用户名: 密码: 验证码:
供水设施的区域共享技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域供水是一项政策性、技术性很强的工作,在国内外均已有成功应用。它对于解决我国小城镇及农村供水基础设施不足、供水行业难以发挥规模经济效应、水源保护与水质污染矛盾突出、供水水质水量存在安全性问题等方面具有重大作用。但是我国的区域供水现阶段还处于摸索阶段,区域供水在实践上仅仅凭借经验,具有很大的人为因素,缺乏科学性;在政策上是自下而上的自发的行为,因此在供水打破行政区划上存在很大问题;在规划方法上采用原有城市供水规划方法,不能很好地解决区域供水中存在的问题。论文将规模经济理论、设施区位理论、大系统优化理论引入区域供水的研究中,从定量的角度确定区域供水中水源地及水厂的位置、数量、供水范围及供水规模,为区域供水的规划决策提供一定的科学依据。
     论文在分析了区域供水国内外研究现状的基础上,指出我国区域供水研究存在的问题,对区域供水的理论基础—规模经济理论、设施区位理论、大系统最优化理论进行阐述,并对各个理论在供水设施共享中的应用进行了简要分析;从工程技术角度分析水源地及水厂选址的影响因素,采用两阶段选址的方法确定作为候选的水源地及水厂的位置。第一阶段根据基础资料及水源地和水厂的选址影响因素初步筛选确定出水源地及水厂的位置,第二阶段在第一阶段的基础上建立水源地及水厂选址的层次结构模型,构建判断矩阵并进行权重计算,定量地确定作为候选的水源地及水厂的位置;在对传统区域供水系统解析进行分析的基础上,指出传统区域供水系统解析未能明确指出区域供水中各子系统之间的关系,采用大系统优化理论对区域供水系统进行解析,将区域供水系统分为取水系统、输水系统、净水系统、配水系统、用户系统五个部分,指出取水系统与净水系统、净水系统与用户系统之间在水量上存在供需平衡关系,而且区域供水系统在系统整体目标下具有递阶结构,通过大系统分析,以用水系统作为配水系统的输入变量,净水系统作为输出变量,在此基础上以净水系统作为输水系统的输入变量,取水系统作为输出变量,确定了区域供水大系统的各个子系统之间的关联关系,同时根据大系统递阶控制思想,将区域供水大系统分解成两个相互关联的子系统,并用关联预测法构建区域供水系统的分解-协调抽象模型;以区域供水系统工程建设费用最小为目标,引入设施区位理论,构建了供水设施区域空间布局优化模型,采用分解-协调法对供水设施空间布局优化模型进行分解协调,采用微粒群优化算法对各子系统进行求解,并将最优结果反馈到协调器,再采用微粒群优化算法对协调器进行求解,最终得出供水设施区域空间布局优化的最优解。
     论文以江苏省江阴市为例,采用两阶段的选址方法定量地确定江阴市范围内可以作为候选的水源地水厂的位置,在此基础上利用供水设施区域空间布局优化模型对江阴市供水设施进行空间布局优化,定量确定了水源地及水厂的位置、数量、供水范围及供水规模,为该市的区域供水规划提供依据,同时将江阴市现状区域供水与规划区域供水的工程建设费用进行对比,得出规划区域供水具有明显的经济效益。
Regional water supply was a task which strongly involved in political and technical factors and had been successfully applied abroad and in some domestic area. It was essentially important to deal with some critical puzzles such as lack of fundamental water supply facilities in small town and rural area, difficulty to maximize the efficiency of scale economics for water-supply industry, contradictions existing in water protecting and pollution treatment, and unknow of confirmation way on safety, quality and satisfy volume. However, at present, in china, regional water supply was still on its way of groping, with mainly decided by personal subjective experience and without systematical method support yet. It was more like a bottom-up spontaneous action strategically, which would definitely face the obstacles when considering connecting administrative divisions. And tactically, the original subjective methods were still dominated and far more enough in resolving the above mentioned puzzles in regional water supply. This thesis initially merged three theories into original water supply research, i.e. scale economies effect, facility location theory, large scale system optimization theory, and provided a scientific method to define quantitatively from candidate water resources, slot & number of water plants, supply area and scale.
     Based on a wide references home and abroad, this thesis analyzed current method of regional water supply in China, and did systematically elaboration on theory fundamental of regional water supply with aspects: scale economies effect, facility location theory, and large scale system optimization theory,and briefly analyzed the application of the various theory in water supply sharing. This thesis analyzed the influencing factors of location for water resource and water plants from engineering technical perspective, and used two-stage location to determine the location of water resource and water plants for candidate. Locations of water resource and water plants were preliminary screened according to the basic material and influencing factors of water resource and water plants in the first stage. Based on the first stage, this thesis established the hierarchical structure model, constructed judgment matrix along with weight calculation, and quantitatively defined the position of candidate water resource and water plants. The thesis pointed out that the traditional water supply analysis failed to explicitly illustrate the internal relationship of each sub-system in water supply system. According to large scale system optimization theory, regional water supply system was divided into five subsystems: water subsystem, water delivery subsystem, water purification subsystem, water distribution system, and user subsystem. It pointed out the supply and demand balances between water system and water supply system, and water supply system and user requirement respectively. Througe large scale analysis, it also figured out that regional water system had a hierarchical structure of regional water system under the overall objective. The thesis defined the association relationship of various subsystem using user subsystem as the input variable of water distribution subsystem, water purification subsystem for the out variable, and based on this, water purification subsystem as the input variable of water delivery subsystem, water subsystem for the out variable. Based on the large scale system hierarchical control theory, the thesis divided regional water supply system into two interrelated subsystem, and constructed decomposition-coordination model by interaction prediction.
     This thesis hypothesized the minimal system engineering cost as target, established a layout optimization model of water supply facilities for regional spacial layout via introducing facility location theory, and decomposed and coordinated the model by utilizing the decomposition-coordination method. The optimal solution of each subsystem was obtained by Particle Swarm Optimization, and it was fed back to coordinator. Then, the optimal solution of coordinator was obtained by Particle Swarm Optimization.
引文
[1]顾朝林.经济全球化与中国城市发展:跨世纪中国城市发展战略研究.北京:商务印书馆, 2000.
    [2]王雅鹏,叶慧.中西部城镇化加速期粮食安全长效机制研究[M] .北京:中国农业出版社, 2008. 4.
    [3]金凤君.基础设施与人类生存环境之关系研究[J] .地理科学进展, 2001, 20(3): 276-285
    [4]中华人民共和国卫生部,国家标准化管理委员会.生活饮用水卫生标准(GB 5749-2006)[S].
    [5]任金法.我国城乡饮水现状及重大饮用水污染状况分析[J].环境与公共卫生, 2009, 23(6): 80-81.
    [6]谭倩.我国小城镇给水模式研究[D] .重庆:重庆大学, 2005. 10.
    [7] Joho M. Higgins and Daniel A. okun. Regional Development of Public Water Supply System[J]. Journal of the American Water Association. 1972, 9: 13-23.
    [8] K?P Singh and A. P Visocky. Meeting Regional Water Requirements-A Case Study[J]. Journal of the American Water Association. 1974, 12: 10-21.
    [9] Milos Kordic and Dusan Cbradovic. Mathematical Modeling of Regional Water Supply Systems in Yugoslavia[J]. Journal of the American Water Association. 1977, 4: 12-24.
    [10]何维华.试论成都地区区域性供水[J].成都建筑. 1991, 11(1): 37-41.
    [11]吴仲芳.充分利用长江水资源创建苏南区域供水[J].给水排水. 1996, 22(12): 12-14.
    [12]金观华.临平、塘栖区域性供水工程设计简介[J].给水排水. 2002, 28(1): 1-5.
    [13]林德高等.嘉兴市区城乡一体化供水规划[C].浙江省2005年给排水会议论文集. 2005: 107-116.
    [14]毕先清.农村区域供水工程建设的实践与思考[J].江苏水利. 2006, 12: 30-31.
    [15]周平.靖江市城乡区域供水的实践与思考[J].城市公共事业. 2006, 20(6): 27-30.
    [16]王郑等.扬州市区域给水系统规划[J].山西建筑. 2007, 33(15): 184-185.
    [17]奚全富.有关江苏区域供水规划与实践的思考[J].江苏城市规划. 2008, 5: 13-15.
    [18]顾军明.苏、锡、常区域供水问题讨论[J].中国给水排水. 2000, 16(5): 23-25.
    [19]陈坚.浅议南通市区域供水规划[J].中国给水排水. 2000, 16(12): 22-24.
    [20]朱建国.统筹城乡发展,推动江苏沿江区域供水[C].小城镇建设会议论文. 2006: 82-85.
    [21]王阿华.区域供水规划若干问题的思考[J].南京市政. 2007, 2: 29-31.
    [22]樊天龙等.发展区域供水工程的探讨[J].城市研究. 1997, 3: 19-22.
    [23]李国青.论区域供水与小城镇供水事业发展趋势[J].安徽建筑. 2004, 4: 128-129.
    [24]崔延松.“区域供水系统”与“区域水价”研究[J].江苏水利. 2005, 16: 14-17.
    [25]俞国平等.区域供水的投资效益分析方法[J].中国给水排水. 2003, 19(12): 75-76.
    [26]胡颖.武进市区域供水与分散供水模式下的制水成本分析[J].科技咨询导报. 2006, 18: 53-54.
    [27]何维华.区域性供水模式的研究[J].给水排水. 1998, 24(4): 11-15.
    [28]成东.浅谈当前县镇区域性供水能力的必要性[J].江苏卫生保健. 2006, 8(5): 28.
    [29]王志君.在推进城乡一体化的思考[J].城市公用事业. 2007, 21(5): 21-22.
    [30]苏奎,董恩刚.经济学原理[M].成都:电子科技大学出版社, 2008. 9: 58-59.
    [31] Barro, R.“Economic growth in a Cross-Section of Countries”, Quarterly Journal of Econimics, 1991: 407-444.
    [32]小艾尔弗雷德?D?钱德勒.企业规模经济与范围经济[M].北京:中国社会科学出版社, 1999.
    [33]王晏.常熟区域供水设计中的几点体会[J].城市公共事业, 2002. 16(6): 3-5.
    [34]张文忠.经济区位论[M].北京:科学出版社, 2000. 1.
    [35]杨吾扬.区位论原理—产业、城市和区域的区位经济分析[M].兰州:甘肃人民出版社, 1989. 3.
    [36]王铮.城市与区域管理分析的地计算研究—城市?旅游业?可持续发展[M].北京:科学出版社, 2004. 9.
    [37]李人厚,邵福庆.大系统的递阶与分散控制[M].西安:西安交通大学出版社, 1986. 3.
    [38]程吉林.大系统试验选优理论和应用:在复杂水利系统优化规划中的应用研究. [M].上海:上海科学技术出版社, 2002. 9.
    [39]达庆利,何建敏.大系统理论和方法. [M].南京:东南大学出版社, 1989. 5.
    [40]涂序彦,王枞,郭燕慧.大系统控制论[M].北京:北京邮电大学出版社, 2005. 8.
    [41]冯尚友.水资源系统工程[M].武汉:湖北科学技术出版社, 1991. 8.
    [42]汤卫文.关于集中式供水水源的选址[J].人民珠江, 2004(4): 11-12.
    [43]严煦世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社, 1999. 12.
    [44]戴慎志.城市工程系统规划[M].北京:中国建筑工业出版社, 1999.
    [45] American Water Works Association. Water Treatment Plant Design[J]. 4th ed. , McGraw-Hill Companies Inc, New York, 2005, 273-278.
    [46]姚雨霖,任周宇,陈忠正等.城市给水排水[M].北京:中国建筑工业出版社, 1986. 7.
    [47]建筑工程部北京给水排水设计院.室外给水排水工程技术经济指标[M].北京:中国工业出版社, 1966. 3.
    [48]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社, 1990. 6.
    [49] Kablan M. M Dedision support for energy conservation promotion: an analytic hierarchyprocess approch[J]. Energy Policy. 2004, 32(10):1151-1158.
    [50] Satty T L. The analytic bierarchy process[M]. New York: McGraw-Hill, 1980.
    [51]刘新宪,朱道立.选择与判断—AHP(层次分析法)决策[M].上海:上海科学普及出版社, 1990. 2.
    [52]谭跃进,陈英武等.系统工程原理[M].长沙:国防科技大学出版社, 1999. 11.
    [53] Sage A P. Methodology for large-scale system[M] . New York: McGraw Hill, 1977
    [54]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社, 1999. 12.
    [55]罗固源,韦玮,许晓毅等.小城镇水厂污泥处置及资源化方向分析[J].重庆大学学报(自然科学版). 2005, 28(9): 79-82.
    [56]戚盛豪.水工业工程设计手册—水资源及给水处理[M].北京:中国建筑工业出版社, 2001.
    [57]陈建华.基于神经网络及遗传算法的城市配水管网系统的优化设计[D].江苏:江苏大学, 2006.
    [58]张亮.基于微粒群算法的给水管网改扩建研究[D].重庆:重庆大学, 2007.
    [59]朱孟珏,陈忠暖,蔡国田.基于系统论的世界能源空间格局分析[J].地理科学进展. 2008, 27(5): 112-120.
    [60]华士乾.水资源系统分析指南[M].北京:水利电力出版社, 1988. 12.
    [61]袁宏源,邵东国,郭宗楼.水资源系统分析理论与应用[M].武汉:武汉水利电力大学出版社, 2000. 8.
    [62]汪泳.区域供水与水污染控制系统综合规划的优化研究[D],天津:天津大学, 2004.
    [63]吴启迪.汪镭.智能微粒群算法研究与应用[M].江苏:江苏教育出版社, 2005.
    [64]杜国明,陈晓翔,黎夏.基于微粒群优化算法的空间优化决策[J].地理学报. 2006, 61(12): 1290-1298.
    [65] F van den Bergh, A P Engelberecht. Trainning Product Unit Networks using Cooperative Particle Swarm Optimizer[C], In: Proc. of the third Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001: 126-131.
    [66]腾居特,陈国初,顾幸生.分段式微粒群优化算法[J].华东理工大学学报. 2006, 32(4): 462-465.
    [67] Buthainah A. Mutlti-phase Particle Swarm Optimization[D], Italia: Syracuse University, 2002
    [68]薛明志,左秀全,钟伟才,等.正交微粒群算法[J].系统仿真学报. 2005, 17(12): 2908-2911.
    [69]胡建秀,曾建潮.二阶振荡微粒群算法[J].系统仿真学报. 2007, 19(5): 997-999
    [70] Kennedy J, Eberhart R C. A Discrete binary version of the Particle Swarm Optimization[C], In: 4Proceedings of the 2002 Conggress on Evolutionary Systems, Man and Cybernetic, Vol. 5,1997: 4104-4108.
    [71]廖京,申群太.差分演化的微粒群算法[J].科学技术与工程. 2007, 7(8): 1628-1630
    [72]曾建潮,介婧,崔志华编著.微粒群算法[M].北京:科学出版社, 2004. 5.
    [73]王巍.微粒群算法的研究与应用[D].无锡:江南大学, 2008. 6.
    [74]姬超.微粒群算法的应用研究及其可视化工具的设计与实现[D].哈尔滨:哈尔滨工程大学, 2008. 12.
    [75]刘朝玮,黄德先.微粒群算法参数影响的研究[A]. 2004中国控制与决策学术年会论文集, 2004.
    [76] Y. Shi, R. C Eberhart. A modified particle swarm optimizer[C]. In: IEEE World Congress on Computational Intelligence, 1998: 69-73.
    [77] R . C Eberhart. , Y. Shi . Comparing inertia weights and constriction factors in particle swarm optimization[C]. In: Proceedings of the IEEEConference on Evolutionary Computation, ICEC, Vol. 1, 84~88.
    [78]李剑.微粒群优化算法及其在物流系统中的应用研究[D].武汉:华中科技大学, 2008. 6
    [79]梁春艳,吴春国,时小虎,等.群智能优化算法理论与应用[M].北京:科学出版社, 2009.1.
    [80]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 2002. 5.
    [81]沈斌,江维,等.三种优化算法的比较研究[J].自动化与仪器仪表, 2009, (03): 111-114.
    [82]张冠群.基于蚁群算法的多模式资源项目调度问题研究[D].湖南:湖南大学, 2009. 10.
    [83] Dorigo M. Optimization, learning and natural algorithms[C]. Ph. D. Thesis, Department of Elecronics, Politecnico diMilano, Italy, 1992: 45-52.
    [84] Dorigo M, Maniezzo V, Colorin A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transation on system, Man, and Cybernetics-Part B, 1996, 26(1)29-41.
    [85]劳玲英.微粒群优化算法及其在人工神经网络中的应用[D].重庆:重庆大学, 2008. 5.
    [86]夏蔚军,吴智铭.微粒群优化在Job-shop调度中的应用[J].上海交通大学学报2005, 39(03): 381-386.
    [87]李崇浩,纪昌明.微粒群算法在水电站厂内经济运行中的应用研究[J].水利水电技术, 2006, 37(01): 88-91.
    [88]廖宁,刘建勋,王俊年. DPSO算法在服务网格资源调度中的应用[J].计算机技术与发展, 2009, 19(08): 104-105.
    [89]杨俊杰,周建中,方仍存,等. MOPSO算法及其在水库优化调度中的应用[J].计算机工程, 2007, 33(18): 249-251.
    [90]张玲,徐宗学.基于粒子群算法的水资源优化配置[J].水文, 2009, 29(3): 41-45.
    [91]杜国明,陈晓翔,等.基于微粒群优化算法的空间优化决策[J].地理学报, 2006, 61(12):1290-1298.
    [92]李军军,王锡淮.基于混合微粒群算法的配送中心选址问题的求解[J].现代物流技术, 2006, 29(132): 26-30.
    [93]杨彦卿.基于改进粒子群算法的变电站选址问题研究[D].天津:河北工业大学, 2007. 11.
    [94]龚艳冰,陈森发.基于微粒群算法的污水管网优化设计[J].中国给水排水, 2006, 22(24): 48-50.
    [95]李明华.基于微粒群算法的污水管道优化系统研究[D].苏州,苏州大学硕士学位论文, 2008.
    [96]陈进殿,汪玉春,汤俊杰.用微粒群算法实现天然气管网运行最优化[J].油气储运, 2009, 28(1): 77-11.
    [97]胡启洲,邓卫,周媛.基于定量分析的公交线路网络优化与粒子群算法[J].公路交通科技, 2007, 24(10): 129-133.
    [98]张军,张学尽,杜文,等.基于微粒群算法的城市公交线网模型研究[J].计算机应用研究, 2007, (1): 131-133.
    [99]黄小燕,文展,等.基于改进PSO的汽车路径优化[J].湘潭大学自然科学学报, 2009, 31(2): 166-171.
    [100]周驰,高亮.基于粒子群优化算法的约束布局优化[J].控制与决策, 2005, 20(1): 36-41
    [101]黄建江,须文波,等.量子行为微粒群算法的布局问题研究[J].计算机应用, 2006, 26(12): 3015-3019.
    [102]曾议,竺长安,等.设备布局离散优化问题的粒子群算法研究[J].机械设计, 2006, 23(12): 4-8.
    [103]江阴市水利农机局,河海大学.江苏省江阴市水资源综合规划报告[R], 2006. 11.
    [104] Shi Yuhui, Eberhart R. Empirical study of partical swarm optimization[A], Proc IEEE Int Con on Evolutionary Computation[C]. Seoul, 2001. 101-106.
    [105] Shi Yuhui, Eberhart R. Parameter selection in partical swarm optimization[A], Proc of the 7th Annual Conf on Evolutionary Programming[C]. Washington DC, 1998. 591-600.
    [106] Ebernart R C, Shi Yuhui. Partical swarm optimization: developments, applications and rescources[A], Processiding of the 2001 Congress on Evolutionary Computation[C]. Piscataway, 2001. 81-86.
    [107] Trelea I C. The partical swarm optimization algorithm convergence analysis and parameter selection[J], Information Processing Letters. 2003, (10):317-325.
    [108] Kang-ping Wang, Lan Huang, Chun-guang Zhou, et al. Partical Swarm Optimization for Traveling Salesman Problem[A], Xi’an Proceeding of the 2nd International Conference on Machine Learning and Cybernatics[C]. Xi’an, 2003. 1583-1585.
    [109] Parsopoulos K E, Vrahatis M N. Recent approches to global optimization problems through partical optimization[J]. 2002, 1(3):235-306.
    [110] Jaramillo J H, Bhadury J, Batta R. On the use of genetic algorithms to solve location problems[J]. Computers & Operations Research[J]. 2002, 29:761-779.
    [111] Clerc M, Kennedy J. The partical swarm explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(1):58-73.
    [112] Krink T, Vesterstroem J S, Riget J. Partical swarm optimization with spatial partical extension[A], Proceedings of the IEEE Congress on Evolutionary Computation[C]. Honolulu, Hawaii, 2002. 1474-1479
    [113] Angeline P J. Using selection to improving swarm optimization[A], Proceeding of the 1998 International Conference on Evolutionary Computation[C]. New York, 1998. 84-89.
    [114] Peter J. Coombes, George Kucaera, etc. An evaluation of benefits of source control measures at gegional scal[J]. Urban Water. 2002, (4):307-320.
    [115] M. J. van der Vlist. Blue node concept: a regional water management strategy[J]. Agricultural Water Management. 1999, (40):265-273.
    [116] T. Gaiser, A. Printz, ect. Development of a regional model for integrated management of water resources at the basin scal[J]. Physics and Chemistry of the Earth. 2008, (33):175-182.
    [117] Yonghong Hao, Tian-Chyi J. Yeh, ect. Karst groundwater management by defining protection zones based on gegional gelolgical structures and groundwater flow fields[J]. Environ Geol. 2006, (50):415-422.
    [118] Avi Ostfeld. Reliability analysis of regional water distribution systems[J]. Urban Water. 2001, (3):253-260.
    [119] L. Jeffrey, Donald R. Kendall. Optimization Modeling of a New Facility For the California State Water Project[J]. Water Resources Research. 1996, 32(3):451-463.
    [120] Chris Neary. Public Water Supply and Distribution at the FEMP[A]. 24th Annual National Energy and Environmental Division Education and Training Symposium[C]. Cincinnati, 1997:1-9.
    [121]杨晓岚.对杭州市都市圈水资源和供排水设施共享的探讨[J].浙江建筑. 1999, s1:4-6.
    [122]上海市政工程设计研究院.给水排水设计手册第3册:城镇供水第二版[M].北京:中国建筑工业出版社. 2004.
    [123] Orhan Karasakal, Esra K. Karasakal. A maximal covering location model in the presence of partial coverage[J]. Cnmputers & Operations Research, 2004, 31:1515-1526.
    [124]陈述彭.城市化与城市地理信息系统[M].北京:科学出版社. 1999.
    [125] Klose A, Drexl A. Facility location models for distribution system design[J]. European Journal of Operational Research. 2005, 162(1):4-29.
    [126] Melkote S. An integrated model of facility location and transportation network design. Transportation Research. 2001, 35A(6):515-538.
    [127] Rosing K E, Hodgson M J. Heuristic Concentration for the P-median: an Example Demonstrating How and Why it works[J]. 2002, 29:1317-1330.
    [128] Ali Amiri. Designing a distribution network in a supply chain system: Formulation and efficient solution procedure[J]. European Journal of Operational Research. 2006, 171: 567-576.
    [129] Berman O. Drezner Z, Wesolowsky G. . O. Routing and location on a network with hazardous threats e[J]. Journal of the Operational Research Society. 2000, 51:1093-1099.
    [130] Nozick L, M. A. Turnquist. Inventory, transportation, service quality and the location of distribution centers[J]. European Journal of Operational Research. 2001, 129(2):362-371.
    [131] Luis G, Acosta E, Roberto D. G. Dual-based heuristic for a hierarchical covering location problem[J]. Computers & Operations Research. 2003, 30:65-180.
    [132]崔丽丽,黄涛,王铮.数字化城市中的决策支持模型的研究—以多元韦伯区位模型为例[J].遥感技术与应用. 2001, 16(4):228-232.
    [133] Drezner T. Location of multiple retail facilities with limited budget constraints—in continuous space[J]. Journal of Retailing and Consumer Services. 1998, 5(3):173-184.
    [134] Kuo R. J, Chi S. C, Kao S. S. A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural ner work[J]. Computers in Industry. 2002, 47:199-214.
    [135] Church R L Cober. A New Formulation of the Class p-Median Location Problem[J]. Annals of Operations Research. 2003, 122(1):103-120.
    [136]阿尔弗雷德·韦伯,李刚剑译.工业区位论[M].北京:商务印书馆. 1997.
    [137]王凌.智能优化算法及其应用[M].北京:清华大学出版社. 2001. 10.
    [138]汤铭潭.小城镇基础设施的优化配置与资源共享[J].城乡建设. 2005, 1: 45-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700