containing donor-acceptor triphenylamine moieties. Journal of Polymer Science Part A:Polymer Chemistry 2007,45(21),4921-4932.
    [69].Chen, Y.; El-Khouly, M. E.; Sasaki, M.; Araki, Y.; Ito, O., Synthesis of the axially substituted titanium PC-C-60 dyad with a convenient method. Organic Letters 2005,7(8), 1613-1616.
    [70].Wu, T. Y; Sheu, R. B.; Chen, Y., Synthesis and optically acid-sensory and electrochemical properties of novel polyoxadiazole derivatives. Macromolecules 2004, 37(3),725-733.
    [71].Kutner, W.; Noworyta, K.; Deviprasad, G. R.; D'Souza, F., Electrochemistry of solutions as well as simultaneous cyclic voltammetry and piezoelectric microgravimetry of conducting films of 2-(n-alkyl)fulleropyrrolidines. Journal of The Electrochemical Society 2000,147(7),2647-2652.
    [72].Pei, J.; Ni, J.; Zhou, X. H.; Cao, X. Y.; Lai, Y. H., Regioregular head-to-tail oligothiophene-functionalized 9,9'-spirobifluorene derivatives.2. NMR characterization, thermal behaviors, and electrochemical properties. Journal of Organic Chemistry 2002, 67(23),8104-8113.
    [73].Kumaresan, D.; Thummel, R. P.; Bura, T.; Ulrich, G.; Ziessel, R., Color Tuning in New Metal-Free Organic Sensitizers (Bodipys) for Dye-Sensitized Solar Cells. Chemistry-a European Journal 2009,15(26),6335-6339.
    [74].Chen, Z. K.; Huang, W.; Wang, L. H.; Kang, E. T.; Chen, B. J.; Lee, C. S.; Lee, S. T., A family of electroluminescent silyl-substituted poly(p-phenylenevinylene)s:Synthesis, characterization, and structure-property relationships. Macromolecules 2000,33(24), 9015-9025.
    [75].Yang, C.-J.; Jenekhe, S. A., Conjugated Aromatic Polyimines.2. Synthesis, Structure, and Properties of New Aromatic Polyazomethines. Macromolecules 1995,28(4), 1180-1196.
    [76].Iosip, M. D.; Destri, S.; Pasini, M.; Porzio, W.; Pernstich, K. P.; Batlogg, B., New dithieno 3,2-b:2',3'-d thiophene oligomers as promising materials for organic field-effect transistor applications. Synthetic Metals 2004,146(3),251-257.
    [77].Hwang, E. H.; Adam, S.; Das Sarma, S., Carrier transport in two-dimensional graphene layers. Physical Review Letters 2007,98(18),186806.
    [78].Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S., Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science 2009,323(5914),610-613.
    [79].Chou, C.-H.; Hsu, S.-L.; Dinakaran, K.; Chiu, M.-Y.; Wei, K.-H., Synthesis and Characterization of Luminescent Polyfluorenes Incorporating Side-Chain-Tethered Polyhedral Oligomeric Silsesquioxane Units. Macromolecules 2005,38(3),745-751.
    [80].Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Mullen, K., Triphenylamine-substituted polyfluorene-A stable blue-emitter with improved charge injection for light-emitting diodes. Advanced Materials 2002,14(11),809-811.
    [81].Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.; Sun, W.; Chen, Y S., Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene. Advanced Materials 2008,20(20),3924-3930.
    [82].Sonkar, S. K.; Tripathi, S.; Sarkar, S., Activation of aerial oxygen to superoxide radical by carbon nanotubes in indoor spider web trapped aerosol. Current Science 2009,97(8), 1227-1230.
    [83].马礼敦,高等结构分析.复旦大学出版社:上海,2001.
    [84].Shvartzman-Cohen, R.; Monje, I.; Florent, M.; Frydman, V.; Goldfarb, D.; Yerushalmi-Rozen, R., Self-Assembly of Amphiphilic Block Copolymers in Dispersions of Multiwalled Carbon Nanotubes As Reported by Spin Probe Electron Paramagnetic Resonance Spectroscopy. Macromolecules 2010,43(2),606-614.
    [85]. Wu, W.; Liu, L. Q.; Li, Y.; Guo, Z. X.; Dai, L. M.; Zhu, D. B., Charge transfer complex of TTF-carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures 2003,11 (2), 89-93.
    [86].Karim, M. R.; Lee, C. J.; Park, Y. T.; Lee, M. S., SWNTs coated by conducting polyaniline:Synthesis and modified properties. Synthetic Metals 2005,151(2),131-135.
    [87].Cravino, A.; Zerza, G.; Maggini, M.; Bucella, S.; Svensson, M.; Andersson, M. R.; Neugebauer, H.; Sariciftci, N. S., A novel polythiophene with pendant fullerenes:toward donor/acceptor double-cable polymers. Chemical Communications 2000(24),2487-2488.
    [88].Kobori, Y.; Shibano, Y.; Endo, T.; Tsuji, H.; Murai, H.; Tamao, K., Time-Resolved EPR Characterization of a Folded Conformation of Photoinduced Charge-Separated State in Porphyrin-Fullerene Dyad Bridged by Diphenyldisilane. Journal of the American Chemical Society 2009,131(5),1624-1625.
    [89].Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Nguyen, L. H.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E., Low band gap donor-acceptor conjugated polymers toward organic solar cells applications. Macromolecules 2007,40(1),65-72.
    [90].Possamai, G.; Marcuz, S.; Maggini, M.; Menna, E.; Franco, L.; Ruzzi, M.; Ceola, S.; Corvaja, C.; Ridolfi, G.; Geri, A.; Camaioni, N.; Guldi, D. M.; Sens, R.; Gessner, T., Synthesis, photophysics, and photoresponse of fullerene-based azoaromatic dyads. Chemistry-a European Journal 2005,11(19),5765-5776.
    [1]. Jeong, H. Y.;, O. J. Y. K.; Kim, J. W.; Hwang, J. O.; Kim, J.-E.; Lee, J. Y.; Yoon, T. H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S.; Choi, S.-Y, Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. Nano Letters 2010,10, (19),4381-4386.
    [2]. C.L. He, F. Zhuge, X. F. Zhou, M. Li, G. C. Zhou, Y. W. Liu, J. Z. Wang, B. Chen, Zhaoping Liu*, Y.H. Wu, P. Cui, and Run-Wei Li*. Non-volatile resistive switching in graphene oxide thin films, Appl. Phys. Lett.2009,95,232101.
    [3]. Liu, J.; Lin, Z.; Liu, T.; Yin, Z.; Zhou, X.; Chen, S.; Xie, L.; Boey, F.; Zhang, H.; Huang, W., Multilayer Stacked Low-Temperature-Reduced Graphene Oxide Films:Preparation, Characterization, and Application in Polymer Memory Devices. Small 2010,6, (14), 1536-1542.
    [4]. Son, D. I.; Kim, T. W.; Shim, J. H.; Jung, J. H.; Lee, D. U.; Lee, J. M.; Il Park, W.; Choi, W. K., Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(methyl methacrylate) Polymer Layer. Nano Letters 2010,10, (7),2441-2447.
    [5]. Sinitskii, A.; Tour, J. M., Lithographic Graphitic Memories. Acs Nano 2010,3, (9), 2760-2766. (?)本章内容发表于:[1] Xiao-Dong Zhuang, Yu Chen*, Gang Liu, Bin Zhang, Koon-Gee Neoh, Nan He, En-Tang Kang*, Chun-Xiang Zhu, Yong-Xi Li, Advanced Functional Materials,2010,20(17), 2916-2922:[2] Xiao-Dong Zhuang, Yu Chen*, Ying Liu, Liang-Zhen Cai, Yin Lin, Progress in Chemistry (in Chinese),2007,19(11):1653-1661
    1本章内容发表于Xiao-Dong Zhuang,Yu Chen*, Bi-Xin Li, Dong-Ge Ma*, Bin Zhang, Yongxi Li, Nan He, Chemistry of Materials,2010,22,4455-4461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700